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Abstract  Accurate prediction of biological age 
can inform public health measures to extend healthy 
lifespans and reduce chronic conditions. Multiple 
theoretical models and methods have been devel-
oped; however, their applicability and accuracy are 
still not extensive. Here, we report Differential Aging 
and Health Index (DAnHI), a novel measure of age 
deviation, developed using physical and serum bio-
markers from four million individuals in Korea’s 
National Health Screening Program. Participants 
were grouped into aging statuses (< 26 vs. ≥ 26, < 27 
vs. ≥ 27, …, < 75 vs. ≥ 75 years) as response variables 
in a binary logistic regression model with thirteen 

biomarkers as independent variables. DAnHI for 
each individual was calculated as the weighted mean 
of their relative probabilities of being classified into 
each older age status, based on model ages ranging 
from 26 to 75. DAnHI in our large study population 
showed a steady increase with the increase in age 
and was positively associated with death after adjust-
ing for chronological age. However, the effect size of 
DAnHI on the risk of death varied according to the 
age group and sex. The hazard ratio was highest in 
the 50–59-year age group and then decreased as the 
individuals aged. This study demonstrates that routine 
health check-up biomarkers can be integrated into a 
quantitative measure for predicting aging-related 
health status and death via appropriate statistical 
models and methodology. Our DAnHI-based results 
suggest that the same level of aging-related health 
status does not indicate the same degree of risk for 
death.
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Abbreviations 
AFAR	� American Federation on Aging Research
ALT	� Alanine aminotransferase
AST	� Aspartate aminotransferase
AUC​	� Area under the curve
BA	� Biological age
BMI	� Body mass index
CI	� Confidence interval
CR	� Creatinine
DAnHI	� Differential Aging and Health Index
DBP	� Diastolic blood pressure
DNN	� Deep neural network
FBS	� Fasting blood sugar
GGTP	� Gamma-glutamyl transpeptidase
HDL	� High-density lipoprotein
HGB	� Hemoglobin
HR	� Hazard ratio
LDL	� Low-density lipoprotein
MLR	� Multiple linear regression
NHIS	� National Health Insurance Service
PCA	� Principal component analysis
RF	� Random forest
ROC	� Receiver operating characteristic
SBP	� Systolic blood pressure
SGD	� Stochastic gradient descent
TG	� Triglyceride
WST	� Waist circumference

Introduction

The World Health Organization periodically releases 
healthy lifespan indicators, such as life expectancy, 
mortality, and disability-adjusted life year, to opti-
mize health for everyone [1]. However, these met-
rics may not resonate at the individual level as they 
provide information based on the average population 
whose living conditions are heavily affected by fac-
tors such as sex, age, race, ethnicity, or disability. 
The increase in morbidity and mortality during the 
recent COVID-19 pandemic has sharpened the focus 
on individual healthy lifestyle plans within the public 
healthcare system [2–4] as a means to reduce men-
tal and physical burdens, improve immunological 

functions, and prevent chronic diseases and disability 
towards increased life expectancy.

Currently, over 74% of global deaths are attributa-
ble to non-communicable diseases, including chronic 
conditions [5]. Age stands as the most prevalent risk 
factor for these diseases, contributing significantly to 
the overall disease burden [6, 7]. With aging-related 
issues steadily increasing, accurately quantifying 
aging is critical for developing preventive interven-
tions and therapies for aging-related diseases. This 
effort also involves enhancing personal health strate-
gies, which is a key component in public health initia-
tives [2, 4], aimed at promoting healthy aging, reduc-
ing disease burden, and enhancing the quality of life 
for individuals.

Predicting biological age is essential for estimat-
ing mortality and life expectancy in population health 
management. From the moment of birth, individuals 
sharing the same chronological age may exhibit dif-
ferent levels of biological aging. The concept of bio-
logical age, an individual’s age defined by the degree 
of biological changes at cellular and molecular levels, 
is ascertained through a variety of well-standardized 
biomarkers pertinent to health functions [8]. These 
biomarkers offer a more precise depiction of an indi-
vidual’s physiological or functional age. Biological 
age is considered an important informative marker, 
highlighting variations in human organ systems com-
pared to chronological age [8–10]. Yet, the relation-
ship between biological age, organ systems, chrono-
logical age, and age-related diseases continues to be a 
subject of extensive research. Aging biomarkers serve 
as crucial tools for identifying and evaluating biologi-
cal age. Through the Biomarkers of Aging Consor-
tium (https://​www.​aging​conso​rtium.​org), a consensus 
on different aspects of aging biomarkers has been 
reached [8]. The comprehensive approach of the Con-
sortium includes establishing consensus on key ter-
minology, classifying biomarkers from a regulatory 
perspective, elucidating use cases based on existing 
biomarkers and trials, and assessing biomarkers, for 
instance, using validated geroprotectors.

Estimating the biological age for differentiating 
health status involves various theoretical models and 
methods. Approaches such as multiple linear regres-
sion (MLR) analysis [11–15], principal compo-
nent analysis (PCA) [16, 17], Hochschild’s method 
[18–20], and Klemera and Doubal’s method [21], 
along with machine learning techniques, including 

https://www.agingconsortium.org
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stochastic gradient descent (SGD) [22], deep neural 
network (DNN) [23, 24], and random forest (RF) [23, 
25], have been widely used for this purpose. How-
ever, previous computational methods for estimat-
ing biological age had limitations, such as restricted 
biomarker accessibility, model feasibility, limited 
sample representativeness, an arbitrary transforma-
tion of unitless values to unit year, and over- or under-
estimation of biological ages in young and old age 
groups, respectively [18, 26–28]. Notably, in many 
studies, biological ages tend to be higher than chrono-
logical ages among deceased individuals, emphasiz-
ing the significance of health and suggesting a more 
robust association of biological ages or biochemical 
parameters with mortality [17, 29].

