Skip to main content

Advertisement

Log in

Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Chronic periodontitis and its keystone pathogen, Porphyromonas gingivalis, have increasingly been linked with Alzheimer’s disease (AD). However, P.gingivalis-lipopolysaccharide (LPS) mediated release of neuroinflammatory proteins contributes to AD remains underexplored. In this study, we utilized data-independent acquisition mass spectrometry to characterize P.gingivalis-LPS induced profile of differentially expressed proteins associated with the neuroinflammatory response in human neuroblastoma (SH-SY5Y) and human microglial (HMC3) cells. We reported a set of 124 proteins in SH-SY5Y cells and 96 proteins in HMC3 cells whose levels were significantly upregulated or downregulated by exposure to P. gingivalis-LPS. Our findings demonstrate that P. gingivalis-LPS contributed to the elevated expressions of dementia biomarkers and pro-inflammatory cytokines that include APP, Aβ1–42, Aβ1–40, T-Tau, p-Tau, VEGF, TGF-β, IL-1β, IL-6 and TNF-α through 2 distinct pathways of extracellular sensing by cell surface receptors and intracellular cytosolic receptors. Interestingly, intracellular signaling proteins activated with P. gingivalis-LPS transfection using Lipofectamine™ 2000 had significantly higher fold change protein expression compared to the extracellular signaling with P. gingivalis-LPS treatment. Additionally, we also explored P. gingivalis-LPS mediated activation of caspase-4 dependent non canonical inflammasome pathway in both SH-SY5Y and HMC3 cells. In summary, P. gingivalis-LPS induced neuroinflammatory protein expression in SH-SY5Y and HMC3 cells, provided insights into the specific inflammatory pathways underlying the potential link between P. gingivalis-LPS infection and the pathogenesis of Alzheimer’s disease and related dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The proteomics raw data are available through proteomeXchange MassIVE repository under MassIVE identifier MSV000093432.

References

  1. Ponnappan S, Ponnappan U. Aging and Immune Function: Molecular Mechanisms to Interventions. Antioxid Redox Signal. 2011;14:1551–85. https://doi.org/10.1089/ars.2010.3228.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bascones Martínez A, Figuero Ruiz E. Periodontal diseases as bacterial infection. Avances en Periodoncia. 2005;17. https://doi.org/10.4321/S1699-65852005000300002.

  3. Liu S, Butler CA, Ayton S, Reynolds EC, Dashper SG. Porphyromonas gingivalis and the pathogenesis of Alzheimer’s disease. Crit Rev Microbiol. 2023;1–11. https://doi.org/10.1080/1040841X.2022.2163613.

  4. Rams TE, Sautter JD, Van Winkelhoff AJ. Emergence of Antibiotic-Resistant Porphyromonas gingivalis in United States Periodontitis Patients. Antibiotics. 2023;12:1584. https://doi.org/10.3390/antibiotics12111584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singhrao SK, Harding A, Poole S, Kesavalu L, Crean S. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm. 2015;2015:1–10. https://doi.org/10.1155/2015/137357.

    Article  CAS  Google Scholar 

  6. Chen C-K, Wu Y-T, Chang Y-C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alz Res Therapy. 2017;9:56. https://doi.org/10.1186/s13195-017-0282-6.

    Article  Google Scholar 

  7. Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. JAD. 2013;36:665–77. https://doi.org/10.3233/JAD-121918.

    Article  CAS  PubMed  Google Scholar 

  8. Akkaoui J, Yamada C, Duarte C, Ho A, Vardar-Sengul S, Kawai T, et al. Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. GeroScience. 2021;43:367–76. https://doi.org/10.1007/s11357-020-00258-1.

    Article  CAS  PubMed  Google Scholar 

  9. Nelson PT, Braak H, Markesbery WR. Neuropathology and Cognitive Impairment in Alzheimer Disease: A Complex but Coherent Relationship. J Neuropathol Exp Neurol. 2009;68:1–14. https://doi.org/10.1097/NEN.0b013e3181919a48.

    Article  CAS  PubMed  Google Scholar 

  10. Yu JJ, Lei S, Li FL, Chen SS, Tang XL. Effects of Porphyromonas gingivalis injected through tail vein on the expressions of biomarkers in neural stem cells and neurons of wild-type rats hippocampus. Zhonghua Kou Qiang Yi Xue Za Zhi. 2022;57:375–83. https://doi.org/10.3760/cma.j.cn112144-20220214-00059.

