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Abstract Epigenetic aging clocks are computa-
tional models that predict age using DNA meth-
ylation information. Initially, first-generation clocks 
were developed to make predictions using CpGs that 
change with age. Over time, next-generation clocks 
were created using CpGs that relate to both age and 
health. Since existing next-generation clocks were 
constructed in blood, we sought to develop a next-
generation clock optimized for prediction in cheek 
swabs, which are non-invasive and easy to collect. 
To do this, we collected MethylationEPIC data as 
well as lifestyle and health information from 8045 
diverse adults. Using a novel simulated annealing 
approach that allowed us to incorporate lifestyle and 
health factors into training as well as a combination 
of CpG filtering, CpG clustering, and clock ensem-
bling, we constructed CheekAge, an epigenetic aging 
clock that has a strong correlation with age, displays 
high test–retest reproducibility across replicates, and 
significantly associates with a plethora of lifestyle 
and health factors, such as BMI, smoking status, and 

alcohol intake. We validated CheekAge in an inter-
nal dataset and multiple publicly available datasets, 
including samples from patients with progeria or 
meningioma. In addition to exploring the underly-
ing biology of the data and clock, we provide a free 
online tool that allows users to mine our methylomic 
data and predict epigenetic age.

Keywords Epigenetic age · Aging clock · Ensemble 
learning · Machine learning · Simulated annealing · 
Buccal

Introduction

Mammalian aging is a complex, multifactorial pro-
cess characterized by molecular, cellular, and organ 
system dysfunction. Although aging remains a poorly 
understood process, the field has converged on a set of 
12 hallmarks that become aberrant over time and can 
be targeted to shorten or lengthen lifespan in model 
organisms [1]. However, which of these hallmarks is 
the most foundational has yet to be determined. Two 
strong contenders are genomic instability [2] and epi-
genetic alterations [3]. Arguing for a combination 
of both, a recent study created transgenic mice that 
repeatedly experience double-stranded DNA breaks 
but do not accrue mutations [4]. These non-muta-
genic breaks were reported to erode the epigenome, 
induce an accelerated aging phenotype, and elevate 
epigenetic age [4]. This latter finding is interesting in 
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the context of some epigenetic clocks correlating with 
age-related health outcomes in longitudinal data and 
responding to interventions in clinical trials [5].

Myriad epigenetic aging clocks have been devel-
oped, and they vary in their tissue-specificity, cor-
relation with chronological age, ability to capture 
health, and test–retest reliability across replicates. In 
terms of algorithms that incorporate information from 
other biomarkers, the published next-generation mod-
els GrimAge2 [6], bAge [7], and DunedinPACE [8] 
represent the state of the art. While innovative, these 
models were built using methylomic data derived 
from blood, which can be invasive, unpleasant, and 
challenging to collect in a home setting. Currently, 
the biohorology field [9] is lacking a published clock 
optimized for cheek swabs, a sample type that can be 
painlessly and easily collected in a variety of environ-
ments. Previous research suggests that buccal tissue 
is a viable sample type for epigenetic age prediction 
[10, 11].

To address this gap, we used an innovative com-
putational approach in conjunction with a Methylatio-
nEPIC dataset paired with health and lifestyle ques-
tionnaire data from more than 8000 diverse adults. As 
presented below, the result is a unique buccal clock 
optimized for estimating an epigenetic age value that 
is associated with a plethora of lifestyle and health 
factors.

Methods and materials

Cohort selection and survey

We selected 10,000 volunteers from a larger cohort 
of over 25,000 who filled out an online questionnaire 
and consented to collect and send in a buccal sam-
ple. We selected volunteers with valid United States 
addresses while maximizing demographic diversity 
(chronological age, gender, and race/ethnicity) as 
well as various lifestyle and health (see Table  S1). 
Of the 10,000 kits sent, 8045 samples (including 190 
replicate pairs) were returned and passed all qual-
ity control checks. For each of the 8045 samples, 
we collected responses to 11 lifestyle- and health-
related questions focused on self-rated health, self-
perceived aging, sleep quality, stress levels, social 
satisfaction, fraction of a diet that is plant-based, 
exercise frequency and intensity, smoking history, 

weekly alcohol consumption, relative immune health, 
and BMI based on self-reported weight and height. 
Beyond gender, we asked three demographic ques-
tions: date of birth, race/ethnicity, and education level 
achieved. We also predicted sample sex using meth-
ylation intensity across chromosomes and estimated 
cell-type proportions via the methylation data directly 
(described in the Supplementary Methods). To calcu-
late correlations to lifestyle, health, and demograph-
ics, survey responses were scaled to a value between 
0 and 1. Binary demographic variables were arbitrar-
ily assigned either − 1 or 1.