It is imperative to have a comprehensive under-
standing of biological age and its correlation to health 
for the enhanced prediction of mortality risks, better 
health status assessment, and improvement of over-
all health outcomes. Therefore, we have taken meas-
ures to address the weaknesses identified in our prior 
validation of biological age as a predictor of mortal-
ity risk [30–33]. This study aimed to enhance risk 
assessment accuracy by developing a complementary 
measure to chronological age, utilizing readily avail-
able biomarkers from national health screenings. For 
this purpose, we utilized the Korean National Health 
Insurance Service (NHIS) database, which offers a 
wealth of health screening data at a national level. 
Using these data, we developed a novel tool called 
the Differential Aging and Health Index (DAnHI) 
and evaluated its effectiveness in predicting mortality 
profiles.

Methods

Study population and data cleansing

The study population consisted of individuals ran-
domly selected from the Korean NHIS database 
(NHIS-2020–1-344), which comprises four mil-
lion individuals (two million males and two million 
females). General health screening data collected in 
2009 were used for the analysis. Dates and causes 
of death, if any, until 2019, were obtained from Sta-
tistics Korea. The study design was retrospective 
and approved by the Korea University Institutional 
Review Board (ID: IRB-2019–0271).

Thirteen health screening parameters were col-
lected, including body mass index (BMI), waist cir-
cumference (WST), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), fasting blood sugar 
(FBS), high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), triglyceride (TG), hemoglobin 
(HGB), aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and gamma-glutamyl trans-
peptidase (GGTP), and creatinine (CR).

Participants meeting the following criteria were 
excluded from the study: (1) age below 20 years; (2) 
presence of chronic diseases, such as hypertension, 
diabetes mellitus, cancer, or stroke in the data col-
lection year; (3) death due to extrinsic causes, such 
as suicide, accident, infectious disease, pregnancy-
related death, or unknown causes; (4) health screening 
parameter outliers determined as < 0.05%, > 99.95%, 
or missing value. Each of the two study cohorts, male 
and female, was randomly split into two independent 
datasets at a 7:3 ratio. The larger dataset served as the 
development dataset for constructing prediction mod-
els, whereas the smaller dataset was used for perfor-
mance assessment.

For sensitivity analysis, the subgroups were 
defined based on sex, age range, and cause of death. 
The death events were further classified into cancer 
death, non-cancer death, and all-cause death catego-
ries. The cancer death group included only deaths 
attributed specifically to cancer, encompassing indi-
viduals who succumbed to various forms of malig-
nancies, such as lung cancer, breast cancer, colorec-
tal cancer, and other types of cancer. The non-cancer 
death group encompassed all deaths, excluding can-
cers and external causes, such as suicide, accidents, 
infectious diseases, pregnancy-related death, or cases 
with unknown reasons. The all-cause death group 
included both cancer and non-cancer deaths, repre-
senting the entire spectrum of mortality within the 
study population.

Constructing a statistical model to quantify 
aging‑related health status

A statistical model was constructed using a multivari-
able binary logistic regression approach to quantify 
aging-related health status. The chronological age was 
repeatedly dichotomized to define 50 separate aging 
statuses, such as < 26 vs. ≥ 26 years, < 27 vs. ≥ 27 years, 
and so on, up to < 75 vs. ≥ 75 years. Health screening 
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parameters were utilized as independent variables in the 
logistic regression models. Based on these models, an 
aging-related health status indicator known as the Dif-
ferential Aging and Health Index (DAnHI) was com-
puted for each participant. The calculation procedure 
for DAnHI is summarized as follows:

Step 1: Set n = 26 (minimum model age)
Step 2: Define the dichotomous aging status for each 
model age, n

0n: persons with age < n
1n: persons with age ≥ n

Step 3: Construct a multivariable binary logistic 
regression model and compute Pi,n (= p

(

Yi = 1n
)

 in 
Eq. 1)
Step 4: Compute Cn from the values of Pi,n using a 
receiver operating characteristic
(ROC) curve analysis to maximize Youden’s J sta-
tistic
Step 5: Repeat Step 2 – Step 5 for n = 27, 28 … and 
75
Step 6: Compute DAnHIi (Eq. 2)

Eq.  1: Individual’s probability to be differentiated 
as ≥ n years:

p
�

Y = 1n
�

=
exp

�
∑p

k=0
�kXk

�

1+ exp
�
∑p

k=0
�kXk

�

p
(

Yi = 1n
)

∶ the probability of ith individual

to be dif ferentiated as ≥ n years group

Yi ∶ ith individual�s aging status

i = 1, 2,… , and N (N ∶ total number of study participants)

n = 26, 27,… , and 75

(model age observed in the development data)

Xk ∶ k
th independent variable (health screening parameter)

�k ∶ regression coeff icient of kth independent variable
(

�0 means intercept
)

Eq.  2: Individual’s differential aging and health 
index (DAnHIi):

Evaluation of the predictive performance of DAnHI 
for mortality

The independent effect of DAnHI on mortality was 
estimated as a hazard ratio (HR) using the chronologi-
cal age as an adjusting covariate in the multivariable 
Cox proportional hazards regression model. In addi-
tion, the HR (%) was calculated as (HR of DAnHI–1.0)/
(HR of chronological age –1.0) × 100 (%), to evaluate 
the relative influence size of DAnHI on mortality com-
pared with chronological age. Furthermore, the study 
participants were grouped into three subgroups accord-
ing to the size of DAnHI: the low-risk (DAnHI ≤ 0), 
medium-risk (0 < DAnHI < median of positive DAn-
HIs), and high-risk (DAnHI ≥ median of positive DAn-
HIs) groups. The survival probabilities of the three risk 
groups over time were compared against each other 
using Kaplan–Meier curves and a log-rank test.

