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Abstract Cerebral microhemorrhages (CMHs, also 
known as cerebral microbleeds) are a critical but 
frequently underestimated aspect of cerebral small 
vessel disease (CSVD), bearing substantial clini-
cal consequences. Detectable through sensitive neu-
roimaging techniques, CMHs reveal an extensive 
pathological landscape. They are prevalent in the 
aging population, with multiple CMHs often being 
observed in a given individual. CMHs are closely 
associated with accelerated cognitive decline and are 
increasingly recognized as key contributors to the 

pathogenesis of vascular cognitive impairment and 
dementia (VCID) and Alzheimer’s disease (AD). This 
review paper delves into the hypothesis that athero-
sclerosis, a prevalent age-related large vessel disease, 
extends its pathological influence into the cerebral 
microcirculation, thereby contributing to the develop-
ment and progression of CSVD, with a specific focus 
on CMHs. We explore the concept of vascular aging 
as a continuum, bridging macrovascular pathologies 
like atherosclerosis with microvascular abnormalities 
characteristic of CSVD. We posit that the same risk 
factors precipitating accelerated aging in large ves-
sels (i.e., atherogenesis), primarily through oxidative 
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stress and inflammatory pathways, similarly instigate 
accelerated microvascular aging. Accelerated micro-
vascular aging leads to increased microvascular fra-
gility, which in turn predisposes to the formation of 
CMHs. The presence of hypertension and amyloid 
pathology further intensifies this process. We com-
prehensively overview the current body of evidence 
supporting this interconnected vascular hypothesis. 
Our review includes an examination of epidemiologi-
cal data, which provides insights into the prevalence 
and impact of CMHs in the context of atherosclero-
sis and CSVD. Furthermore, we explore the shared 
mechanisms between large vessel aging, athero-
genesis, microvascular aging, and CSVD, particu-
larly focusing on how these intertwined processes 
contribute to the genesis of CMHs. By highlighting 
the role of vascular aging in the pathophysiology of 
CMHs, this review seeks to enhance the understand-
ing of CSVD and its links to systemic vascular disor-
ders. Our aim is to provide insights that could inform 
future therapeutic approaches and research directions 
in the realm of neurovascular health.

Keywords Atherosclerosis · Arteriosclerosis · 
Aging · Peripheral artery disease · White 
matter injury · White matter hyperintensities · 
Leukoaraiosis · Blood–brain barrier · Microbleed · 
Stroke · Vascular dementia

Introduction

Cerebral small vessel disease (CSVD) stands as a 
pivotal yet often underappreciated component of 
age-related neurovascular disorders [1–5]. It encom-
passes a range of pathologies impacting the small 
arteries, arterioles, capillaries, and postcapillary ven-
ules within the brain, playing a major role in stroke, 
dementia, and age-related cognitive decline. Clini-
cally significant, CSVD accounts for approximately 
25% of ischemic strokes and a substantial 85% of 
intracerebral hemorrhages [6]. It represents as a prin-
cipal factor in the onset and progression of vascular 
cognitive impairment and dementia (VCID). Moreo-
ver, CSVD notably contributes to the pathogenesis 
of a majority of dementias, including those classi-
fied under the Alzheimer’s disease spectrum [7]. This 
highlights its pivotal role in both vascular and neuro-
degenerative brain disorders.

Neuropathologically, CSVD encompasses a range 
of pathologies affecting perforating arteries, arte-
rioles, capillaries, and veins within the brain paren-
chyma and the leptomeningeal vessels. Histologically, 
CSVD is marked by conditions such as arteriolo-
sclerosis, lipohyalinosis, fibrinoid necrosis, and cer-
ebral amyloid angiopathy (CAA), among others 
[8]. Large autopsy series have demonstrated a high 
prevalence of these histopathological signs in older 
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adults, indicating a strong association with VCID. For 
instance, autopsy data from 1474 older participants in 
the Rush Alzheimer’s Disease Center studies revealed 
that 80% of the decedents had neuropathological 
signs of cerebrovascular disease [9]. In the Reli-
gious Orders Study and Memory and Aging Project 
(ROSMAP) cohort, arteriolosclerosis was identified 
in 33.5% of cases, a prevalence comparable to that 
of large vessel atherosclerosis, which was found in 
33.1% of cases [9]. Two-thirds of these cases exhib-
ited mixed cerebrovascular pathologies, displaying a 
co-occurrence of both large vessel and microvascular 
pathologies [9]. Particularly striking is the observa-
tion that the patient subgroup with concurrent ath-
erosclerosis and arteriosclerosis experienced the most 
rapid cognitive decline across all domains, compared 
to subgroups with any single type of cerebrovascular 
pathology [9]. These data underscore the widespread 
nature of CSVD in the aging population and the 
potential impact of combined vascular pathologies on 
cognitive health.

Despite their significance, these small vessel 
pathologies remain challenging to directly observe 
through standard clinical neuroimaging. Advanced 
techniques like 7 T MRI have suggested potential vis-
ualization, but typically, CSVD is identified through 
neuroimaging and pathological features revealing 
parenchymal damage linked to clinical symptoms. 
Imaging signs of CSVD, such as lacunar infarcts, 
microinfarcts, enlarged perivascular spaces (PVS), 
diffuse white matter lesions, seen as white mat-
ter hyperintensities (WMHs) on T2-weighted MRI 
images, and cerebral microhemorrhages (CMHs), are 
vital for in  vivo visualization, with MRI being the 
most effective tool [1, 3, 10–12]. The prevalence of 
these imaging signs is alarmingly high in the aging 
populations of the Western world, and their asso-
ciation with cognitive impairment, VCID, and AD 
is well-established [1, 11, 12]. Imaging-histological 
correlations in CSVD are evolving, with some lesions 
like CMHs, lacunar infarcts, PVS, and small infarcts 
being identifiable both by MRI and histologically 
[13]. However, others, such as early-stage WMHs, are 
more difficult to assess by histology than MRI [13].

Central to CSVD is the pathological manifesta-
tion of CMHs, also known as cerebral microbleeds 
[14]. These small, dot-like lesions, detectable through 
advanced neuroimaging, exemplify microvascu-
lar damage and hold significant clinical relevance 

[14]. CMHs are associated with an increased risk of 
stroke  and cognitive impairment, and are prominent 
in VCID and AD [14]. Their prevalence in the aging 
population points to advanced microvascular pathol-
ogy and a heightened risk of neurodegenerative pro-
cesses [14]. The study of CMHs is of paramount 
importance in understanding and managing CSVD, 
particularly given their potential as preventable con-
sequences of this disease. Recent animal studies have 
shed light on various aspects of CMH pathogenesis, 
suggesting that targeting the underlying mechanisms 
could lead to clinically translatable preventive strat-
egies [14–22]. CMHs, often found in conjunction 
with other CSVD markers, not only reflect the current 
state of microvascular health but also provide critical 
insights into the progression and potential mitigation 
of age-related neurovascular disorders. Their role in 
cognitive decline and associations with large vessel 
pathologies underscore their significance in both clin-
ical research and patient care. By focusing on CMHs, 
we can better comprehend and potentially curb the 
advancement of CSVD, ultimately improving out-
comes for aging populations at risk of neurovascular 
and cognitive impairments.