Sample collection

A total of 10,000 volunteers were mailed a buccal 
collection kit, which consisted of two VARE (Shen-
zhen City, Guangdong, China) flocked swabs (cat. 
no. VF106-80), two Mawi DNA Technologies (Pleas-
anton, California, USA) iSWAB-Discovery Human 
DNA collection devices (cat. no. ISF-T-DSC), cus-
tomized instructions, and mailing pouches. Volun-
teers were asked to perform two collections within 
a 24-h period, send back both replicate samples, and 
register their kits. Collection instructions are provided 
in Supplementary Table 1.

EPIC array

Samples were preprocessed at Tempus Labs 
(Peachtree Corners, Georgia, USA) according to 
Illumina’s (San Diego, California, USA) protocols 
for MethylationEPIC array preprocessing and loaded 
onto MethylationEPIC arrays. While most samples 
were run using the combined DNA from both collec-
tion devices to improve yields, we manually selected 
samples from 190 diverse individuals in our cohort to 
be run as replicates.

Constructing the CheekAge clock

Briefly, the EPIC arrays were preprocessed using the 
minfi (v 1.44.0) [12] preprocessing pipeline. CpGs 
were then filtered until only approximately 200,000 
higher-quality CpGs remained. These higher-quality 
CpGs were then clustered based on their methylation 
pattern across the entire dataset, and the top 10,000 
clusters were calculated by averaging the CpGs 
in each cluster, resulting in the set of independent 
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variables for model training. A simulated annealing 
[13] approach was used to train linear models opti-
mizing for model accuracy, significance of the corre-
lation between delta age and lifestyle/health factors, 
and model complexity. Finally, the model training 
was repeated 1098 times, and a weighted mean of the 
top 100 scoring models was used to predict Cheek-
Age. Please see the Supplemental Methods for exten-
sive details on preprocessing, CheekAge clock con-
struction, clock metrics used for evaluating the clock, 
and the key functions and arguments used.

Evaluating CheekAge in external, publicly available 
datasets

Raw MethylationEPIC data was downloaded and 
CheekAge predictions required averaging of CpG 
M values for 10,000 CpG clusters. Inputs were then 
used to predict CheekAge using the weighted 100 
ensemble model calculations. Briefly, we repro-
cessed 10 publicly available EPIC array datasets 
including an external buccal dataset (GSE111165), 
a blood methylation dataset looking at SARS CoV-2 
infection (GSE167202), a human skin dataset from 
progeria patients (GSE151617), a dataset explor-
ing accelerated aging in childhood cancer survivors 
(GSE197674), a meningioma dataset (GSE183647), 
a primary human fibroblasts dataset (GSE179847), 
a rectal sample dataset (GSE216024), a colorectal 
cancer dataset (GSE199057), a dataset looking at 
cultured epithelial cells antagonized with rhinovi-
rus (GSE172365), and a melanocytic nevi dataset 
(GSE188593). Significance of association with delta 
age was calculated using linear models considering 
available confounding variables. We describe the 
specific datasets and linear model tests in the Supple-
mental Methods section and Supplementary Table 10.

Results

Cohort information and chronological age trends

We started by collecting buccal DNA samples and 
digital questionnaire responses from 8045 volun-
teers. Two replicate DNA samples per subject were 
obtained, allowing us to measure variability in meth-
ylation caused by biological and technical noise for 
a subset of 190 participants with sufficient DNA 

collected. The 8045 EPIC samples were used in com-
bination with the lifestyle and health information to 
build CheekAge, a next-generation epigenetic aging 
clock that correlates with chronological age, lifestyle, 
and health. Importantly, our cohort of 8045 samples 
is the largest adult buccal methylomic cohort that we 
are aware of, includes a chronological age range of 18 
to 93 years (Fig. S1a), a similar distribution of sexes 
(Fig. S1b), and is diverse (Fig. S1c). Please see Sup-
plementary Table 1    for detailed demographic infor-
mation and Supplementary Table  2 for all question-
naire responses.