Model performance of DAnHI for predicting 
mortality was assessed in terms of the area under 
the curve (AUC) during the follow-up periods of up 
to 10  years using the validation datasets. Four Cox 
proportional hazards regression models were gener-
ated using DAnHI, chronological age, chronological 
age with DAnHI, and BA (biological age, defined 
by chronological age + DAnHI) as the independent 
risk factors. The risk scores, calculated from the Cox 
models, were used to compute AUCs over time, and 
the difference of AUCs between the DAnHI-including 

p ∶ total number of independent variable

DAnHIi =

∑75

n=26
n × �i,n

75 − 26 + 1

�i,n = Pi,n − Cn

i = 1, 2,… , and N (N ∶ total number of the study population)

DAnHI
i
∶ weighted mean of �

i,n

Cn ∶ cutoff of Pi,n

determined at the point that maximizes

Youden�s J statistic in the ROC curve analysis
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models and the chronological age-only model was 
analyzed using DeLong’s method. In addition, the 
death prediction performance was compared between 
chronological age and biological ages that were esti-
mated using DAnHI and other statistical or machine 
learning-based algorithms, such as MLR, PCA, SGD, 
DNN, and RF.

Data handling and statistical analysis

The data handling for the Korean cohort data from 
the NHIS database was performed using SAS (SAS 
v9.4, Cary, NC, USA). All statistical analyses, includ-
ing data-cleansing, construction of the multivari-
able binary logistic regression models, Kaplan–Meier 
curve analysis with log-rank test, Cox proportional 
hazards regression analysis, and time-dependent 
ROC curve analyses with DeLong’s test, were per-
formed using R v4.0.3 (R Foundation for Statistical 
Computing, Vienna, Austria) and T&F program v4.0 
(YooJinBioSoft, Seoul, Korea).

Results

Characteristics of the nationwide study cohorts

Figure  S1 illustrates the selection process of the 
study participants. Four million individuals who 
participated in the Korea National General Health 
Screening Programs in 2009 were randomly selected 
from the NHIS database. After removing partici-
pants meeting the exclusion criteria, the final study 
cohort consisted of 3,125,936 participants, com-
prising 1,579,322 males and 1,546,614 females. 
Table S1 and Fig. S2 illustrate the overall distribu-
tion of the study cohorts’ demographic and health 
screening parameters.

Figure  1 provides a comprehensive view of the 
distribution of the health screening parameters, high-
lighting their diverse patterns across chronological 
ages and sex. These metrics exhibit heterogeneous 
trends, with some showing continuous increases and 
others showing fluctuations or both increases and 
subsequent decreases over time. Notably, sex differ-
ences are evident in several parameters. For instance, 
the TG levels increase until the late thirties or early 
forties and then slowly decrease in male participants. 
In contrast, a monotonically increasing trend with 

increasing chronological age was observed in female 
participants.

Moreover, SBP consistently rises as the study par-
ticipants get older, irrespective of sex. However, other 
parameters display varying degrees of sex-specific 
differences. BMI, for example, demonstrates an initial 
increase followed by a subsequent decrease at around 
mid-thirties and mid-sixties in male and female par-
ticipants, respectively. The increasing pattern of WST 
is more prevalent in females compared with males. In 
addition, the HGB levels in males show a continuous 
decrease over time, whereas those in females exhibit 
fluctuating patterns.

Independent impact of health screening parameters 
on age‑specific differentiation

To investigate the independent impact of the health 
screening parameters on age-specific differentiation, 
a novel approach was employed utilizing 50 multi-
variable binary logistic regression models (Fig. 2A). 
Table 1 presents the significant effects of all param-
eters in differentiating participants aged ≥ 40  years 
from those aged < 40  years (P-values < 2.37 × 10–12) 
as well as participants aged ≥ 50  years from those 
aged < 50  years (P-values < 1.71 × 10–34). The 
ages of 40 and 50  years were selected as important  
cutoff points for age differentiation based on prior 
research and clinical relevance [34–36]. Most param-
eters exhibited the same direction of effect in dif-
ferentiating participants aged ≥ 40  years from those 
aged < 40 years, regardless of sex, except for BMI and 
DBAn increase in BMI was negatively associated with 
participants aged ≥ 40 years (odds ratio = 0.834; 95% 
CI: 0.832–0.836) in males but positively associated 
with participants aged ≥ 40 years (odds ratio = 1.053; 
95% CI: 1.051–1.056) in females. A positive or nega-
tive association indicates that the increment of the 
parameter acts as an agonist or antagonist in differ-
entiating more-aged such as those ≥ 40  years com-
pared with < 40  years. Conversely, DBP showed a 
completely opposite pattern to BMI in differentiating 
aged ≥ 40  years (odds ratio = 1.015 for males; odds 
ratio = 0.994 for females).

The patterns of effect direction differed between 
the comparison of participants aged ≥ 50  years and 
those aged < 50  years, and the comparison of par-
ticipants aged ≥ 40  years and those aged < 40  years, 
in several parameters, such as BMI, DBP, TG, HGB, 
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Fig. 1   Overall distribution of the health screening parameters. Chronological age-related patterns of the health screening parameters 
are represented as mean ± standard deviation
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and GGTFor example, TG showed a negative associa-
tion in male participants but a positive association in 
female participants (odds ratio = 0.999 for male TG; 
odds ratio = 1.005 for female TG), whereas HGB 
showed a negative association in male participants 
but a positive association in female participants (odds 
ratio = 0.675 for male HGB; odds ratio = 1.067 for 
female HGB). In contrast, GGTP showed a positive 
association in male participants but a negative asso-
ciation in female participants (odds ratio = 1.001 for 
males; odds ratio = 0.998 for females). When dif-
ferentiating ≥ 50  years, the association pattern of 
DBP and TG in males, as well as BMI and GGTP in 
females, reversed from positive to negative compared 
with differentiating aged ≥ 40  years. Moreover, the 
association pattern of HGB reversed from negative to 
positive, which was observed exclusively in females. 
These age-specific patterns emphasize the importance 
of considering age differences in the interpretation 
of health screening parameters and their associations 
with biological ages, while accounting for potential 
variations based on sex.