Aging and hypertension are recognized as primary 
risk factors for CMHs [14]. Recent preclinical stud-
ies have begun to unravel how fundamental aging 
mechanisms contribute to the pathogenesis of CMHs 
[14–22]. These studies reveal that aging processes, 
including cellular senescence, oxidative stress, and 
endothelial dysfunction, lead to increased microvas-
cular fragility [20, 22]. This fragility predisposes the 
cerebral microvasculature to high pressure/increased 
wall tension-induced ruptures, culminating in the for-
mation of CMHs. These insights are crucial in under-
standing the molecular and cellular pathways that 
drive the development of CMHs in aging populations.

However, a comprehensive understanding of the 
origins of CSVD and CMHs also necessitates an 
exploration of large vessel pathologies associated 
with aging, particularly atherosclerosis [14, 23, 24]. 
Atherosclerosis, an age-related inflammatory vas-
cular disease, is marked by the thickening and hard-
ening of arterial walls due to plaque accumulation. 
Increasingly, evidence suggests that the pathologi-
cal process underlying atherogenesis extends beyond 
large vessels to influence microvascular health, 
potentially contributing to CSVD and the formation 
of CMHs. This evolving perspective underscores the 
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interconnectedness of macrovascular and microvas-
cular pathologies in the aging vasculature, highlight-
ing the need for integrated approaches in research and 
clinical interventions.

This review paper seeks to bridge the knowledge 
gap between macrovascular pathologies like athero-
sclerosis and their impact on microvascular health, 
especially regarding CSVD and CMHs. We hypoth-
esize that mechanisms driving atherosclerosis and 
large vessel aging are also fundamental to microvas-
cular changes leading to CSVD. Our goal is to elu-
cidate the interconnected nature of these vascular 
processes and their cumulative impact on cerebral 
health. We review existing epidemiological evidence, 
delve into shared pathophysiological mechanisms, 
and highlight the clinical significance of this vascular 
continuum. Our objective is to provide a comprehen-
sive understanding of how atherosclerosis as an age-
related large vessel disease intertwines with micro-
vascular aging and pathology, shaping the landscape 
of CSVD and its manifestations, including CMHs.

Epidemiology and clinical impact of CMHs

As emerging research sheds light on the epidemiol-
ogy and clinical impact of CMHs, their significance 
in both aging populations and individuals with vari-
ous vascular risk factors becomes increasingly appar-
ent. This section delves into the detection methods 
for CMHs, explores their prevalence and patterns in 
different demographic groups, and examines their 
association with cognitive decline, vascular cognitive 
impairment, dementia, and Alzheimer’s disease. Fur-
thermore, we will explore the intricate connections 
between CMHs and various manifestations of athero-
sclerotic vascular diseases, including carotid stenosis, 
myocardial infarction, ischemic stroke, and peripheral 
arterial disease. Through comprehensive reviews of 
recent studies and analyses, we aim to provide a thor-
ough understanding of the implications of CMHs in 
the broader context of vascular health and cerebrovas-
cular pathology.

Detection of CMHs through advanced imaging 
techniques

CMHs are effectively detected using advanced neuro-
imaging MRI techniques, particularly T2*-weighted 

imaging [10, 14]. Both gradient echo (GRE) and 
susceptibility-weighted imaging (SWI) are sensitive 
to blood and iron products and are particularly useful 
for detecting CMHs. CMHs manifest as small, round, 
or ovoid hypointense (dark) lesions on these scans. 
CMHs are generally defined as lesions measuring 
up to 10  mm in diameter. Of the two neuroimaging 
methods, SWI is noted for its higher sensitivity, capa-
ble of identifying smaller and more subtle CMHs that 
might be missed on GRE imaging.

Prevalence of CMHs in the aging population

The prevalence of CMHs significantly increases with 
age [25], becoming more common in older adults and 
often co-occurring with other imaging signs of CSVD 
[1, 4, 11, 14, 26–28]. Early studies indicated a lower 
prevalence of CMHs, such as a 2004 study from the 
Framingham Study Offspring Cohort which found a 
4.7% prevalence in 472 subjects [29]. However, more 
recent studies employing advanced imaging tech-
niques and refined detection criteria have reported a 
higher prevalence of CMHs, leading to the current 
consensus based on pathological findings that approx-
imately 50% of the older general population may have 
these microbleeds [2, 13, 30–32]. Additionally, in 
populations with significant vascular risk factors, the 
prevalence of CMHs is observed to be even higher, 
underscoring the impact of vascular health on the 
occurrence of these cerebral lesions. To illustrate this 
evolving view on the significant prevalence of CMHs 
in older adults, some key studies are reviewed below, 
highlighting the extent and implications of this condi-
tion in aging populations.

An important research effort, which involved 1965 
participants from the Framingham Original and Off-
spring cohorts, found CMHs in 8.8% of the study 
population [25]. In a research project published in 
2008 involving 1062 participants from the popula-
tion-based Rotterdam Scan Study with an average 
age of 69.6 years, CMHs were assessed using 1.5 T 
MRI scans [26]. The study found a high overall prev-
alence of CMHs, which notably increased with age, 
ranging from 17.8% in individuals aged 60–69 years 
to 38.3% in those over 80. Interestingly, carriers of 
the APOE epsilon 4 allele were significantly more 
likely to have strictly lobar CMHs compared to non-
carriers. In contrast, traditional cardiovascular risk 
factors, as well as the presence of lacunar infarcts 
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and WMHs, were associated with CMHs located in 
deep or infratentorial brain regions, but not with lobar 
CMHs. In the Multi-Ethnic Study of Atherosclerosis 
(MESA), a comprehensive examination of CMHs in 
a diverse population was conducted using 3  T MRI 
SWI sequences [33]. The study involved 1016 partici-
pants without a history of stroke. The prevalence of 
CMHs was found to be significantly age-dependent, 
with 20% of participants aged 60 to 64.9 years exhib-
iting CMHs, and the prevalence increasing to 45% 
in individuals aged 85  years and older. In terms of 
microbleed locations, deep microbleeds were more 
commonly associated with older age, hypertension, 
and higher body mass index. These findings high-
light the variability in the reported CMH prevalence 
rates, reflecting differences in study populations and 
advancements in imaging techniques.

Hypertension-induced CSVD may predominantly 
lead to the formation of deep CMHs, whereas CAA is 
more likely to drive the development of lobar CMHs 
[34]. This distinction highlights the differing patho-
physiological mechanisms and regional impacts of 
these conditions on the brain’s microvasculature.

Association between CMHs, cognitive decline, 
VCID, and AD

A growing body of evidence has established a clear 
association between CMHs and cognitive decline. 
CMHs are increasingly recognized as markers of 
cerebrovascular pathology that can exacerbate or 
contribute to the cognitive decline  in conditions like 
VCID and AD.