We started by dissecting the questionnaire 
responses (Table S2), finding unique patterns across 
chronological age (Fig. S1d, e). All variables except 
sex were significantly associated with chronologi-
cal age (Table  S3). Compared to younger respond-
ents, older respondents tended to self-rate their 
health as better (P < 2e − 16), to feel younger than 
their chronological age (P = 2.68e − 03), to have 
lower stress levels (P < 2e − 16), to be more socially 
satisfied (P = 3.26e − 07), and to get sick less often 
(P < 2e − 16). For the categories of self-rated health, 
self-perceived aging, sleep quality, education, and 
social satisfaction, we noticed that the median 
chronological age for the response corresponding to 
moderately lower values (0.25 or 0.2) was consist-
ently the youngest than for all other responses. Older 
respondents typically had a more plant-based diet 
(P < 2e − 16) and smoking was reported to be less 
common among younger respondents (P < 2e − 16). 
Lastly, we saw that chronologically older respond-
ents tended to be white while more of our chrono-
logically younger respondents identified as non-white 
(P < 2e − 16). Please see Supplementary Table 3 and 
4 for additional details.

We then analyzed sex-specific differences in sur-
vey responses (Fig.  S2  and Tables  S3 and S4). The 
chronological age range for male and female respond-
ents was the same, but the median chronological age 
for females was 4 years older. For males, all survey 
responses associated significantly with chronological 
age except self-perceived aging, alcohol, and educa-
tion. For females, all survey responses except exercise 
intensity significantly associated with chronological 
age. Two responses showed the greatest sex-specific 
trends. The first was education, where education level 
correlated significantly with chronological age for 
female respondents (Ps < 2e − 16) but not for male 
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respondents (P = 0.0742). The second was BMI, 
where male BMI significantly decreased with chron-
ological age (P = 1.83e − 08) while female BMI 
increased with chronological age (P = 9.19e − 04). 
Interestingly, self-perceived aging and alcohol use in 
males were not significantly correlated with chrono-
logical age. However, self-perceived aging and alco-
hol use were significantly correlated for females 
(P = 1.02e − 04 and P = 1.86e − 04, respectively).

Building a next-generation buccal clock relevant to 
lifestyle and health

Similarly to a prior study [10], we first trained a 
standard penalized linear regression model using a 
tenfold cross validation approach. This first-gener-
ation clock correlated highly with chronological age 
(Fig. S3a), but delta age (epigenetic age–chronologi-
cal age) failed to significantly correlate with survey 
factors (Fig. S3b, c). The one exception was alcohol 

use, which was significantly associated with a false 
discovery rate (FDR) < 0.002.

To improve upon this, we created a custom objec-
tive function that included the root mean square error 
(RMSE) of the predicted age as well as the log of the 
significance of correlations between delta age and 
answers to survey questions. We then used a simu-
lated annealing [13] optimization strategy along with 
a number of model building strategies to construct our 
next-generation epigenetic clock, including extensive 
CpG filtering to remove noisy or biased CpGs, train-
ing on clusters of CpGs to minimize noise, and using 
a weighted ensemble of models to further improve 
clock accuracy and reproducibility (Fig.  1a). As an 
intermediate test, we calculated the principal com-
ponents (PCs) of the clustered CpG inputs and saw 
significant correlations between survey factors as well 
as technical covariates with the first 18 PCs (Fig. 1b 
and Table S5). All lifestyle and health factors showed 
strong correlations with one of the 18 PCs (Fig. 1b), 
and chronological age correlated strongly with PCs 

Fig. 1  Construction of the CheekAge clock. a Workflow for 
building the CheekAge clock. b Clustered heatmap show-
ing correlation of lifestyle/health, demographic, and technical 
variables with the first 18 principal components (PCs). c Scat-
terplot showing that chronological age signals are captured in 
PC5 and PC16. d Scatterplot showing CheekAge vs chrono-
logical age trained on the entire dataset. e Scatterplot showing 
predicted age using a tenfold cross validation approach, with 

12-model ensembles trained for each fold. For d and e, RMSE 
(root mean squared error), MAE (mean absolute error), R2 
(squared Pearson correlation), MAB (mean absolute bias), and 
MRE (mean replicate error from the mean) are shown. Yellow 
lines connect replicates taken within a 24-h period. f Violin 
plots showing the MRE for the full clock and the tenfold cross 
validated 12-model ensemble
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5 and 16, (Fig. 1b, c). As a consequence of using a 
stochastic simulated annealing optimization strat-
egy (Fig. S4a), each optimization yielded a different 
clock with a unique final model score. We repeated 
this process 1098 times for the full dataset to yield 
1098 models, resulting in a distribution of final model 
scores, accuracies, complexities, and lifestyle corre-
lations (Fig. S4b and Table S6). Typically, there was 
a tradeoff between model accuracy, complexity, and 
lifestyle/health correlations, with the highest-scoring 
and lowest-scoring models exemplifying this differ-
ence (Fig. S4c). By combining different numbers of 
models into an ensemble, we were able to improve 
accuracy, reproducibility, and correlation with survey 
responses at the cost of model complexity (Fig. S5). 
We determined that 100 models produced optimal 
scores, after which the improvements were marginal. 
Therefore, the top 100 scoring models were combined 
using a weighted averaging approach (Fig.  S4d), to 
produce our final CheekAge clock. Most CpG clus-
ters used as inputs were only utilized by a fraction of 
the 100 models (Fig. S4e), and each cluster included 
anywhere from 1 to over 150 CpGs (Fig. S4f).