The impact of each health screening parameter on 
differentiating a specific age is compared in Fig. S3. 
For instance, the GGTP serum levels revealed the 

largest odds ratio in the Age-26 model in males, 
suggesting that this value exerts the biggest posi-
tive influence on differentiating male participants 
with ≥ 26 years compared with the other parameters. 
The GGTP effect gradually declined as the model age 
increased to 52–53  years and then reversed. In con-
trast, a physiological metric, the SBP effect, changed 
its effect direction from negative to positive around 
the mid- to late-thirties and exhibited a gradual 
increase in positive effect as the mode age increased. 
In females, the serum GGTP levels did not show a 
substantial change across all model ages, whereas 
SBP consistently showed increasing positive effects 
as the model age increased. Overall, the effect size 
and direction of health screening parameters show 
sex-specific differences and change with increasing 
model age.

Differential Aging and Health Index (DAnHI)

This study developed a novel measure — the dif-
ferential aging and health index (DAnHI) — using 
mandatory nationwide health screening parameters 
to properly represent aging-related differential health 
status for individuals with different health conditions. 

Fig. 2   Procedures to compute DAnHI. (A) Fifty multivari-
able binary logistic regression models were constructed to 
differentiate ages ≥ 26, ≥ 27, …, and ≥ 75. Panel (B) illustrates 
the overall process of calculating DAnHI for each participant. 
Τhe three distinctive patterns of δn computed for each study 

participant are illustrated in step #4. In the middle pattern, the 
D sums up near 0 since the areas above and below Y axis = 0 
counterbalance overall. D becomes a large negative value as in 
the left-side pattern and a positive value in the right-side pat-
tern
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Figure 2B illustrates the overall process of computing 
each individual’s DAnHI based on the 50 multivari-
able binary logistic regression models. For example, 
if δn for all model ages is > 0, D is always calculated 
as > 0, indicating an “increased aging health status.” 
However, if δn for all model ages is < 0, D is always 
calculated as < 0, indicating a “reduced aging health 
status.” If the individual profile has both positive and 
negative values across the model ages, then D ≈0 

suggests that the individual is under “stable aging 
health status.”

Figure  3 illustrates several distinctive profile 
patterns of δn, generated by K-means clustering 
with nine random centroids. These profiles could 
be primarily grouped into three distinct patterns 
(Fig. 2B; Step 4), where δn – Cutoffn = 0 serves as 
the indicator of an antagonist and agonist role in 
an individual’s “differential aging health status.” 

Table 1   The independent effects of health screening parameters on differentiating ≥ 40 years and ≥ 50 years

The male cohorts included 485,359 (43.9%; < 40 years), 620,166 (56.1%; ≥ 40 years), 783,676 (70.9%; < 50 years), and 321,849 
(29.1%; ≥ 50 years) participants, while the female cohorts included 329,831 (30.5%; < 40 years), 752,799 (69.5%; ≥ 40 years), 
670,112 (61.9%; < 50 years), and 412,518 (38.1%; ≥ 50 years) participants. TCHOL was excluded from the multivariable binary 
logistic regression model due to multicollinearity with TG, HDL, and LDL. Variance inflation factor (VIF) < 3.0 was used as a cutoff 
for multicollinearity
Abbreviations: ALT: alanine aminotransferase, AST: aspartate aminotransferase, BMI: body mass index, CI: confidence intervals, 
CR: creatinine.., DBP: diastolic blood pressure, FBS: fasting blood sugar, GGTP: gamma-glutamyl transpeptidase, HDL: high-den-
sity lipoprotein, HGB: hemoglobin, LDL: low-density lipoprotein, OR: odds ratio, SBP: systolic blood pressure, TCHOL: total cho-
lesterol, TG: triglyceride, WST: waist circumference

Model for differentiat-
ing ≥ 40 years

Model for differentiat-
ing ≥ 50 years

Health 
screening 
parameters

Male Female Male Female

OR (95%CIs) P-value OR (95%CIs) P-value OR (95%CIs) P-value OR (95%CIs) P-value

BMI (kg/
cm2)

0.834 (0.832–
0.836)

 < 1.00 × 10–310 1.053 (1.051–
1.056)

 < 1.00 × 10–310 0.794 (0.792–
0.797)

 < 1.00 × 10–310 0.909 (0.907–
0.911)

 < 1.00 × 10–310

WST (cm) 1.092 (1.091–
1.093)

 < 1.00 × 10–310 1.060 (1.059–
1.061)

 < 1.00 × 10–310 1.112 (1.111–
1.114)

 < 1.00 × 10–310 1.093 (1.092–
1.094)

 < 1.00 × 10–310

SBP (mmHg) 1.003 (1.003–
1.004)

1.05 × 10–44 1.030 (1.029–
1.031)

 < 1.00 × 10–310 1.024 (1.023–
1.024)

 < 1.00 × 10–310 1.037 (1.037–
1.038)

 < 1.00 × 10–310

DBP 
(mmHg)

1.015 (1.014–
1.015)

 < 1.00 × 10–310 0.994 (0.993–
0.995)

3.61 × 10–47 0.995 (0.995–
0.996)

6.75 × 10–38 0.986 (0.985–
0.986)

 < 1.00 × 10–310

FBS (mg/dL) 1.022 (1.022–
1.023)

 < 1.00 × 10–310 1.022 (1.021–
1.022)

 < 1.00 × 10–310 1.015 (1.014–
1.015)

 < 1.00 × 10–310 1.010 (1.009–
1.010)

 < 1.00 × 10–310

TCHOL (mg/
dL)

– – – – – – – –

TG (mg/dL) 1.001 (1.000–
1.001)

5.04 × 10–108 1.005 (1.005–
1.005)

 < 1.00 × 10–310 0.999 (0.999–
0.999)

3.18 × 10–114 1.005 (1.005–
1.005)

 < 1.00 × 10–310

HDL (mg/
dL)

0.996 (0.996–
0.996)