Previous research has identified a significant rela-
tionship between the presence of CMHs and execu-
tive dysfunction [35]. This association, independent 
of other cerebrovascular changes, was particularly 
pronounced in patients with CMHs located in the 
frontal region and basal ganglia [35]. In the Rot-
terdam Scan Study, an investigation of 3979 elderly 
individuals without dementia, a higher number of 
CMHs was found to correlate with lower scores on 
the Mini-Mental State Examination (MMSE) and 
poorer performance in information processing and 
motor speed [36]. Particularly, the presence of five or 
more CMHs was associated with worse performance 
across multiple cognitive domains, highlighting an 
independent role of CMHs in the development of 
cognitive impairment [36]. In a follow-up study with 

a mean duration of 4.8  years, a significant associa-
tion between the presence of more than four CMHs 
and cognitive decline was found [37]. Lobar micro-
bleeds were linked to deterioration in executive func-
tions, information processing, and memory function, 
whereas CMHs located in other brain regions cor-
related with declines in information processing and 
motor speed [37]. The presence of CMHs emerged 
as a significant risk factor for the development of 
both Alzheimer’s dementia and VCID with an age, 
sex, and education-adjusted hazard ratio of 2.02 
[37]. Other studies also reached similar conclusions 
[38–44]. Complementing these findings, the Radboud 
University Nijmegen Diffusion Tensor and Mag-
netic Resonance Cohort (RUN DMC) Study found 
CMHs in 10.4% of 500 nondemented elderly patients, 
which were significantly associated with global cog-
nitive function, psychomotor speed, and attention 
[45]. These cognitive correlations, predominantly 
driven by CMHs located in frontal, temporal, and 
strictly deep regions, were observed independently of 
other CSVD-related lesions like WMHs and lacunar 
infarcts, highlighting the clinical relevance of CMHs 
in understanding vascular contributions to cognitive 
decline [45]. The Vascular Mild Cognitive Impair-
ment (VMCI)-Tuscany study, focusing on CSVD 
patients with mild cognitive impairment, found that 
nearly one-third of participants had CMHs [46]. The 
total count of CMHs in these patients correlated with 
impairments in attention, executive functions, and flu-
ency domains [46]. Similarly, the DNA-Lacunar-2 
multicenter study identified a significant associa-
tion between CMHs and cognitive dysfunction, par-
ticularly affecting executive function and processing 
speed [47]. Additionally, the Rotterdam Study found 
that CMHs in deep or infratentorial brain regions also 
increase the risk for depressive disorders [48]. These 
varied studies collectively highlight the multifac-
eted impact of CMHs on cognitive health, indicating 
their pivotal role in the pathogenesis of cognitive and 
mood disorders in aging populations.

Clinical evidence linking atherosclerosis, CSVD, and 
CMHs

Clinical and epidemiological studies have provided 
insights into the interconnectedness of atherosclero-
sis, CSVD, and the development of CMHs [26, 28, 
49–52]. Atherosclerotic vascular disease manifests 
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variably across different vascular beds, leading to a 
range of clinical conditions including carotid artery 
stenosis, acute myocardial infarction in the coronary 
arteries, ischemic strokes due to intracerebral artery 
occlusion and peripheral arterial disease (PAD) in the 
limb [53]. In this section, we overview the evidence 
linking these atherosclerotic vascular diseases to 
CSVD and CMHs.

In the cardiovascular segment of the Malmo Diet 
and Cancer Study, a large-scale, prospective popula-
tion-based study in Sweden involving 6103 partici-
pants, researchers identified a significant association 
between midlife carotid artery atherosclerosis and 
CSVD [50]. This link was established based on the 
presence of specific MRI imaging signs indicative 
of CSVD, which included CMHs, lacunar infarcts, 
and WMHs [50]. The findings of a recent system-
atic review and meta-analysis indicate a significant 
association between advanced  carotid artery ste-
nosis and the presence of CMHs [52]. The analysis 
revealed an odds ratio of 1.95, with a 95% confidence 
interval ranging from 1.13 to 3.36, supporting the 
potential link between large artery atherosclerosis 
and the development of CSVD. Other studies also 
reached similar conclusions [54–56], confirming 
that advanced systemic atherosclerosis associates 
with various imaging markers of CSVD. In patients 
who have experienced ischemic stroke, CMHs are 
also closely linked to carotid artery atherosclerosis 
[57]. However, the aforementioned studies found no 
consistent correlation between atherosclerosis and 
the subsequent development of AD dementia or AD 
pathology [50].

In a study by Kim et  al. involving 312 individu-
als aged 65 and older, a significant association was 
observed between increased coronary artery calcifica-
tion scores and indicators of CSVD [51]. The study 
specifically noted strong associations between moder-
ate-to-extensive coronary artery calcification and var-
ious manifestations of CSVD, such as CMHs (with 
an adjusted odds ratio and 95% confidence interval of 
6.07 and 1.54–23.94), WMHs (4.99 and 1.33–18.73), 
and lacunar infarcts (5.04 and 1.86–13.63) [51]. 
Consistent with these observations, a cross-sectional 
analysis of data from the Age, Gene, Environment 
Susceptibility (AGES)-Reykjavik Study cohort of 
older adults showed that subjects with higher coro-
nary artery calcification are more likely to have 
dementia,  lower cognitive scores, and more CMHs 

and WMHs [58]. Other studies also reached similar 
conclusions [59–61]. In an investigation involving 
782 high-risk individuals who were first-degree rela-
tives of patients with early-onset coronary artery dis-
ease enrolled in the Genetic Study of Atherosclerosis 
Risk (GeneSTAR), a direct association was identified 
between the presence and volume of coronary artery 
plaques and volumes of WMHs [62]. An analysis of 
imaging markers of CSVD in participants of the Ath-
erosclerosis Risk in Communities (ARIC) study, a 
community-based cohort investigation, demonstrated 
a higher prevalence of CMHs in individuals with a 
family history of coronary artery disease [63]. These 
findings not only suggest the existence of shared 
pathophysiological mechanisms across different vas-
cular beds but also hint at the potential influence of 
common lifestyle risk factors or genetic predisposi-
tions for accelerated vascular aging within families.

Ischemic stroke and CSVD have a closely inter-
linked relationship where CSVD can be both a con-
tributing factor to the occurrence of ischemic stroke 
and an indicator of heightened vascular risk, often 
associated with the atherosclerotic processes underly-
ing ischemic strokes. Accordingly, in the Rotterdam 
Study, a comprehensive longitudinal population-
based analysis, the presence, number, and location 
of CMHs were found to be linked with an increased 
risk of stroke among 4759 participants aged 45 years 
and older, over a follow-up period of approxi-
mately 5  years [64]. The study highlighted that the 
presence of CMHs was associated with a twofold 
increased risk of all types of strokes [64]. Notably, the 
risk escalated with an increasing count of CMHs [64]. 
Particularly, participants with CMHs located in areas 
indicative of CAA faced a fivefold increased risk of 
intracerebral hemorrhage [64]. Meanwhile, CMHs in 
other locations were associated with an elevated risk 
of both ischemic stroke and intracerebral hemorrhage 
[64]. These findings underscore the critical role of 
CMHs as a marker for increased stroke risk, particu-
larly highlighting their significance in predicting the 
type of stroke based on their location within the brain.

Other studies demonstrated that patients who have 
experienced an ischemic stroke or transient ischemic 
attack (TIA) are at an increased risk of developing 
new CMHs [65, 66]. In older adults who experience 
acute ischemic stroke, CMHs [67] and other signs 
of CSVD are prevalent [68]. Notably, a high cardio-
ankle vascular index — an indicator of systemic 
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atherosclerotic burden — was independently linked 
to the presence of CMHs in these patients [67]. 
This association underscores the potential synergy 
between systemic atherosclerosis and the develop-
ment of CMHs in the context of acute cerebrovascu-
lar events as well [67]. CMHs are also recognized as 
a significant risk factor for future intracerebral hem-
orrhage in patients who have experienced ischemic 
stroke [69–71]. Their presence indicates a heightened 
vulnerability within the entire cerebral vasculature, 
which can predispose these patients to subsequent 
larger hemorrhagic events. The presence of CMHs 
holds significant prognostic relevance for the long-
term cognitive outcomes in stroke patients [72–80]. 
These relationships highlight the importance of moni-
toring CMHs and managing CSVD in the context of 
stroke care and prevention.