To explore how the models differ from each other, 
we generated clustered heatmaps for all 100 models 
(Fig.S6). Models tended to use diverse patterns of 
cluster weights to predict age, and some clusters were 
consistently incorporated with negative or positive 
weights across models (Fig. S6a). Turning to the delta 
age predicted by CheekAge, we noticed that even 

though model weights tended to be diverse between 
models, the ages predicted were similar to the ensem-
ble average for any specific sample (Fig.S6b). Impor-
tantly, models with the lowest optimization score and 
hence highest contribution toward CheekAge were 
dispersed among the model clusters.

Taken together, our CheekAge clock was highly 
predictive of chronological age, had low age bias, and 
a low test–retest error when training and predicting 
in our full dataset (Fig. 1d) or when using a tenfold 
cross validation approach that uses an ensemble of 
12 models per fold to estimate expected error in new 
similar data (Fig. 1e). In the cross-validation data, the 
R2 was 0.91, the RMSE was 4.5 years, the mean abso-
lute error (MAE) was 3.22 years, and the mean abso-
lute bias (MAB), an indicator of chronological age 
bias, was 0.45  years. We observed a mean replicate 
error from the mean (MRE) of 0.85 years and 1 year 
in the full and cross-validated versions of our clock, 
respectively (Fig. 1f).

Since lifestyle/health responses were correlated 
with other lifestyle/health responses, demograph-
ics, and cell types (Fig.  2a and Table S7), we mod-
eled delta age as a linear combination of all lifestyle/
health, demographic, and technical variables to esti-
mate the significance of each lifestyle factor correla-
tion with all other factors held constant. Using a FDR 
cut-off of 0.05, we found that BMI, smoking, alco-
hol, social satisfaction, stress levels, exercise, sleep 
quality, and percent of diet that is plant-based were 

Fig. 2  Lifestyle and health factors correlate significantly with 
delta CheekAge. a Clustered heatmap showing Pearson corre-
lation of lifestyle/health, demographic, and technical variables 
across all samples. b Significance of each variable when mode-

ling delta CheekAge as a linear combination of survey factors. 
c Linear model coefficients for delta CheekAge modeled as lin-
ear combination of variables
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correlated with delta age (Fig. 2b). Self-rated health 
displayed a FDR of 0.0586. Importantly, coefficients 
of the linear fit for all of these factors were chang-
ing as expected, with healthier lifestyles predicted to 
decrease delta age (Fig.  2c, Fig.  S7, and Table  S8). 
Lifestyle and health correlations changed depending 
on which model in the ensemble was used to predict 
age, and this was largely unaffected by the relative 
weight of each model (Fig.S6c). Sex-specific corre-
lations between delta age and lifestyle/health factors 
are summarized in Supplementary Fig. 8 and Supple-
mentary Table 7.

Validating the CheekAge clock

We next wanted to test how our CheekAge clock 
performs in other datasets (Table  S9). We started 
by testing its performance in an independently col-
lected buccal dataset (n = 225) with an age range of 
18–100 years. Our clock performed well in this data-
set, with a R2 of 0.92, a MAE of 3.48  years, and a 
MAB of 1.19  years (Fig.  3a). We then downloaded 
and reprocessed a publicly available dataset [14] con-
taining multi-tissue data from patients with intrac-
table epilepsy. The R2 was 0.52 and the MAE was 
4.69 years in buccal tissue (n = 16), mostly owing to 
one outlier that was predicted to be much younger 
(Fig. 3b). The accuracy metrics were higher in saliva 
(n = 15), with a R2 of 0.89 and a MAE of 3.59 years 
(Fig. 3c). In blood (n = 15), the R2 was 0.82 and the 
MAE was 7.83 years (Fig. 3d).