1.61 × 10–216 0.996 (0.996–
0.996)

2.02 × 10–232 0.996 (0.996–
0.996)

1.30 × 10–174 0.998 (0.997–
0.998)

3.64 × 10–94

LDL (mg/dL) 1.004 (1.004–
1.004)

 < 1.00 × 10–310 1.008 (1.008–
1.009)

 < 1.00 × 10–310 1.002 (1.002–
1.002)

 < 1.00 × 10–310 1.009 (1.008–
1.009)

 < 1.00 × 10–310

HGB (g/dL) 0.705 (0.702–
0.708)

 < 1.00 × 10–310 0.871 (0.867–
0.874)

 < 1.00 × 10–310 0.675 (0.673–
0.678)

 < 1.00 × 10–310 1.067 (1.062–
1.071)

1.16 × 10–229

CR (mg/dL) 0.981 (0.979–
0.984)

3.34 × 10–49 0.915 (0.911–
0.920)

5.76 × 10–307 0.968 (0.965–
0.971)

2.38 × 10–94 0.959 (0.954–
0.963)

2.08 × 10–61

AST (IU/L) 1.038 (1.038–
1.039)

 < 1.00 × 10–310 1.077 (1.076–
1.078)

 < 1.00 × 10–310 1.039 (1.039–
1.040)

 < 1.00 × 10–310 1.084 (1.083–
1.085)

 < 1.00 × 10–310

ALT (IU/L) 0.972 (0.971–
0.972)

 < 1.00 × 10–310 0.988 (0.987–
0.988)

2.93 × 10–180 0.968 (0.967–
0.968)

 < 1.00 × 10–310 0.974 (0.973–
0.975)

 < 1.00 × 10–310

GGTP (IU/L) 1.004 (1.004–
1.004)

 < 1.00 × 10–310 1.001 (1.001–
1.002)

2.37 × 10–12 1.001 (1.001–
1.001)

4.18 × 10–63 0.998 (0.998–
0.998)

1.71 × 10–34
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This equation helps identify three distinct profile 
patterns (shown in the left, middle, and right pan-
els in Fig.  2B; Step 4). Individuals with a profile 
pattern in the middle panel have DAnHI ≈0, sug-
gesting that the aging-related health status is stable 
or not different from individuals of the same age. 
In contrast, individuals whose profile patterns fall 
into the left or right panels can be interpreted as 
being relatively healthier or unhealthier, consider-
ing their age.

Age-specific distributions of DAnHI for males 
and females are illustrated in Fig. 4. DAnHI grad-
ually increased as the participants aged, which 
suggests that the aging-related health status dete-
riorates faster in older individuals. A wider range 
of DAnHI observed in the older participants sug-
gests that person-to-person variance dominates 
as individuals age. Figure  S4 illustrates diverse 
age- and sex-specific correlations between DAnHI 
and health screening parameters. For instance, 
the pattern of TG shows considerable fluctuation 
across different age groups in males. It is nega-
tively correlated prior to the age of 40 years, then 
exhibits a positive correlation from the ages of 40 
to 60  years, only to revert to a negative correla-
tion after 60 years. In contrast, regardless of age, 
TG consistently presents positive correlations in 
females.

Age‑ and sex‑specific association between DAnHI 
and mortality

The independent effect of DAnHI on the risk of 
death was evaluated as an HR in a multivariable Cox 
proportional hazards regression model after adjust-
ing for the effect of chronological age. Mortality 
data from Statistics Korea were analyzed, covering 
a follow-up period of up to 10 years from the time of 
data collection in the study cohorts (Table S2).

The average follow-up period was 9.3  years 
(range 0.0–9.9  years). Table  S3 shows that both 
DAnHI and chronological age have significant 
but distinct independent effects on mortality risk 
across various age groups and both sexes. For 
example, in males aged 40–49  years, a one-year 
increase in DAnHI was associated with a 9.7% 
increase in total mortality (HR = 1.097, 95% con-
fidence interval [CI] = 1.091–1.104), while a one-
year increase in chronological age corresponded 
to a 10.5% increase in total mortality (HR = 1.105, 
95% CI = 1.092–1.119). In contrast, among the old-
est participants (≥ 70  years), the impact of DAnHI 
on the total mortality decreased to 3.5% (HR = 1.035, 
95% CI = 1.032–1.037), whereas the chronological 
age increased total mortality by 25.1% (HR = 1.251, 
95% CI = 1.239–1.263), which was more than dou-
ble the effect observed in males aged 40–49  years. 
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Fig. 3   Distinctive profile types of δn. The probability of each 
individual being ≥ n years old, p(Y = 1n), was computed from 
the model Mn, as illustrated in Fig.  2. The Cutoffn value was 
selected at the point where Youden’s J statistics was maxi-
mized using the receiver operating characteristic (ROC) curve 
analysis. The differences between p(Y = 1n) and Cutoffn were 

calculated as δn, indicating a model age-specific profile of the 
differential aging of each individual. K-means clustering analy-
sis with nine random centroids was performed, and the thick 
profile lines indicate the averages of participants in each clus-
tered grouDAnHI: differential aging and health index
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Among females, both DAnHI and chronological age 
had weaker effects than that in males for the same 
40–49-year-old participants (HR = 1.041 for DAnHI; 
HR = 1.050 for chronological age). The impact of 
DAnHI decreased more than chronological age 
among participants aged ≥ 70  years (HR = 1.008 for 
DAnHI; HR = 1.424 for chronological age). Moreo-
ver, the effect of DAnHI was more pronounced for 
non-cancer deaths compared with cancer deaths in 
both male and female participants aged 40–49 years 
(HR = 1.131 vs. 1.067 for males; HR = 1.085 vs. 
1.026 for females).