    Article  CAS  PubMed  Google Scholar 

  11. Ishida N, Ishihara Y, Ishida K, Tada H, Funaki-Kato Y, Hagiwara M, et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. npj Aging Mech Dis. 2017;3:15. https://doi.org/10.1038/s41514-017-0015-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovalevich J, Langford D. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. In: Amini S, White MK, editors. Neuronal Cell Culture Methods in Molecular Biology. Totowa, NJ: Humana Press; 2013. p. 9–21. https://doi.org/10.1007/978-1-62703-640-5_2.

    Chapter  Google Scholar 

  13. Das ND, Choi MR, Jung KH, Park JH, Lee HT, Kim SH, et al. Lipopolysaccharide-mediated protein expression profiling on neuronal differentiated SH-SY5Y cells. BioChip J. 2012;6:165–73. https://doi.org/10.1007/s13206-012-6209-1.

    Article  CAS  Google Scholar 

  14. Verma A, Azhar G, Zhang X, Patyal P, Kc G, Sharma S, et al. P. gingivalis-LPS Induces Mitochondrial Dysfunction Mediated by Neuroinflammation through Oxidative Stress. IJMS. 2023;24:950. https://doi.org/10.3390/ijms24020950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist. 2015;21:169–84. https://doi.org/10.1177/1073858414530512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mosser C-A, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol. 2017;149–150:1–20. https://doi.org/10.1016/j.pneurobio.2017.01.002.

    Article  PubMed  Google Scholar 

  17. Baek M, Yoo E, Choi HI, An GY, Chai JC, Lee YS, et al. The BET inhibitor attenuates the inflammatory response and cell migration in human microglial HMC3 cell line. Sci Rep. 2021;11:8828. https://doi.org/10.1038/s41598-021-87828-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature. 2009;458:1191–5. https://doi.org/10.1038/nature07830.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. https://doi.org/10.1016/j.cell.2010.01.022.

    Article  CAS  PubMed  Google Scholar 

  20. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: Implications in TLR4-Independent Endotoxic shock. Science. 2013;341:1250–3. https://doi.org/10.1126/science.1240988.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92. https://doi.org/10.1038/nature13683.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell. 2016;165:1106–19. https://doi.org/10.1016/j.cell.2016.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Donoghue EJ, Krachler AM. Mechanisms of outer membrane vesicle entry into host cells: MicroReview - OMV entry into host cells. Cell Microbiol. 2016;18:1508–17. https://doi.org/10.1111/cmi.12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nara PL, Sindelar D, Penn MS, Potempa J, Griffin WST. Porphyromonas gingivalis outer membrane vesicles as the major driver of and explanation for neuropathogenesis, the cholinergic hypothesis, iron dyshomeostasis, and salivary lactoferrin in Alzheimer’s disease. JAD. 2021;82:1417–50. https://doi.org/10.3233/JAD-210448.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida K, Yoshida K, Seyama M, Hiroshima Y, Mekata M, Fujiwara N, et al. Porphyromonas gingivalis outer membrane vesicles in cerebral ventricles activate microglia in mice. Oral Dis. 2023;29:3688–97. https://doi.org/10.1111/odi.14413.

    Article  PubMed  Google Scholar 

  26. Hu Y, Li H, Zhang J, Zhang X, Xia X, Qiu C, et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impair in Sprague-Dawley rats. Front Neurosci. 2020;14:658. https://doi.org/10.3389/fnins.2020.00658.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Niu L, Chen S, Yang X, Ma C, Pan C, Wang H, et al. Vitamin D decreases Porphyromonas gingivalis internalized into macrophages by promoting autophagy. Oral Dis. 2021;27:1775–88. https://doi.org/10.1111/odi.13696.

    Article  PubMed  Google Scholar 

  28. Wandel MP, Kim B-H, Park E-S, Boyle KB, Nayak K, Lagrange B, et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat Immunol. 2020;21:880–91. https://doi.org/10.1038/s41590-020-0697-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saba JA, McComb ME, Potts DL, Costello CE, Amar S. Proteomic mapping of stimulus-specific signaling pathways involved in THP-1 cells exposed to Porphyromonas gingivalis or its purified components. J Proteome Res. 2007;6:2211–21. https://doi.org/10.1021/pr070031u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Wang T, Chen W, Yilmaz Z, Park Y, Jung I-Y, et al. Differential protein expression by Porphyromonas gingivalis in response to secreted epithelial cell components. Proteomics. 2005;5:198–211. https://doi.org/10.1002/pmic.200400922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamont R, Meila M, Xia Q, Hackett M. Mass spectrometry-based proteomics and its application to studies of Porphyromonas gingivalis invasion and pathogenicity. IDDT. 2006;6:311–25. https://doi.org/10.2174/187152606778249935.