We also tested whether our clock was able to pick 
up health- and age-related signals in other datasets 
[15–20]. To do this, we downloaded and reprocessed 
six different publicly available datasets containing 
health and/or disease information (Fig. 4, Fig. S9, and 
Table  S10). As shown in Fig.  4 and Supplementary 
Fig.  9, we observed significant correlations between 
delta age and SARS-CoV-2 infection (Fig. 4a), a non-
SARS-CoV-2 infection (Fig.  4a), progeria (Fig.  4b), 
cancer survivors who underwent abdominal/pelvic 
radiation treatment, alkylating agent treatment, or cor-
ticosteroid treatment (Fig. 4c), meningioma (Fig. 4d), 
fibroblast passaging (Fig.  4e), and BMI (Fig.  4f). 
We also analyzed additional datasets [21, 22] which 
showed harder-to-interpret associations, namely a 
positive correlation with tumor formation but a nega-
tive correlation with colorectal cancer, some associa-
tions in rhinovirus-antagonized epithelial cells and 

steroid treatments, and an association with both navel 
dysplasia and control skin samples in a melanocytic 
nevi dataset (Table S10). Please see the Supplemen-
tary Methods for additional information, including 
which variables were controlled for in each analysis.

We next compared CheekAge to four other epi-
genetic clocks for which all CpGs were available in 
our dataset. Specifically, we analyzed RMSE, MAE, 
R2, age bias, and test–retest error of PhenoAge [23] 
(Fig.  5a), Horvath et  al. [24] (Fig.  5b), Zhang et  al. 
[25] (Fig.  5c), and PedBE [11] (Fig.  5d) alongside 
CheekAge (Fig. 5e). As would be expected since none 
of these clocks were optimized for adult buccal tissue, 
CheekAge displayed the best overall performance 
(Fig.  5f), even after controlling for systematic age 
bias using the same rotation transformation applied 
to CheekAge (Fig.  S10). All of the non-CheekAge 
clocks also showed dramatically poorer correla-
tion between delta age with questionnaire responses, 
regardless of whether or not age bias rotation was 
applied (Fig.  S11  ). Predicted ages and correlations 
of delta ages with lifestyle/health in both rotated and 
unrotated versions of the clocks can be found in Sup-
plementary Table 11 and 12, respectively. Clock per-
formance in various validation datasets, including an 
additional dataset [26], is summarized in Supplemen-
tary Fig. 12 and Supplementary Table 13.

Deriving biological insights from our dataset and 
clock

We were also interested in what insights our clock 
could provide into the biology of aging. To see how 
CpG methylation values change with chronological 
age in our dataset, we binned our 8045 datasets into 
15 chronological age bins roughly 5 years apart. We 
then calculated the average methylation values of our 
approximately 200,000 filtered CpGs and observed 
four peaks (Fig. 6a). Clustering the CpGs specific to 
the four peaks, we noticed that there were two types 
of behaviors captured: CpGs that gradually increase 
or decrease with increasing chronological age, and 
those that increase or decrease only at chronological 
ages > 90 (Fig. 6b).

Similarly to before [27], we used a network topol-
ogy–based enrichment analysis [28] to identify gene 
ontology (GO) [29] terms enriched among genes 
associated with CpGs from each of those clusters. 
Biological processes associated with transcription, 
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cell–cell signaling and hormone signaling, cell-cycle, 
and protein metabolism were significantly enriched 
among genes whose methylation gradually increases 
with age (Fig. 6c). Genes whose methylation dramati-
cally jumps at very old age were enriched for cell-
cycle, DNA damage response, autophagy, organelle 
assembly and localization, and viral process (Fig. 6d). 

Processes enriched among genes associated with 
CpGs that decrease methylation gradually with chron-
ological age include protein metabolic processes and 
hemostasis, and synapse/vesicle signaling (Fig.  6e). 
Finally, terms enriched among genes associated with 
CpGs that lost their methylation dramatically at old 
chronological age include cell cycle, surface receptor 

Fig. 3  Ability of CheekAge to predict age in other datasets. a 
Scatterplot and clock statistics for a buccal validation dataset 
that was collected the same way as the training dataset but held 
out during training. The chronological age range of subjects 
in the validation dataset is 18–100 years. b–d Scatterplot and 

clock statistics for a publicly available dataset with methylation 
data from tissues of medically intractable epilepsy patients. b 
Buccal, c saliva, and d blood tissue predictions are shown. The 
chronological age range of subjects in the publicly available 
dataset is 24–61 years
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cell–cell signaling, cellular component organization, 
and peptidyl-threonine modification (Fig. 6f).