Notably, the HRs for DAnHI show an opposite 
trend to chronological age as individuals age. The 
HR ratio (%), which represents the ratio of the two 
HRs (DAnHI relative to chronological age), steadily 
increases until the age of 40–49 or 50–59 years, fol-
lowed by a decline (Fig. 5). For example, considering 
total mortality in male participants, the HR ratio (%) 
increased from 15.0% in the 20 s to 80.3% in the 30 s 
and 92.4% in the 40 s, followed by a declining pattern 
of 84.7% in the 50  s, 50.7% in the 60  s, and 13.8% 
in the 70  s. Although DAnHI tends to be higher in 
older age groups compared with the other age groups 
(Fig. 4), its impact on mortality is marginal.

The smallest HR ratio (%) was observed in the 
oldest age group (≥ 70  years), except for the male 
cohort with cancer-caused death. The larger confi-
dence intervals of HR for DAnHI in the youngest 
age group (≤ 29  years) were mainly due to minimal 
numbers of death. The pattern of HR ratio (%) is 

more pronounced in the male cohort and non-cancer 
deaths. To further assess the risk of high DAnHI 
on death, the participants were classified into three 
risk groups based on DAnHI: low-risk (DAnHI ≤ 0), 
medium-risk (0 < DAnHI < median of positive DAn-
HIs), and high-risk (DAnHI ≥ median of positive 
DAnHIs) groups. Survival probabilities for the three 
risk groups, determined by DAnHI magnitude, were 
compared using Kaplan–Meier curves with a log-
rank test, revealing significant differences in most age 
groups, except for the youngest age group (log-rank 
test p values < 9.03 × 10–7, Fig. 6).

In addition to assessing the independent effect of 
DAnHI on mortality, we also investigated its predic-
tive capability using the AUC for follow-up periods 
of up to 10  years. We constructed four Cox propor-
tional hazards regression models, utilizing DAnHI, 
chronological age, chronological age with DAnHI, 
and biological age (= chronological age + DAnHI) 
as independent risk factors. Table 2 summarizes and 
compares the discrimination accuracies of these mod-
els in predicting non-cancer deaths using the vali-
dation dataset with broad range groups (Table  S4). 
In most age groups, the “chronological age with 
DAnHI” models demonstrated improved perfor-
mances compared with the chronological age-only 
models. However, for individuals aged ≥ 65 years, the 
predictive performances of the biological age models 
were lower compared with those of the chronological 
age-only models (0.715 vs. 0.739 in males and 0.665 
vs. 0.779 in females, respectively). Detailed analysis 
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Fig. 4   Age-specific distribution of DAnHI. Male and female 
cohorts are presented in box plots with medians (solid hori-
zontal lines) and interquartile ranges (IQR) of DAnHI com-
puted at each chronological age. Outer whiskers indicate 5% 
and 95% of DAnHI, and the maximum and minimum values 

are presented as black dots in the lower and upper parts of the 
graphs. The gradual increase pattern of DAnHI and wider IQR 
is observed as the participants get older for all the cohorts. 
DAnHI: differential aging and health index
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results of prediction accuracies for other types of 
mortality can be found in Tables S5 and S6.

The comparison of 10-year mortality prediction 
accuracy between chronological age and biological 
ages, estimated using various machine learning-based 
and statistical algorithms, including DAnHI, is sum-
marized in Tables S7 and S8. In the male cohort, the 
highest prediction performance was observed with 
DAnHI (AUC = 0.830), followed by chronologi-
cal age (AUC = 0.823) for total mortality prediction. 
Other algorithms demonstrated lower prediction per-
formances (AUCs < 0.8). Notably, for all biological 
age estimation algorithms, as well as chronological 
age, discrimination accuracy was higher in predicting 
non-cancer deaths than cancer-related deaths. DAnHI 
consistently showed higher discrimination accuracy 
across all mortality types (Table S7). Conversely, in 
the female cohort, chronological age yielded a slightly 
higher AUC (0.842) for total mortality prediction 
compared to DAnHI (AUC = 0.833), with all other 
algorithms exhibiting lower accuracy (Table  S8). 

Additionally, the female cohort demonstrated more 
precise prediction for non-cancer deaths compared to 
cancer-related deaths than the male cohort.

Discussion

In this study, we developed a novel index called the 
Differential Aging and Health Index (DAnHI) to 
accurately estimate the biological aging status of an 
individual using readily accessible biomarkers from 
a health screening program. We demonstrated that 
the distribution of health screening parameters var-
ied with chronological age and sex, and the age and 
sex-specific correlations between these parameters 
and DAnHI provided insights into the associations 
between aging-related health factors and biomarkers 
commonly used in health screenings. Unlike other 
models that directly estimate biological age from sta-
tistical or machine learning models [13, 17, 22–25], 
our model first calculated DAnHI, an independent 
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factor representing differential aging, or age devia-
tion. Subsequently, it incorporated this factor along 
with the chronological age to enhance accuracy in 
estimating the risk of death. Lastly, we also found that 
there is a non-linear relationship between DAnHI and 
mortality, which suggests that the impact of DAnHI 
on mortality risk may change with the individual’s 
age and sex, highlighting the dynamic nature of bio-
logical aging.

Various studies [11–21] have been conducted since 
the early 2000s to predict aging and life expectancy 
and identify aging-predictive biomarkers. The Ameri-
can Federation on Aging Research (https://​www.​
afar.​org/) and the Biomarkers of Aging Consortium 
(https://​www.​aging​conso​rtium.​org) released various 
panels of healthy-aging biomarkers, encompassing 
molecular biomarkers derived from specific mole-
cules and omics, physiological biomarkers based on 
functional performance and physical characteristics, 

as well as digital biomarkers measured through wear-
able and non-wearable technologies [8, 32]. However, 
most of these biomarkers are not available in meas-
urement, general and handling at the population level. 
To overcome this difficulty in accessing healthy-
aging biomarkers, we used large-scale national health 
screening data, which are readily accessible and rep-
resentative of the general population. By leveraging 
this comprehensive dataset, we constructed mod-
els incorporating these biomarkers, aggregated into 
DAnHI, to assess their impact on the health of an 
individual. Our approach is similar to that employed 
by national insurance groups such as the British 
National Health Service and the United States Cent-
ers for Medicare & Medicaid Services in using health 
data to inform healthcare services and policies [37].