    Article  CAS  Google Scholar 

  32. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(O111):016717. https://doi.org/10.1074/mcp.O111.016717.

    Article  CAS  Google Scholar 

  33. Searle BC, Pino LK, Egertson JD, Ting YS, Lawrence RT, MacLean BX, et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat Commun. 2018;9:5128. https://doi.org/10.1038/s41467-018-07454-w.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Graw S, Tang J, Zafar MK, Byrd AK, Bolden C, Peterson EC, et al. proteiNorm – a user-friendly tool for normalization and analysis of TMT and label-free protein quantification. ACS Omega. 2020;5:25625–33. https://doi.org/10.1021/acsomega.0c02564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolstad B. Preprocess Core: a collection of pre-processing functions. 2019; R package version 1.64.0. https://doi.org/10.18129/B9.bioc.preprocessCore.

  36. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chawade A, Alexandersson E, Levander F. Normalyzer: A tool for rapid evaluation of normalization methods for omics data sets. J Proteome Res. 2014;13:3114–20. https://doi.org/10.1021/pr401264n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(Suppl 1):S96-104. https://doi.org/10.1093/bioinformatics/18.suppl_1.s96.

    Article  PubMed  Google Scholar 

  39. Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. Periodontol 2000. 1999;20:168–238. https://doi.org/10.1111/j.1600-0757.1999.tb00162.x.

    Article  CAS  PubMed  Google Scholar 

  40. Olsen I, Singhrao SK. Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer’s disease? J Oral Microbiol. 2020;12:1676486. https://doi.org/10.1080/20002297.2019.1676486.

    Article  CAS  PubMed  Google Scholar 

  41. Paik Y-H, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–55. https://doi.org/10.1053/jhep.2003.50182.

    Article  CAS  PubMed  Google Scholar 

  42. Li D, Ren T, Li H, Liao G, Zhang X. Porphyromonas gingivalis: A key role in Parkinson’s disease with cognitive impairment? Front Neurol. 2022;13:945523. https://doi.org/10.3389/fneur.2022.945523.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chung LY-R, Lin Y-T, Liu C, Tai Y-C, Lin H-Y, Lin C-H, et al. Neuroinflammation upregulated neuronal toll-like receptors 2 and 4 to drive synucleinopathy in neurodegeneration. Front Pharmacol. 2022;13:845930. https://doi.org/10.3389/fphar.2022.845930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoue E, Minatozaki S, Katsuta Y, Nonaka S, Nakanishi H. Human β-Defensin 3 Inhibits Porphyromonas gingivalis lipopolysaccharide-induced oxidative and inflammatory responses of microglia by suppression of cathepsins B and L. Int J Mol Sci. 2022;23:15099. https://doi.org/10.3390/ijms232315099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanagasingam S, Von Ruhland C, Welbury R, Chukkapalli SS, Singhrao SK. Porphyromonas gingivalis conditioned medium induces amyloidogenic processing of the amyloid-β protein precursor upon in vitro infection of SH-SY5Y cells. ADR. 2022;6:577–87. https://doi.org/10.3233/ADR-220029.

    Article  Google Scholar 

  46. Nativel B, Couret D, Giraud P, Meilhac O, d’Hellencourt CL, Viranaïcken W, et al. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Sci Rep. 2017;7:15789. https://doi.org/10.1038/s41598-017-16190-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu C, Yuan Z, He Z, Chen H, Liao Y, Li S, et al. Lipopolysaccharide Preparation Derived from Porphyromonas gingivalis Induces a Weaker Immuno-Inflammatory Response in BV-2 Microglial Cells Than Escherichia coli by Differentially Activating TLR2/4-Mediated NF-κB/STAT3 Signaling Pathways. Front Cell Infect Microbiol. 2021;11:606986. https://doi.org/10.3389/fcimb.2021.606986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mao S, Park Y, Hasegawa Y, Tribble GD, James CE, Handfield M, et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol. 2007;9:1997–2007. https://doi.org/10.1111/j.1462-5822.2007.00931.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yilmaz O, Jungas T, Verbeke P, Ojcius DM. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun. 2004;72:3743–51. https://doi.org/10.1128/IAI.72.7.3743-3751.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Woo J-AA, Liu T, Fang CC, Cazzaro S, Kee T, LePochat P, et al. Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Commun Biol. 2019;2:112. https://doi.org/10.1038/s42003-019-0359-9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fessler MB, Malcolm KC, Duncan MW, Worthen GS. A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J Biol Chem. 2002;277:31291–302. https://doi.org/10.1074/jbc.M200755200.