We additionally explored how CpG variability 
changed with chronological age and delta Cheek-
Age. We began by taking the same cohorts of samples 
binned into 5-year age bins and calculated the vari-
ance of the approximately 200,000 CpGs among sam-
ples in each of those age bins and then correlated the 
CpG variance with chronological age. We noticed a 
general increase in CpG variance with chronological 
age (Fig.  S13a) and clustered the variance of CpGs 
with absolute correlation greater than 0.5 into three 
main clusters (Fig.  S13b). We then took the genes 
associated with the CpGs in each of the top clus-
ters and calculated enrichment of GO terms using a 
network topology–based enrichment approach. The 
largest cluster, which included CpGs that peaked in 
variance around the late 70s and mid-80s age ranges, 
was significantly enriched for terms associated with 

cornification, keratinization, intracellular signaling, 
cell cycle transition, and DNA-templated transcrip-
tion (Fig. S13c). Similar to the first cluster, the sec-
ond largest cluster containing CpGs that peaked in 
variance in the very late 80s and 90s age ranges was 
significantly associated with DNA-template transcrip-
tion, intracellular receptor signaling, cell-cycle pro-
cesses, and transcription (Fig. S13d). The final clus-
ter contained CpGs that decreased in variance with 
chronological age and were associated with mRNA 
processes, splicing, cornification, intracellular signal-
ing, and development (Fig. S13e).

We wondered if the top-weighted clusters 
among the 100 models comprising our clock 
were enriched for specific biological processes or 
terms. We started by selecting the CpG clusters 
with absolute averaged weights greater than two, 
which represented the top 1.33% of all CpG clus-
ters (Fig.  S14a). The top negative weighted model 

Fig. 4  Ability of CheekAge to associate with health sig-
nals in external datasets. a Compared to COVID-negative 
individuals (n = 296), delta age was significantly elevated in 
blood from COVID-positive individuals (n = 164) or individu-
als with a non-COVID acute respiratory infection (n = 65). b 
Relative to controls (n = 27), delta age was similarly signifi-
cantly increased in progeria samples (n = 9) in a skin dataset. 
c In a blood dataset from adult survivors of childhood cancers 
(n = 2138), delta age significantly correlated with abdomi-
nal/pelvic radiation therapy, alkylating agent treatment, and 

corticosteroid treatment. d Compared to benign meningi-
omas (n = 388), meningiomas classified as atypical (n = 142) 
or malignant (n = 35) are predicted to be significantly older. 
e Delta age significantly increased with passage number in 
fibroblasts derived from healthy people. Specifically, passages 
11–20 (n = 49) and 21–30 (n = 18) were significantly higher 
compared to passages 1–10 (n = 51). f BMI and delta age sig-
nificantly correlated with one another in colorectal samples 
(n = 140)
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clusters were significantly associated with regula-
tion of stress-activated MAPK cascade, platelet-
derived growth factor signaling, and mitochondrion 
organization (Fig. S14b). Meanwhile, the top posi-
tive weighted model clusters were associated with 
various developmental and differentiation path-
ways, especially of the nervous system, as well as 
autophagy, protein localization, and cell–cell sign-
aling (Fig. S14c).

We next explored the genomic annotation enrich-
ment of CpGs. Taking the genomic annotations of the 
entire EPIC array as background, we calculated the 
enrichment of four sets of CpGs among CpG islands, 
CpG shores, CpG shelves, and Open Sea genomic 
elements (Fig.S14d). Overall, we noticed an enrich-
ment of CpGs among CpG Islands, CpG shores, 
and CpG shelves, and a corresponding depletion of 
CpGs among Open Sea elements for the approxi-
mately 200,000 CpGs used to predict CheekAge, 
the CpGs corresponding CpG clusters with absolute 
weights > 2, the top 100 age-correlated CpGs, and 
CpGs from the top 100 age-correlated CpG clusters.

We then asked whether there was GO term enrich-
ment among genes associated with the CpGs that 
were most correlated with delta CheekAge. We 
started by taking the CpGs with delta age correlation 
greater than 0.2 (0.38%) or less than − 0.2 (0.14%), of 
the approximately 200,000 CpGs used for clock train-
ing (Fig.  S15a). We found that DNA-binding tran-
scription factor activity, neuronal development and 
synaptic transmission, IkB/NFkB signaling, and post-
transcriptional regulation were significantly enriched 
among genes associated with CpGs negatively corre-
lated with delta CheekAge (Fig.  S15b). Meanwhile, 
nervous system development, cell–cell signaling, cell 
death, and MAPK cascade were significantly enriched 
among genes associated with CpGs positively corre-
lated with delta CheekAge (Fig. S15c).