In the Korea National General Health Screening 
Programs data, 13 health parameters were identi-
fied as easily measurable, popular, and computable 
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Fig. 6   Comparison of the survival curves for the three risk 
groups across age group, sex, and mortality type. The survival 
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Abbreviations: DAnHI: differential aging and health index, 
Total: all age groups, P: P-value from log-rank test. It should 
be noted that the scales in Y-axes are consistent only at the 
same age groups within each cohort
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anthropometric and molecular biomarkers. Derived 
from these parameters, DAnHI effectively predicts 
age deviation from chronological age. While big data 
and machine learning methods for biological age pre-
diction, as advocated by the Biomarkers of Aging 
Consortium, have expanded assessment criteria, they 
often function as ’black box’ systems, obscuring the 
underlying predictive mechanisms. In contrast, the 
DAnHI model not only demonstrates feasibility and 
validity but also offers a more interpretable approach, 
enhancing understanding of each parameter’s contri-
bution. This distinction leads to clearer results inter-
pretation and potentially more effective healthcare 
interventions. Moreover, DAnHI reveals individual 
variations in aging according to chronological age, 
providing a novel perspective in aging research.

Our DAnHI model addresses the limitations 
associated with previous methods in predicting 
aging or biological age. These limitations include 
unitless values in PCA (Principal Component 
Analysis) models, the tendency of MLR (Multi-
ple Linear Regression) models to overestimate or 

underestimate biological age in young and older 
adults, and the ’black box’ nature of machine learn-
ing algorithms that obscures their internal decision-
making processes. In response to these challenges, 
our model adopts a distinct approach by acknowl-
edging the complex interactions between each 
screening parameter and chronological age. Instead 
of solely focusing on potential linear associations 
like previous models, our DAnHI model highlights 
the intricate, age-specific impacts of each parame-
ter, revealing their dynamic interplay. This approach 
has unveiled a nuanced connection between DAnHI 
and mortality, characterized by varying patterns 
across different ages. This finding suggests that 
the impact of DAnHI on mortality risk is not static 
but evolves as individuals age, reflecting the intri-
cate interplay between aging-related biomarkers 
and the aging process itself. As individuals navi-
gate through different stages of life, the influence 
of DAnHI on mortality becomes more pronounced, 
suggesting the evolving and complex nature of bio-
logical aging.

Table 2   Prediction accuracy of the DAnHI-including models for predicting 10-year non-cancer death

The prediction evaluation was done separated in each male and female cohort. DAnHI: cox-model with differential aging and health 
index as a single risk factor. CA: cox-model with chronological age as a single risk factor. CA with DAnHI: cox-model with CA and 
DAnHI as complementary risk factors. BA: cox-model with biological age, defined as the sum of CA and DAnHI, as a single risk 
factor. AUC (95% CIs): area under the curve with 95% confidence intervals. DeLong’s P: P-value computed by DeLong’s method to 
compare AUCs between models
Abbreviations: AUC: area under the curve, BA: biological age, CA: chronological age, Ref.: reference, DAnHI: differential aging and 
health index

Sex Age range Statistics DAnHI CA CA with DAnHI BA

Male Total AUC (95% CIs) 0.803 (0.797–0.809) 0.891 (0.886–0.895) 0.900 (0.896–0.905) 0.901 (0.897–0.905)
DeLong’s P 8.85 × 10–181 Ref 7.75 × 10–63 1.02 × 10–30

 ≤ 39 AUC (95% CIs) 0.612 (0.575–0.649) 0.626 (0.592–0.660) 0.657 (0.622–0.691) 0.657 (0.622–0.692)
DeLong’s P 0.554 Ref 0.018 0.016

40–64 AUC (95% CIs) 0.698 (0.686–0.711) 0.690 (0.679–0.702) 0.751 (0.740–0.762) 0.750 (0.739–0.761)
DeLong’s P 0.322 Ref 8.35 × 10–40 2.64 × 10–50

 ≥ 65 AUC (95% CIs) 0.638 (0.628–0.648) 0.739 (0.730–0.748) 0.757 (0.749–0.766) 0.715 (0.706–0.724)
DeLong’s P 4.28 × 10–57 Ref 1.02 × 10–25 5.91 × 10–08

Female Total AUC (95% CIs) 0.786 (0.779–0.793) 0.927 (0.923–0.932) 0.928 (0.923–0.932) 0.917 (0.912–0.921)
DeLong’s P  < 1.00 × 10–310 Ref 8.53 × 10–07 1.71 10–29

 ≤ 39 AUC (95% CIs) 0.688 (0.613–0.762) 0.749 (0.689–0.809) 0.780 (0.723–0.836) 0.777 (0.718–0.835)
DeLong’s P 0.172 Ref 0.083 0.285

40–64 AUC (95% CIs) 0.648 (0.628–0.668) 0.713 (0.693–0.732) 0.725 (0.706–0.744) 0.720 (0.701–0.738)
DeLong’s P 7.21 × 10–08 Ref 2.46 × 10–04 0.217

 ≥ 65 AUC (95% CIs) 0.558 (0.546–0.569) 0.779 (0.771–0.787) 0.782 (0.774–0.791) 0.665 (0.655–0.675
DeLong’s P 4.10 × 10–214 Ref 2.17 × 10–04 2.11 × 10–106
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In the current study, we observed that the impact 
of biomarkers, as aggregated into DAnHI, exhibited 
an overall increasing pattern with wider ranges as 
the chronological age increased. This finding sug-
gests that the influence of these biomarkers on aging 
becomes more substantial in older generations, with 
greater person-to-person variations observed in both 
males and females. Specifically, we found that the 
turning point of the impact of DAnHI on aging, indi-
cated by the age when the median DAnHI becomes 
zero, was between the ages of 48 and 50 years in 
males and between the ages of 45 and 47 years in 
females. These observations indicate the significant 
and progressive influence of biomarkers on aging as 
individuals grow older and experience the effects of 
aging more profoundly.