PAD, a common manifestation of systemic ath-
erosclerosis in the limb vessels, is garnering atten-
tion for its potential link to cognitive impairment 
[81–86]. There is emerging evidence suggesting that 
individuals with PAD face an elevated risk of devel-
oping CSVD [87] and CMHs [27]. In older patients 
with chronic kidney disease, who are already at an 
increased risk for atherosclerotic vascular conditions 
including PAD, there is also a higher prevalence of 
CMHs [88]. However, this area of study requires fur-
ther exploration to solidify these associations.

The aforementioned studies suggest that the risk 
factors and pathophysiological processes associated 
with atherosclerosis, such as endothelial dysfunc-
tion and chronic inflammation, may also play a role 
in the development of CSVD and subsequent forma-
tion of CMHs [89–92]. The common thread linking 
these conditions is the underlying age-related vascu-
lar pathology, which manifests with different clinical 
syndromes depending on the location of the diseased 
vessels in the body and across the spectrum from 
large vessels disease to microvascular changes.

Imaging signs of small vessel pathology in the retinal 
vasculature of patients with atherosclerotic diseases: 
insights from fundus imaging and optical coherence 
tomography

To comprehensively understand microvascular 
pathologies associated with atherosclerotic vascu-
lar diseases, it is crucial to directly study the struc-
tural and functional changes in the central nervous 

system’s microcirculation. Yet, limitations in in vivo 
brain vascular imaging make this challenging. Here, 
the retinal microvasculature offers a unique window, 
mirroring the cerebral circulation in anatomy, physi-
ology and pathophysiology [93–131]. This similarity 
allows retinal examinations to serve as non-invasive 
tools for investigating CNS microvascular pathologies 
associated with systemic diseases.

Retinal imaging has evolved rapidly over the past 
few decades, allowing easy and non-invasive visuali-
zation of the retinal vasculature and neuronal struc-
ture [129, 130, 132]. Retinal fundus photography, a 
crucial tool for retinal disease assessment, captures 
color images of the retina. Additional detailed analy-
sis of retinal vasculature characteristics, such as frac-
tal dimension, tortuosity, and vessel caliber, can be 
performed using computer-assisted analysis programs 
like SIVA (Singapore I Vessel Assessment), VAM-
PIRE, ARIA, and IVAN [133]. Optical coherence 
tomography angiography (OCTA), a cutting-edge 
non-invasive imaging technique, distinctly visualizes 
various retinal and choroidal vascular layers without 
the need for dye injection [132]. This method not only 
yields detailed visualizations of the retinal vasculature 
but also provides extensive data on retinal blood flow, 
including measurements of foveal avascular zone 
area and capillary density. These capabilities enable 
more objective and accurate interpretation of retinal 
microcirculation images. OCTA’s ability to detect 
subtle changes in retinal microcirculation that corre-
late with intracranial blood flow makes it particularly 
valuable for assessing cerebral circulation in patients 
with atherosclerosis [132, 134–136]. Studies utilizing 
these methods have reported significant changes in 
retinal microvascular parameters associated with sys-
temic pathologies, including large vessel atheroscle-
rotic diseases [93–96, 98, 100–106, 109–119, 121, 
123, 124, 126–128, 137, 138]. For example, internal 
carotid artery stenosis is associated with decreased 
retinal blood flow and reduced retinal microvascular 
density [134–136]. Additionally, significant correla-
tions have been observed between impaired cerebro-
vascular reactivity and reduced retinal vessel density 
in these patients, suggesting parallel atherosclerosis-
associated changes in both the retinal and the cerebral 
microcirculations [134–136]. Recent studies also 
report significant association between retinal micro-
vascular parameters and coronary artery disease [96, 
98, 138]. Overall, these insights indicate that retinal 
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vascular parameters can serve as effective biomarkers 
for the early detection and monitoring of microvascu-
lar complications in atherosclerotic diseases. Contin-
ued research with longer-term follow-ups and larger 
sample sizes is necessary to further validate these 
findings and enhance our understanding of the rela-
tionship between retinal and cerebral microvascular 
health in the context of systemic atherosclerosis.

Atherosclerosis as an age‑related disease: 
pathophysiology and impact on large arteries

Atherosclerosis, primarily an age-related disease 
[139–150], is characterized by the progressive 
buildup of plaques within the arterial walls. These 
plaques, composed of lipids, cholesterol, calcium, 
and cellular debris, lead to the thickening and hard-
ening of arteries, significantly impacting blood flow. 
The progression of atherosclerosis involves the grad-
ual narrowing of arterial lumens. The disease typi-
cally progresses silently over decades, affecting the 
aorta and various arterial systems, including those 
of the brain, heart, extremities, gastrointestinal tract, 
and kidneys. It becomes clinically significant when 
it restricts the blood supply to essential organs. A 
critical juncture occurs when a thrombus forms on a 
ruptured atherosclerotic plaque, leading to complete 
blockage of blood flow and potentially resulting in 
severe ischemic events like heart attacks and strokes.

Atherogenesis is a complex process beginning with 
endothelial dysfunction and injury [151–156]. This 
initial step triggers a cascade of events, including the 
infiltration of low-density lipoprotein (LDL) choles-
terol into the arterial wall and its oxidation. Oxidized 
LDL, a potent inflammatory agent, attracts immune 
cells and fosters the formation of fatty streaks, the 
forerunners of atherosclerotic plaques. The role of 
immune cells, particularly Clonal Hematopoiesis 
of Indeterminate Potential (CHIP), is critical in this 
context [145, 157–162]. CHIP, characterized by the 
expansion of blood cell clones with certain somatic 
mutations, are increasingly recognized for their con-
tribution to chronic inflammation and atherosclerosis 
[159–162].

Atherosclerosis shows a preferential development 
in certain locations of large arteries, influenced by 
hemodynamic factors. It is a disease of high-pressure 
arterial systems; unlike veins, which are exposed to 

the same circulating factors but operate under lower 
pressure, only arteries are prone to develop athero-
sclerosis. This disease propensity is linked to areas 
of high wall tension, typically found in larger arteries 
under high intraluminal pressure. In contrast, smaller 
arteries and arterioles, with lower wall tension due to 
their smaller diameter and reduced pressure, are gen-
erally spared, despite being exposed to the same cir-
culating factors.

Shear stress, the frictional force exerted by blood 
flow on the vessel wall, plays a pivotal role in ath-
erosclerosis [163–165]. High shear stress, typically 
found in areas of unidirectional flow, exerts a protec-
tive effect on endothelial cells, stimulating the pro-
duction of anti-inflammatory and anti-atherogenic 
factors like NO. This protective mechanism is one 
reason why exercise, which increases blood flow and 
shear stress, is beneficial in preventing atherosclero-
sis. Regular physical activity enhances endothelial 
function and reduces the risk of plaque formation. 
Interestingly, resistance arteries also experience 
higher shear stress compared to large arteries, con-
tributing to their relative resistance to atherogenesis. 
Despite being exposed to the same circulating risk 
factors as larger arteries, the heightened shear stress 
in these smaller vessels, together with the lower wall 
tension, aids in maintaining endothelial integrity and 
preventing plaque formation.