Next, differentially variable CpGs were identified 
between cohorts with relatively low (< − 5  years, 
representing 8.5%) and relatively high (> 5  years, 
representing 9%) delta age values (Fig.  S15d). GO 
terms significantly enriched among genes associ-
ated with CpGs that are more variable for lower 

Fig. 5  Predicted age of 8045 adult buccal samples using exter-
nal clocks. Panels show chronological age compared to pre-
dicted age for a PhenoAge, b Horvath et al. [24], c Zhang et al. 
[25], and d PedBE alongside e CheekAge. Replicate samples 

are indicated by vertical yellow lines and the linear model fit is 
indicated by orange diagonal lines. f Summary of metrics for 
each model fit
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delta CheekAges included cell cycle and DNA dam-
age terms, protein localization to organelles, RNA 
processing, and calcium ion transport (Fig.  S15e). 
GO terms significantly enriched among genes asso-
ciated with CpGs that are more variable in samples 
with higher delta ages involved developmental terms 
(Fig. S15f). The full details of the enrichment results 
described in this section are tabulated in Supplemen-
tary Table 14.

To explore the relationship between CpGs and 
lifestyle and health factors, we calculated the correla-
tions between all of our approximately 200,000 high-
quality CpGs with lifestyle/health factors, chrono-
logical age, sex, race/ethnicity, and predicted cell type 
compositions (Fig. S16a). We then took the top 100 
most correlated or anticorrelated CpGs associated 
with each of the 18 factors considered (Table  S15) 

and calculated the overlap between them to see if 
each factor was associated with unique or shared 
CpGs (Fig.S16b). We found that cell-type propor-
tions, alcohol, smoking, race/ethnicity, and exercise 
typically correlated with unique sets of top 100 CpGs, 
while CpGs associated with chronological age, stress, 
social satisfaction, education, immune health, and 
self-perceived aging were typically shared with other 
factors. As with the individual CpGs, we determined 
the correlation of the CpG clusters that were used as 
inputs for CheekAge clock construction with the 18 
lifestyle/health, cell-type, and demographic factors 
(Fig.  S17a). We then took the 100 most correlated 
CpG clusters for each of the 18 factors (Table  S16) 
and plotted the overlap between them (Fig. S17b). As 
with the individual CpGs, cell type, race/ethnicity, 
smoking, and exercise tended to correlate with unique 

Fig. 6  Methylation patterns are correlated with age and show 
enrichment for biological processes. a Samples were binned by 
chronological age and the distribution of Pearson correlations 
of the mean methylation value of high-quality CpGs across age 
bins is shown. CpGs with absolute correlations near 0.5 and 
1 were selected (purple rectangles) for heatmap construction. 
b Heatmap showing methylation patterns for selected highly 

correlated and anti-correlated CpGs with age. The top four 
clusters were selected for enrichment analyses. c–f Network 
topology-based enrichment analysis was performed on genes 
associated with cluster 1 (c), cluster 2 (d), cluster 3 (e), and 
cluster 4 (f) CpGs. The top 15 categories with less than 1000 
genes were selected using maximum weighted set cover and 
plotted as bar plots of the negative log of the FDR
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top clusters, although typically a higher proportion 
of the top clusters were shared among at least two 
factors. Chronological age, percentage of diet that is 
plant-based, stress level, social satisfaction, education 
level, immune health, self-rated health, self-perceived 
aging, and sleep quality tended to correlate with CpG 
clusters that were common to more than one lifestyle 
or health factor.

Building an interactive web application for data 
exploration and CheekAge prediction

To help facilitate data exploration and analysis, and 
for others to be able to use the CheekAge clock, we 
created an interactive web portal called CheekAge 
Explorer. This tool allows users to explore the CpG 
methylation values and survey responses using inter-
active plots. Users are also able to generate plots of 
any variable as a function of a second. Continuous 
variables are shown as scatterplots with best-fit lines, 
categorical data (e.g., exercise activity) can be com-
bined with continuous data using boxplots, and two 
categorical variables can be explored using mosaic 
plots [30]. Next, users can specify CpGs using gene 
symbols or CpG cg IDs and plot the change as a func-
tion of various factors. Finally, if users have the beta 
or M-values from EPIC V1 or V2 arrays, CheekAge 
Explorer can be used to calculate CheekAge. The app 
is available free of charge for academic use at http:// 
cheek age. tally health. com/.

Discussion

In the course of developing this next-generation epi-
genetic aging clock optimized for adult buccal tis-
sue, we noted several interesting observations. For 
example, several lifestyle and health factors were 
associated with chronological age in both sexes. In 
male and female subjects, chronological age initially 
decreased with increased self-rated health at the low 
end of the scale. From the middle to the higher end 
of increasing self-rated health, the associated chron-
ological age increased significantly.  Stress levels 
decreased and immune health increased with chron-
ological age in male and female subjects, as did the 
percentage of a diet that was plant-based. The obser-
vation that chronologically older subjects perceived 
themselves as being healthier, feeling less stressed, 

having increased immune health, and consuming less 
meat could be the consequence of bias in study par-
ticipation. Among older prospective subjects, health-
ier people may have been more interested in partici-
pating in this research. Alternatively, there could be 
a bias in survivorship, wherein subjects who feel 
less healthy, more stressed, have decreased immune 
health, and consume more meat have an increased 
rate of early mortality and fewer of those subjects sur-
vive into old age. Survivorship bias has, for example, 
been reported to diminish the observable relationship 
between age-related macular degeneration risk and 
smoking [31].