    Article  CAS  PubMed  Google Scholar 

  52. Eswarappa SM, Pareek V, Chakravortty D. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages. Innate Immun. 2008;14:309–18. https://doi.org/10.1177/1753425908096856.

    Article  CAS  PubMed  Google Scholar 

  53. Beck H, Flynn K, Lindenberg KS, Schwarz H, Bradke F, Di Giovanni S, et al. Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci USA. 2012;109. https://doi.org/10.1073/pnas.1208141109.

  54. Yan M, Tang L, Dai L, Lei C, Xiong M, Zhang X, et al. Cofilin promotes tau pathology in Alzheimer’s disease. Cell Rep. 2023;42:112138. https://doi.org/10.1016/j.celrep.2023.112138.

    Article  CAS  PubMed  Google Scholar 

  55. Patyal P, Nguyen B, Zhang X, Azhar G, Ameer FS, Verma A, Crane J, Grishma KC, Che Y, Wei JY. Rho/SRF Inhibitor Modulates Mitochondrial Functions. Int J Mol Sci. 2022;23(19):11536. https://doi.org/10.3390/ijms231911536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15:37. https://doi.org/10.1186/s12974-017-1052-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep. 2019;9:5790. https://doi.org/10.1038/s41598-019-42286-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ilievski V, Zuchowska PK, Green SJ, Toth PT, Ragozzino ME, Le K, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration, and amyloid beta production in wild type mice. PLoS ONE. 2018;13:e0204941. https://doi.org/10.1371/journal.pone.0204941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poole S, Singhrao SK, Chukkapalli S, Rivera M, Velsko I, Kesavalu L, et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J Alzheimers Dis. 2015;43:67–80. https://doi.org/10.3233/JAD-140315.

    Article  CAS  PubMed  Google Scholar 

  60. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333. https://doi.org/10.1126/sciadv.aau3333.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of Microglia. Physiol Rev. 2011;91:461–553. https://doi.org/10.1152/physrev.00011.2010.

    Article  CAS  PubMed  Google Scholar 

  62. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8. https://doi.org/10.1126/science.1110647.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Kim B-H, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science. 2011;332:717–21. https://doi.org/10.1126/science.1201711.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Martens S, Howard J. The interferon inducible GTPases. Annu Rev Cell Dev Biol. 2006;22:559–89. https://doi.org/10.1146/annurev.cellbio.22.010305.104619.

    Article  CAS  PubMed  Google Scholar 

  65. Tretina K, Park E-S, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med. 2019;216:482–500. https://doi.org/10.1084/jem.20182031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meunier E, Dick MS, Dreier RF, Schürmann N, Kenzelmann Broz D, Warming S, et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature. 2014;509:366–70. https://doi.org/10.1038/nature13157.

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, et al. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A. 2014;111:6046–51. https://doi.org/10.1073/pnas.1321700111.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K, Yamamoto M, et al. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J. 2018;37:e98089. https://doi.org/10.15252/embj.201798089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oh C, Verma A, Hafeez M, Hogland B, Aachoui Y. Shigella OspC3 suppresses murine cytosolic LPS sensing. iScience. 2021;24:102910. https://doi.org/10.1016/j.isci.2021.102910.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K + efflux. Eur J Immunol. 2015;45:2927–36. https://doi.org/10.1002/eji.201545772.

    Article  CAS  PubMed  Google Scholar 

  71. Yi Y-S. Regulatory Roles of the Caspase-11 Non-Canonical Inflammasome in Inflammatory Diseases. Immune Netw. 2018;18:e41. https://doi.org/10.4110/in.2018.18.e41.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Voet S, Srinivasan S, Lamkanfi M, Van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11:e10248. https://doi.org/10.15252/emmm.201810248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Samuel G Mackintosh from the UAMS Proteomics Core for the use of their equipment’s and expertise. We are grateful to Ms. Amanda Pangle and Ms. Yingni Che for technical assistance. We are also thankful to Eric Rathman, MS, ELS from UAMS Scientific Communication Group for proofreading and editing the present manuscript.

Funding

This study was supported in part by the Claude D. Pepper Older American Independence Center grant (P30AG28718) from National Institute on Aging (NIA).

Author information

Authors and Affiliations

Authors

Contributions

AV, GA and JYW conceived the study. AV and PP performed the experiments. AV and PP wrote the manuscript with journalist input from GA and JYW. WZ analyzed the proteomic data. GA, XZ and JYW reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeanne Y. Wei.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Supplementary file2 (DOCX 47 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Azhar, G., Patyal, P. et al. Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells. GeroScience (2024). https://doi.org/10.1007/s11357-024-01117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01117-z

Keywords

Navigation