Epidemiological and pathological studies have 
consistently shown that atherosclerotic plaques tend 
to form preferentially at bifurcations and branching 
points [165]. The predilection of atherosclerosis for 
arterial bifurcations and branching points is a result 
of the complex interplay between altered hemody-
namics, endothelial response to shear stress, con-
centration of mechanical stress, and the subsequent 
localization of atherosclerotic changes at these sites. 
These factors collectively contribute to making these 
vascular regions hotspots for the development of ath-
erosclerotic plaques. Arterial bifurcations and branch-
ing points are regions where blood flow patterns are 
disrupted. Instead of unidirectional flow observed 
in straight arterial segments, these points experi-
ence complex flow patterns, including turbulent and 
oscillatory flow. This altered hemodynamics leads 
to variations in shear stress, with certain areas expe-
riencing lower shear stress than others. Bifurcations 
and branching points are also areas where mechanical 
stress is concentrated. The physical forces acting on 
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the vessel walls at these points are higher due to the 
geometry of the vessels and the nature of blood flow.

Aging is a crucial pathogenic factor in atherosclerosis. 
It is a quintessential age-related disease and there is a 
growing literature demonstrating that the “pillars of 
aging”, a concept encompassing various fundamental 
biological processes that contribute to aging, play a 
significant role in the pathogenesis of atherosclerosis 
[23, 24, 140, 142, 145, 147, 149, 166–168]. These 
pillars, or “hallmarks of aging”, provide a framework 
to understand how aging at the cellular and molecular 
level influences the development of age-related 
diseases, including atherosclerosis.

Cellular oxidative stress is a hallmark of aging and it 
plays a critical role in the pathogenesis of atherosclerosis 
as well [23, 24, 169]. It acts as a pivotal mediator between 
risk factors and atherogenesis, influencing multiple stages 
of the disease from endothelial dysfunction and LDL 
oxidation to inflammation and plaque stability [169]. 
In endothelial cells, increased levels of reactive oxygen 
species (ROS) reduce the bioavailability of nitric oxide 
(NO) and activate pro-inflammatory signaling pathways, 
including NF-kB, which mediate endothelial activation. 
Moreover, oxidative stress plays a significant role in 
LDL oxidation, a process central to the development of 
atherosclerotic plaques. Oxidized LDL (oxLDL) is more 
atherogenic than native LDL as it is readily taken up by 
macrophages, leading to foam cell formation — one of 
the earliest cellular changes in atheroma development. 
OxLDL also promotes further release of ROS and 
inflammatory cytokines, creating a vicious cycle of 
inflammation and oxidative damage. Additionally, 
oxidative stress can contribute to vascular smooth muscle 
cell proliferation and migration, processes that are 
involved in the remodeling of the arterial wall and plaque 
instability. DNA damage induced by ROS also plays a 
role in genomic instability and the senescence of vascular 
cells, further aggravating the atherosclerotic process.

Genomic instability, characterized by DNA dam-
age and mutations, increases with age [147, 149, 
170–173]. In the context of atherosclerosis, such 
genomic alterations can affect vascular cells, leading 
to dysfunctional cellular responses and contributing 
to the development of vascular lesions. Accumulated 
DNA damage in endothelial and smooth muscle cells 
can disrupt normal cell function and promote inflam-
matory responses, both key factors in atherogenesis. 
Additionally, CHIP, a phenomenon where certain 

blood cell clones with specific somatic mutations 
expand, is increasingly recognized as a contributor to 
this process [145, 157–162]. CHIP is associated with 
heightened systemic inflammation and the  presence 
of mutated white blood cell clones in atherosclerotic 
plaques, further underscoring the role of age-related 
genomic instability in vascular health.

With aging, an increased number of cells enter a state 
of senescence, often as a result of accumulated oxidative 
stress-induced DNA damage [148, 149, 174–180]. This 
increase in senescent cells has been notably observed 
within atherosclerotic plaques. Senescent cells in the 
vascular system can secrete a variety of pro-inflamma-
tory and matrix-degrading molecules, known as the 
senescence-associated secretory phenotype (SASP) [23, 
24]. This can promote chronic inflammation and plaque 
instability in atherosclerosis. Shortened telomeres in 
vascular cells can also lead to cellular senescence, con-
tributing to plaque formation and progression.

Aging is associated with a decline in the ability of 
cells to maintain protein homeostasis, or proteostasis. 
In atherosclerosis, impaired proteostasis can result 
in the accumulation of dysfunctional proteins within 
vascular cells, contributing to cellular stress, inflam-
mation, and ultimately, the destabilization of athero-
sclerotic plaques [23].

Changes in the epigenetic landscape, such as DNA 
methylation patterns, histone modifications, and non-
coding RNA expression, are hallmarks of aging. In 
atherosclerosis, epigenetic modifications can influ-
ence the expression of genes involved in lipid metab-
olism, inflammation, and endothelial function [168, 
181–183]. These changes can alter the behavior of 
vascular cells and the immune cells within plaques, 
driving the atherosclerotic process.

Nutrient-sensing pathways, which include mTOR, 
AMPK, and sirtuins, play critical roles in metabolic 
regulation and have been linked to aging and longev-
ity. In atherosclerosis, alterations in these pathways 
can influence lipid metabolism, inflammation, and 
endothelial function, thereby contributing to plaque 
development and vulnerability [166, 180, 184–189].

Mitochondria, the cellular powerhouses, become 
less efficient with age. Mitochondrial dysfunction in 
vascular cells can lead to increased oxidative stress 
and reduced bioenergetic capacity, both of which are 
implicated in endothelial dysfunction and the inflam-
matory processes central to atherogenesis [141, 147, 
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171, 190–192]. Mitochondrial dysfunction leads 
to a decrease in ATP production through oxidative 
phosphorylation, a process vital for maintaining cel-
lular energy balance in endothelial cells [193–195]. 
Furthermore, mitochondrial dysfunction affects the 
glycolytic pathway, an alternative source of cellular 
energy [193, 196]. As mitochondria become less effi-
cient, they produce fewer ATP molecules and gener-
ate increased levels of ROS, contributing to oxidative 
stress within the aging vascular system [197–202]. 
Mitochondria-derived ROS are key factors in 
endothelial dysfunction and vascular inflammation, 
that contribute to the development of atherosclerosis 
and CSVD [199, 201, 203–205].

Vascular risk factors known to accelerate cellular 
and molecular aging processes, thereby exacerbating 
atherogenesis in larger arteries, include hypertension, 
high cholesterol levels, smoking, diabetes mellitus, 
obesity, consumption of unhealthy diets [206], and 
a sedentary lifestyle. Each of these risk factors can 
accelerate one or more of the cellular mechanisms 
of aging, such as oxidative stress, inflammation, or 
cellular senescence, which in turn contribute to the 
development and progression of atherosclerosis. For 
instance, hypertension can induce oxidative stress and 
endothelial dysfunction, while high cholesterol levels 
facilitate the formation and oxidation of LDL, accel-
erating endothelial damage and inflammation. Smok-
ing is known to cause systemic oxidative stress, DNA 
damage and exacerbate inflammatory responses, fur-
ther promoting vascular aging. Obesity, consumption 
of an unhealthy diet, and lack of physical activity can 
lead to metabolic disturbances, mitochondrial dys-
function and oxidative stress, cellular senescence and 
inflammation, all of which are conducive to athero-
genesis. Genetic predispositions also significantly 
influence the disease’s risk and severity, often by 
modulating these same cellular aging processes.