There were also significant differences in how 
chronological age was associated with smoking and 
BMI. Not smoking was more strongly associated with 
chronological age in male subjects and increased 
BMI moderately associated with higher chronologi-
cal age in females. In contrast, increased BMI was 
more strongly associated with lower chronologi-
cal age in males. The weaker association between 
increased BMI and increased chronological age in 
females could be due to sex-based differences in adi-
pose tissue phenotypes [32]. The stronger association 
between increased BMI and decreased chronological 
age in males could be again due to survivorship bias, 
where males with increased BMI are at greater risk of 
mortality and, therefore, less likely to be in the older 
cohort [33]. Smoking and BMI were also among 
the factors most significantly contributing to delta 
age when delta age was modeled as a linear combi-
nation of survey factors. The most significant factor 
was race/ethnicity, which may be because non-white 
participants in our beta cohort were significantly less 
likely to drink and smoke. The five most significant 
lifestyle/health factors in descending order were BMI, 
smoking, alcohol, social satisfaction, and stress level, 
all of which are relevant to health and known to be 
associated with mortality risk.

One finding of interest was that several methyl-
omic clusters exhibited more variability with age. 
These findings corroborate a report by Slieker et al., 
which reported that aging is synonymous with an 
increase in methylomic variation [34]. According to 
our data, variance for distinct clusters appears to ramp 
up around 70  years of age. Related work from the 
laboratory of Dr. Tony Wyss-Coray has shown that 
the human plasma proteome undulates with age, with 
noticeable peaks of differential expression occurring 

http://cheekage.tallyhealth.com/
http://cheekage.tallyhealth.com/
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at ages 34, 60, and 78 [35]. A previous meta-analysis 
in human transcriptomic data analogously identified 
a plethora of genes that were both variably and dif-
ferentially expressed after age 70 [36]. While multi-
omics data from the same individuals is ultimately 
needed to better understand how the molecular land-
scape becomes aberrant with age, current evidence 
suggests that multiple molecular systems are dysregu-
lated in the final decades of life.

One curious finding was that a higher delta age 
was significantly associated with SARS-CoV-2 and 
non-SARS-CoV-2 respiratory infections. While the 
data is mixed [37], multiple reports have linked an 
active SARS-CoV-2 infection to an elevated epige-
netic age [38, 39]. The ability of an infection to tran-
siently impact a biomarker is not particularly surpris-
ing. For instance, an active SARS-CoV-2 infection 
has been connected to a reduction in grip strength 
[40], a higher level of C-reactive protein [41], and an 
increased amount of GDF15 [42]. One possible expla-
nation for our finding is that a subset of the CpGs 
used in our clock are annotated to immune system 
genes and may be sensitive to inflammation. Indeed, 
one of our enrichment analyses looked at different 
clusters that gained or lost methylation with age. In 
cluster 2, which becomes hypermethylated with age, 
one of the top terms was “viral process.” In a separate 
enrichment analysis looking at clusters with a delta 
age correlation less than − 0.2, “l-kappaB kinase/NF-
kappaB signaling” was the fourth most enriched term. 
The dysregulation of the immune system with age in 
vertebrate animals is well characterized. For exam-
ple, a previous epigenetic and transcriptomic analysis 
found that innate immune pathways are commonly 
dysregulated across African turquoise killifish, rats, 
and humans [43]. Plasma proteins associated with 
both the adaptive and innate immune systems are also 
uniquely adept at predicting age in humans [44].

Additional research is warranted to better under-
stand how our CheekAge clock behaves over time and 
to uncover novel factors linked to a younger or older 
epigenetic age. Future investigations should also 
examine whether health-promoting interventions—
such as adopting a Mediterranean diet, increasing 
weekly resistance-training, or cutting out ultra-pro-
cessed food—can significantly decrease CheekAge in 
a randomized clinical trial setting. Since aging clocks 
and machine learning models are highly complex, it 
would also be fruitful to gain a deeper understanding 

of the CpG sites and CpG clusters used by our ensem-
ble model, including their associated biology. In addi-
tion to utilizing DNA methylation, lifestyle informa-
tion, and health information, future models that use 
artificial intelligence to incorporate additional meas-
urement modalities may unlock greater accuracy, reli-
ability, and utility.
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