It should be noted that DAnHI is a quantitative 
measure that represents the differential aging of an 
individual based on 50 binary logistic regression 
models (Fig. 2A). DAnHI can be directly interpreted 
as the gap between the estimated biological age and 
the chronological age of each individual. This char-
acteristic distinguishes our model from previous 
approaches that predict biological age first and then 
compute the age gap by subtracting chronological age 
from the predicted biological age. Our model directly 
captures the differential aging status and provides a 
more accurate estimation of the aging trajectory of an 
individual, accounting for the interplay of multiple 
factors contributing to the aging process.

DAnHI, independently of chronological age, was 
highly predictive of death within 10 years. A more 
pronounced predictability was observed in men than 
in women, and in non-cancer-related deaths than in 
cancer-related deaths (Fig. 5). Furthermore, the inte-
gration of DAnHI and chronological age enhanced 
the accuracy of death prediction in both males and 
females (Table 2). The higher predictability for non-
cancer-related deaths may be due to the nature of the 
13 health parameters selected for the DAnHI model, 
which primarily focus on metabolic and cardiovas-
cular health. These biomarkers were chosen for their 
availability in routine health screenings and their 
relevance in aging research. Consequently, DAnHI 
might be inherently more sensitive to detecting bio-
logical age variations related to non-cancerous condi-
tions. This predictive capability highlights the neces-
sity for age- and sex-specific aging prediction models, 
as our age and sex-stratified analysis unveiled distinct 

patterns. These patterns emphasize the potential ben-
efits of tailoring predictions to align with specific age 
and sex characteristics.

The majority of health screening parameters 
explored in this study, including those related to glu-
cose and lipid metabolism, serve as widely utilized 
health biomarkers. However, they often lack age-spe-
cific referencing values for adults aged 20 or 30 years 
and older. For example, as shown in Fig. 1, biomark-
ers related to glucose and lipid metabolism showed 
variable mean change patterns across different age 
groups and sex that were potentially associated with 
hormonal change. In Figure S4, these biomarkers dis-
play varying correlations with DAnHI across differ-
ent age groups and sexes. These observations suggest 
the complexity of biological aging and highlight the 
necessity for a nuanced understanding of its process. 
The interpretation of these dynamic patterns, poten-
tially reflective of underlying hormonal inflences, will 
require further investigation.

It has long been recognized that there are differ-
ences between the sexes when it comes to energy 
metabolism [34, 38]. The emergence of metabolic 
syndrome, attributed directly to the influence of sex 
hormones during menopause [39, 40], provides com-
pelling evidence that glucose and lipid metabolism 
undergo direct regulation by estrogen and testoster-
one. Either estrogen deficiency or a relative increase 
in testosterone is implicated in inducing insulin 
resistance, leading to an atherosclerotic lipid profile 
[40, 41]. Moreover, there is notable evidence that the 
prevalence of hypertension rises more rapidly among 
older women than among older men [42, 43].

Sex differences notably impact the pathophysi-
ology of aging, particularly in the expression of 
biomarkers associated with aging and age-related 
diseases, including those related to the gonadal and 
adrenal endocrine systems, as well as immune func-
tion [44]. Notably, we discovered variations in the age 
at which significant changes occur in these biomark-
ers, highlighting the pivotal role of sex-specific analy-
sis in aging research. These turning points represent 
moments of homeostatic adjustment, reflecting dis-
tinct adaptive responses to aging in men and women. 
This phenomenon illustrates the concept of ’adap-
tive homeostasis,’ where the homeostatic range for 
multiple functions transiently expands or contracts, 
adapting to different physiological states without ini-
tiating a repair process [35]. When these biomarkers 
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return to their normal ranges, the adaptive responses 
cease, indicating a dynamic and fluctuating process 
of aging. This underscores the necessity for further 
research to investigate age-specific marker patterns 
and their implications in different age groups, enhanc-
ing our understanding of sex-specific aging processes. 
As a detailed exploration of these patterns is beyond 
the scope of this study, further research is warranted 
to investigate age-specific marker patterns and their 
implications. Future studies should explore norma-
tive ranges, average values, and the extent of marker 
changes related to diseases in different age groups to 
gain a comprehensive understanding of sex-specific 
aging processes.

To enable a more comprehensive and longitudinal 
investigation into future DAnHI variations and pre-
dictability, it is essential to enhance the DAnHI model 
involves integrating proposed additional parameters. 
This enhancement aligns with the biomarker frame-
work outlined in the United States Food and Drug 
Administration’s Biomarkers, EndpointS, and other 
Tools resources (FDA-BEST) [45], considering racial 
groups. This entails incorporating molecular bio-
markers, physiological biomarkers including psycho-
social health parameters and factors such as smoking, 
and digital biomarkers, paving the way for a thorough 
exploration of DAnHI variability and predictability. 
These additions will allow for a more comprehensive 
longitudinal examination of DAnHI variation and its 
predictability. Ultimately, integrating a DAnHI-based 
biological age prediction model into an individual’s 
health management plan could help identify preventa-
ble risk factors for age-related diseases. Furthermore, 
DAnHI has the potential to improve both public and 
individual health and social services by facilitating 
person-centered healthcare and aging prevention, 
potentially reducing medical expenses at both indi-
vidual and national levels.

Conclusions

In conclusion, this study developed the novel DAnHI as 
an accurate estimator of the biological aging status of an 
individual using readily accessible biomarkers. DAnHI 
demonstrates high predictability for mortality and can 
identify varying levels of mortality risk across sex and 
age subgroups. Therefore, DAnHI holds significant 

potential to enhance the accuracy of mortality risk pre-
diction and promote individualized health planning.
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