The continuum of vascular aging: linking 
atherosclerosis to CSVD

Vascular aging is a progressive, multifactorial process 
impacting the entire vascular tree, from large arteries 
to the microvasculature [23, 24]. This concept posits 
that vascular aging should not be perceived as a series 
of isolated events in different vessel sizes but rather 
as a continuous spectrum of interconnected changes 

throughout the vascular network. Within this spec-
trum, the pathological alterations observed in larger 
vessels, such as those occurring in atherosclerosis, 
are fundamentally connected to the changes in the 
microvasculature, contributing to the development 
of CSVD. Similarly, vascular risk factors known to 
expedite aging and atherogenesis in larger arteries are 
also implicated in accelerating microvascular aging, 
thereby promoting the development and progression 
of CSVD. This interrelation underscores a compre-
hensive approach to understanding vascular health, 
spanning from macroscopic arterial changes to micro-
vascular alterations.

In this section, we will first delve into the shared 
cell-autonomous mechanisms of aging that contribute 
to both atherogenesis and CSVD. Subsequently, we 
will explore the role of non-cell-autonomous mecha-
nisms of aging, including the impact of endocrine 
factors, in driving cellular aging processes that affect 
both large arteries and the cerebral microcirculation 
simultaneously. This dual perspective offers a more 
complete understanding of the aging processes in 
the vascular system, highlighting how systemic fac-
tors and local cellular changes coalesce to influence 
vascular health and disease across the entire vascular 
tree.

Shared mechanisms of aging linking atherosclerosis 
to microvascular pathology

The connection between atherosclerosis and CSVD 
can be understood through several key shared mecha-
nisms of aging [22–24, 86, 199–201, 207–223]. Akin 
to the changes observed in large vessels, the aging 
process in the microcirculation is marked by a nota-
ble increase in cellular production of ROS [20, 199, 
200, 223–227]. Critical mechanisms driving this 
include age-related cellular  NAD+ depletion, SIRT1 
dysregulation, and the resultant rise in mitochondrial 
ROS generation [199, 223]. Increased microvascular 
oxidative stress contributes to endothelial dysfunction 
[199, 223], a key feature of CSVD, by impairing nitric 
oxide availability and promoting inflammatory pro-
cesses [89–92]. Endothelial activation results in the 
expression of adhesion molecules and the recruitment 
of inflammatory cells and an increased propensity for 
thrombosis. These alterations in the microvascula-
ture are intricately linked to several key pathological 
features of CSVD. Specifically, oxidative stress and 
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endothelial dysfunction are associated with the dis-
ruption of the blood brain barrier (BBB) [228, 229], 
impairment of neurovascular coupling responses 
[199, 223, 225], and the genesis of lacunar infarcts 
and CMHs [20].

Accumulated DNA damage, largely driven by 
oxidative stress, also triggers cellular senescence 
within the microvasculature [215, 216, 230]. This 
process is particularly evident in endothelial cells, 
where senescence contributes significantly to micro-
vascular pathologies. Senescent cerebromicrovas-
cular endothelial cells, exhibiting the SASP, secrete 
a range of pro-inflammatory cytokines and matrix-
degrading enzymes [231]. This cascade of molecular 
events exacerbates microvascular damage and plays 
a substantial role in the development of CSVD fea-
tures [22, 213, 215, 216, 232]. Recent research has 
provided promising insights into the rejuvenation of 
the cerebral microcirculation through the targeted 
removal of senescent cells [22, 213, 215, 216]. Stud-
ies utilizing pharmacological or genetic interventions 
to deplete senescent cells in mouse models of aging 
have shown remarkable results, including the restora-
tion of endothelial function, improvements in NVC 
responses, and enhanced BBB integrity [22, 213, 215, 
216]. Notably, the use of the BCL-2 inhibitor seno-
lytic drug Navitoclax has been shown to mitigate the 
development of CMHs induced by hypertension in 
aged mice [22]. This finding is particularly signifi-
cant, as it suggests a potential therapeutic approach 
for preventing age-related microvascular changes that 
contribute to the pathogenesis of CSVD.

Cell non-autonomous mechanisms of aging driving 
both atherosclerosis and microvascular pathologies

Cell non-autonomous mechanisms of aging refer to 
external factors and systemic influences that drive 
aging processes in both atherosclerosis and microvas-
cular pathologies. These mechanisms often involve 
complex interactions between different cell types, 
tissues, and organ systems, highlighting the systemic 
nature of vascular aging.

Chronic systemic low‑grade inflammation

Chronic systemic low-grade inflammation, com-
monly referred to as “inflammaging”, is a hallmark of 
the aging process [23, 24, 233, 234]. It is a key cell 

non-autonomous factor that exacerbates both athero-
sclerosis and microvascular pathologies [23, 24, 207]. 
This systemic inflammation can arise from various 
sources, including accumulation of senescent cells 
[22, 143, 174, 175, 177, 213, 215, 216, 230, 232], 
activation of innate immune system [235] and dys-
function and heightened inflammatory status of adi-
pose tissue [236–246]. Senescent cells, which accu-
mulate with age in adipose tissue and other organs, 
secrete pro-inflammatory cytokines, chemokines, 
and growth factors, known as the SASP, heighten-
ing the systemic inflammatory status [143, 175, 177, 
230–232, 247]. As individuals age, the immune sys-
tem also undergoes changes that predispose it to a 
pro-inflammatory state, contributing to systemic 
inflammation [248–250]. These inflammatory media-
tors affect vascular cells, promoting atherosclerotic 
plaque formation and microvascular damage charac-
teristic of CSVD. In the context of atherosclerosis, 
chronic low-grade inflammation contributes to the 
initiation and progression of the disease. Inflamma-
tory cytokines can promote endothelial dysfunction, a 
critical early step in atherogenesis. They also facilitate 
the recruitment, migration and activation of immune 
cells within the arterial wall, contributing to plaque 
formation, growth, and destabilization. In CSVD, 
inflammaging can lead to endothelial dysfunction, 
blood–brain barrier disruption, and increased vascu-
lar permeability [89–92]. The chronic inflammatory 
milieu is conducive to microvascular damage, which 
is manifested in various CSVD features like WMHs, 
lacunar infarcts, and CMHs.

Endocrine factors vascular aging: the role 
of age‑related IGF‑1 deficiency

Endocrine factors, particularly hormonal changes 
associated with aging, play a significant role in vas-
cular health [202, 214, 218, 219, 251]. One of the key 
age-related hormonal changes in humans is the sig-
nificant decline in circulating levels of insulin-like 
growth factor 1 (IGF-1) [219]. IGF-1 is crucial for 
maintaining vascular homeostasis, and its deficiency 
or altered signaling with age has profound effects on 
both atherogenesis [140, 252–259] and microvascular 
pathologies [15, 18, 214, 219, 220, 260–268].

IGF-1 has protective effects on the endothelium 
[214, 253, 260, 266, 269–273]. Age-related declines 
in IGF-1 contribute to endothelial dysfunction [266], 



 GeroScience

1 3
Vol:. (1234567890)

an early and pivotal event in atherogenesis. Reduced 
IGF-1 signaling impairs the production of NO [266], 
attenuates vascular oxidative stress resilience [274], 
and exacerbates cellular and mitochondrial oxidative 
stress [256, 275]. IGF-1 has anti-inflammatory prop-
erties [253, 256, 258, 276]. Lower levels of IGF-1 
can lead to a pro-inflammatory state in the vascular 
system, thereby accelerating the development and 
progression of atherosclerotic plaques. In preclinical 
porcine models, IGF-1 deficiency exacerbates athero-
genesis [253, 256, 258, 276].

IGF-1 imparts a range of protective effects on cer-
ebromicrovascular health, playing a pivotal role in 
mitigating the vascular changes associated with aging 
[15, 18, 214, 219, 220, 260, 263, 264, 266–268]. In 
preclinical studies, IGF-1 deficiency has been shown 
to induce microvascular rarefaction and reduce cerebral 
blood flow, thus mirroring the vascular alterations seen 
in aging [18, 268]. The influence of IGF-1 extends to 
both pro-angiogenic, anti-apoptotic and anti-senescence 
actions on cerebromicrovascular endothelial cells, 
underscoring its multifaceted role in maintenance of 
the cerebral microcirculatory network [214, 277–280]. 
Additionally, IGF-1 plays a crucial role in counteracting 
the functional effects of aging on the cerebral microcir-
culation, effectively preserving its youthful functional-
ity [210, 219, 220]. This is particularly evident in older 
adults, where lower levels of IGF-1 correlate with 
impaired NVC responses [220]. Experimental models 
in mice have reinforced this connection, demonstrat-
ing that induced IGF-1 deficiency leads to significant 
impairments in NVC, mimicking the aging phenotype 
[266]. Additionally, genetic disruptions in IGF-1 sign-
aling, such as the knockdown of the IGF1R, have been 
shown to impair both endothelial and astrocytic compo-
nents of NVC responses, highlighting the critical role 
of IGF-1 in this process [260, 261]. The contribution of 
IGF-1 signaling to vascular integrity is further empha-
sized in its role in maintaining the BBB [214]. Pertinent 
to this review, murine models that are either deficient 
in IGF-1 or demonstrate disrupted IGF-1 signaling 
specifically in the microvasculature, display a marked 
increase in microvascular fragility [15, 18]. This height-
ened vulnerability is directly linked to an increased 
likelihood of developing CMHs [15, 18]. Detailed 
analyses of these IGF-1 deficient models reveal patho-
logical remodeling of the vascular wall, leading to com-
promised structural integrity [263]. The biomechanical 
and transcriptomic alterations in the vascular wall due 

to IGF-1 deficiency [18, 263] underscore its importance 
in maintaining cerebromicrovascular health and stabil-
ity. In summary, IGF-1 emerges as a key factor in pre-
serving cerebromicrovascular integrity and function. Its 
deficiency leads to a spectrum of microvascular impair-
ments that mirror aging-related changes, highlighting 
the potential of targeting IGF-1 pathways in addressing 
age-associated cerebromicrovascular pathologies.

Alteration in the gut microbiome

The gut microbiome, a complex and dynamic ecosys-
tem of microorganisms residing in the gastrointesti-
nal tract, undergoes significant changes as part of the 
aging process [281–284]. With age, the diversity and 
balance of the gut microbiota can shift, often leading 
to a state known as dysbiosis [281–285]. This imbal-
ance is characterized by a reduction in beneficial 
microbes and an increase in pathogenic ones. Such 
changes can disrupt the gut barrier function, lead-
ing to increased intestinal permeability, commonly 
referred to as “leaky gut” [282, 286–288].

Dysbiosis in the aging gut is linked to the 
increased translocation of bacterial products into the 
systemic circulation. This can trigger chronic low-
grade inflammation, a key contributor to inflam-
maging [282, 286–288]. The gut microbiome also 
plays a crucial role in modulating the immune 
system. Changes in microbiota composition can 
affect immune cell maturation and response, poten-
tially leading to altered inflammatory and immune 
responses [289–291]. These alterations can have far-
reaching effects beyond the gut, influencing systemic 
inflammation, immune function, and, by extension, 
vascular health.

Emerging evidence suggests that the gut microbi-
ome may also influence microvascular health (“gut-
brain axis”), potentially impacting the pathogenesis 
of CSVD. This may occur through mechanisms such 
as increased systemic inflammation and direct effects 
on cerebral microvessels mediated by gut-derived 
metabolites and inflammatory mediators [292–296].

Microvascular aging and CMHs

Microvascular aging significantly contributes to the 
pathogenesis of CMHs [20, 297, 298]. Recent studies 
have identified specific cellular and molecular aging 



GeroScience 

1 3
Vol.: (0123456789)

processes that compromise the structural integrity of 
cerebral microvessels [20, 22]. Here, we explore key 
mechanisms, primarily based on preclinical studies, 
that link microvascular aging to the development of 
CMHs.

There is growing preclinical evidence that age-
related cellular oxidative stress plays a critical role in 
promoting CMHs [20]. Increased production of ROS 
within the microvasculature can lead to the activation 
of matrix metalloproteinases (MMPs), enzymes that 
degrade extracellular matrix components and weaken 
the vessel walls [20]. Preclinical studies have dem-
onstrated that antioxidative treatments can prevent 
the formation of CMHs, supporting the hypothesis 
that mitigating oxidative stress is key to preserving 
microvascular integrity [20]. The primary mechanism 
appears to be the reduction of ROS-mediated MMP 
activation, which otherwise contributes to vascular 
fragility [20].

There is also evidence highlighting a critical role 
for age-related endocrine changes in the genesis of 
CMHs. In particular, IGF-1 deficient mice exhibit 
an increased propensity to develop CMHs, mirroring 
the effects of aging on the microvasculature [18]. The 
likely mechanisms involve increased ROS-mediated 
MMP activation and pathological vessel remodeling, 
characterized by media atrophy, altered synthesis of 
extracellular matrix (ECM) components and impaired 
structural adaptation to hypertension [18, 263].

The increased presence of senescent cells in the 
aging microcirculation is another factor contrib-
uting to CMHs [22]. Senescent cells, through the 
SASP, release various factors and matrix-degrading 
enzymes, including MMPs [299], that contribute to 
the remodeling of the extracellular matrix and pro-
mote microvascular fragility [23, 24]. Senescent cells 
may also hinder the structural and functional adapta-
tion of cerebral vessels to hypertension [298]. Nor-
mally, cerebral resistance arterioles adapt to hyper-
tension through structural remodeling, such as media 
hypertrophy, to prevent microvascular damage [300]. 
Senescence might disrupt these adaptive processes, 
leading to increased microvascular fragility. Further-
more, SASP factors can induce paracrine senescence, 
spreading senescent effects to neighboring cells and 
amplifying the impact on microvascular function 
[23, 24]. Preclinical studies have shown that seno-
lytic treatments, which target and eliminate senescent 
cells, can attenuate the formation of CMHs in aged 

mice [22]. This finding underscores the potential 
therapeutic value of targeting cellular senescence to 
mitigate microvascular aging and reduce the risk of 
CMHs. Of note, increased endothelial senescence in 
the cerebral microcirculation has been also linked to 
BBB disruption and neurovascular dysfunction [216, 
301]. Accelerated microvascular aging in a range of 
pathological conditions, characterized by enhanced 
oxidative stress, increased cellular senescence, and 
pathological microvascular ECM remodeling, likely 
exacerbates the formation of CMHs. As the micro-
vasculature ages, these processes intensify, leading 
to increased vascular fragility and susceptibility to 
rupture.

In conclusion, microvascular aging processes, 
including oxidative stress, impaired IGF-1 input, 
and cellular senescence, play a significant role in the 
development of CMHs. Tackling these underlying 
mechanisms may offer new avenues for preventing 
and treating CMHs, a common manifestation of aging 
in the cerebral microcirculation.

Exacerbating factors: hypertension and amyloid 
pathology

Hypertension and amyloid pathology are significant 
exacerbating factors in the progression of CSVD and 
the formation of CMHs [14, 17, 221]. Their impact 
is multifaceted, accelerating the microvascular aging 
processes.

Chronic hypertension per se can lead to endothe-
lial dysfunction in the cerebral microvasculature 
[302–306]. It upregulates both NADPH oxidase and 
mitochondria-dependent ROS production, decreas-
ing NO bioavailability, activating inflammatory pro-
cesses, and causing structural damage to endothelial 
cells [298, 302–307]. Sustained high blood pressure 
can also compromise the integrity of the BBB [298]. 
The continuous stress and strain on cerebral vessels 
due to high blood pressure increase the propensity for 
vessel rupture, directly contributing to the formation 
of CMHs.

Amyloid-beta (Aβ) deposits in the walls of cer-
ebral microvessels weaken their structural integrity. 
This process, known as cerebral amyloid angiopathy 
(CAA), is a significant factor in the development of 
CMHs [308, 309]. CAA can disrupt normal vascu-
lar function, affecting vasoreactivity and leading to 
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further damage and instability in the microvascula-
ture [310–312]. Studies in preclinical models dem-
onstrate that the presence of amyloid pathology can 
amplify the detrimental effects of hypertension on 
cerebral vessels, increasing the likelihood of vessel 
rupture and CMH formation [17].

Both hypertension and amyloid pathology can 
accelerate the microvascular aging processes, has-
tening the decline in vascular function and health. 
This accelerated aging process involves increased 
oxidative stress, inflammation, and endothelial dys-
function [302, 313–319], all of which contribute 
to the progression of CSVD and the increased inci-
dence of CMHs. By understanding the combined 
impact of hypertension and amyloid pathology on 

microvascular aging, better strategies can be devel-
oped to prevent or mitigate the damaging effects of 
these factors on cerebral vasculature.

Implications for clinical practice and future 
research

The recent advancements in understanding vascular 
aging and its association with both CSVD and athero-
sclerosis carry profound implications for clinical prac-
tice and future research [320]. This knowledge paves 
the way for more effective management strategies and 
the development of novel therapeutic approaches, cru-
cial for preventing both cardiovascular incidents and 

Fig. 1  Continuum of accelerated vascular aging: bridg-
ing atherosclerotic diseases and cerebral small vessel disease 
(CSVD). This schematic figure illustrates the central role of 
fundamental cellular and molecular mechanisms of aging, col-
lectively driving the progression of both macrovascular and 
microvascular aging. The top portion of the figure highlights 
the interconnected hallmarks of aging, including oxidative 
stress, mitochondrial dysfunction, cellular senescence, and a 
heightened inflammatory state. These synergistic aging pro-
cesses induce age-related functional and phenotypic changes 
in endothelial cells (EC) and vascular smooth muscle cells 
(VSMC), contributing to the pathogenesis of a range of vas-
cular diseases associated with aging. Lifestyle risk factors such 

as unhealthy diets, smoking, sedentary behavior, and environ-
mental risk factors like air pollution further accelerate these 
vascular aging processes. This leads to atherogenesis in large 
arteries, manifesting as carotid artery stenosis (CAS), coronary 
artery disease (CAD), and peripheral artery disease (PAD), as 
well as cerebral small vessel disease (CSVD) in the cerebral 
microcirculation. The model suggests that atherosclerotic vas-
cular diseases and CSVD originate from common aging pro-
cesses, accounting for the frequent co-occurrence of CAS, 
CAD and/or PAD, and neuroimaging manifestations of CSVD, 
such as cerebral microhemorrhages (CMHs) and white matter 
hyperintensities (WMH), in the elderly
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cognitive decline. The recognition of shared mecha-
nisms in atherosclerosis and CSVD suggests the need 
for an integrated approach in managing these condi-
tions. Clinical treatments might need to focus not just 
on symptom management but also on addressing the 
underlying vascular aging processes. Effective control 
of vascular risk factors, such as hypertension, diabe-
tes mellitus, and hyperlipidemia, becomes even more 
crucial. Lifestyle interventions and pharmacological 
treatments targeting these risk factors could be ben-
eficial in slowing down vascular aging and prevent-
ing complications, including cognitive impairment. 
Advances in understanding vascular aging may also 
lead to the identification of early biomarkers, facilitat-
ing timely detection and management of CSVD, par-
ticularly in patients with atherosclerosis.

With cellular senescence being a key contribu-
tor to vascular aging, senolytic drugs that selectively 
clear senescent cells offer a promising therapeutic 
approach. These could potentially reduce inflammag-
ing and mitigate vascular damage in both CSVD and 
atherosclerosis. Given the role of oxidative stress in 
vascular aging, novel, targeted antioxidative thera-
pies could be explored for their potential in protecting 
against microvascular damage in high-risk patients. 
Investigating therapies that modulate endocrine fac-
tors influencing vascular aging could be beneficial in 
both prevention and treatment. Further translational 
research is needed to unravel the detailed mecha-
nisms by which aging processes affect both large 
arteries and the cerebral microcirculation. Under-
standing these pathways at the molecular level could 
open new therapeutic avenues. There is also a need 
for long-term studies to understand the progression 
of vascular aging and its impact on CSVD and ath-
erosclerosis over time. Research into individual vari-
ability in vascular aging could lead to more person-
alized approaches in treating and preventing CSVD 
in high-risk patients. By incorporating these insights 
into clinical practice and future research [320], there 
is potential to significantly improve the management 
of CSVD and enhance the quality of life for individu-
als affected by this condition Fig. 1.

Conclusion

The exploration of vascular aging, particularly in 
the context of CSVD, highlights a critical aspect 

of brain health that has far-reaching implications. 
Understanding the continuum of vascular aging 
— from atherogenesis in large arteries to the age-
related structural and functional alterations in the 
microvasculature — is essential for a comprehen-
sive approach to diagnosing, preventing, and treat-
ing CSVD. This continuum perspective empha-
sizes that vascular aging is a systemic process that 
impacts the entire circulatory system. The interplay 
between large vessel diseases like atherosclero-
sis and microvascular pathologies such as CSVD 
underscores the need for a holistic approach in 
medical research and clinical practice. Geroscience 
discoveries are shedding light on novel mechanisms 
that may simultaneously promote atherogenesis and 
CSVD. Understanding these mechanisms could lead 
to innovative therapeutic strategies targeting the 
root causes of vascular aging, ultimately prevent-
ing both large vessel diseases and microvascular 
complications like CMHs. By recognizing the inter-
connected nature of vascular aging, clinicians and 
researchers can better identify risk factors, develop 
targeted therapies, and implement effective pre-
ventive measures. Furthermore, this understanding 
encourages a shift in focus from treating individual 
symptoms to addressing the underlying mechanisms 
of vascular aging. Such an approach could lead to 
more effective strategies for slowing or even revers-
ing aspects of vascular aging, with the potential to 
significantly impact patient outcomes in both car-
diovascular and cerebrovascular diseases.
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