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Abstract Analysis of brain functional connectiv-
ity (FC) could provide insight in how and why cog-
nitive functions decline even in healthy aging (HA). 
Despite FC being established as fluctuating over 
time even in the resting state (RS), dynamic func-
tional connectivity (DFC) studies involving healthy 
elderly individuals and assessing how these patterns 
relate to cognitive performance are yet scarce. In our 
recent study we showed that fractal temporal scaling 
of functional connections in RS is not only reduced 
in HA, but also predicts increased response latency 
and reduced task solving accuracy. However, in that 
work we did not address changes in the dynamics of 

fractal connectivity (FrC) strength itself and its plau-
sible relationship with mental capabilities. Therefore, 
here we analyzed RS electroencephalography record-
ings of the same subject cohort as previously, con-
sisting of 24 young and 19 healthy elderly individu-
als, who also completed 7 different cognitive tasks 
after data collection. Dynamic fractal connectivity 
(dFrC) analysis was carried out via sliding-window 
detrended cross-correlation analysis (DCCA). A 
machine learning method based on recursive feature 
elimination was employed to select the subset of con-
nections most discriminative between the two age 
groups, identifying 56 connections that allowed for 
classifying participants with an accuracy surpassing 
92%. Mean of DCCA was found generally increased, 
while temporal variability of FrC decreased in the 
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elderly when compared to the young group. Finally, 
dFrC indices expressed an elaborate pattern of asso-
ciations—assessed via Spearman correlation—with 
cognitive performance scores in both groups, linking 
fractal connectivity strength and variance to increased 
response latency and reduced accuracy in the elderly 
population. Our results provide further support for 
the relevance of FrC dynamics in understanding age-
related cognitive decline and might help to identify 
potential targets for future intervention strategies.

Keywords Fractal connectivity · Detrended cross-
correlation analysis · Healthy aging · Cognitive 
decline · Electroencephalography

Introduction

Aging has an adverse effect on cognitive functioning 
even in the absence of identifiable medical patholo-
gies [1, 2]. The workings of this phenomenon are 
immensely complex and multi-factorial, with many 
related physiological factors that might contribute to 
the age-dependent loss of cognitive capabilities [3–6]. 
Among these, functional connectivity (FC) of the 
brain has also been established to undergo age-related 
changes [7], which are often associated with the 
extent of age-related cognitive decline [8–10]. Even 
though the origin and impact of these alterations in 

FC are yet to be fully understood, identifying char-
acteristic connectivity patterns of age-related cogni-
tive impairment is essential for multiple purposes. 
Biomarkers such as FC could play a pivotal role in 
the early detection of the onset of cognitive decline, 
when possible interventions could be more effective. 
Furthermore, they have the potential to differentiate 
between the “natural” age-related loss in cognitive 
functions and impairments caused by pathological 
conditions such as mild cognitive impairment (MCI) 
[11] or Alzheimer’s disease (AD) [12]. Nevertheless, 
to achieve such goals first we must map out how FC 
changes in relation to age in the healthy population 
and identify those characteristics that are associated 
with diminished functionality of various cognitive 
domains.

Adding to the expanding toolset of FC analyses, 
fractal connectivity (FrC) has been proposed recently 
[13]. In essence, instead of estimating the strength of 
cooperation between distinct brain regions at a single 
time scale (as with most traditional FC approaches), 
FrC captures if the strength of connectivity expresses 
long-term memory in its temporal evolution. Since 
its introduction, many studies confirmed that FC is 
not only a dynamic phenomenon [14], but in fact its 
fluctuations follow a scale-free (or fractal) temporal 
pattern [15–18], a characteristic that can be affected 
under various pathological conditions such as AD 
[19] or schizophrenia [20]. Furthermore, since frac-
tal neural dynamics in general were found associ-
ated with both aging [21–23] and cognitive func-
tioning [24, 25], it could be hypothesized that an 
FrC approach might be viable in linking age-related 
changes in connectivity to manifestations of cognitive 
decline. Indeed, it has been recently reported that not 
only the fractal scaling exponent of functional con-
nections show a general decrease in healthy elderly 
when compared to young individuals, but many of 
these distinctive features correlated with reduced cog-
nitive performance in the former group [26].

Although the work presented by Czoch and col-
leagues exposed the relevance of FrC analysis regard-
ing aging-related cognitive decline, it had two impor-
tant limitations. First, even though fractal scaling 
exponents were found markedly different in the two 
age groups, no differences were found in broadband 
cross-spectral power—characterizing the strength but 
not the dynamics of coupling—and thus the plausi-
ble associations between connectivity strength and 
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cognitive functions were not explored any further. 
Second, the analysis was carried out in a time-inde-
pendent manner. Previous literature has proposed that 
regional neural activity as well as functional con-
nections express not only scale-free, but multifractal 
dynamics [18, 27–29], suggesting that fractal scaling 
is a time-varying property. Therefore, in this study 
our main goal was to conduct a more detailed explo-
ration of the relationship between FrC and impaired 
cognitive decline in healthy aging and alleviate these 
limitations, for a more detailed understanding of 
the relationship between FrC, fractal neural dynam-
ics and cognitive decline in aging. Furthermore, FC 
strength and connectivity dynamics are more often 
found reduced in aging [7, 30–32]. It has been shown, 
however, that the presence of long-term autocorre-
lation can bias covariance estimation [33], and thus 
the known age-related reduction of fractal scaling in 
aging [23, 34] might affect connectivity estimates dis-
regarding this property. Employing FrC analysis—in 
contrast to conventional FC approaches—can provide 
a way for addressing this notion.

Accordingly, we performed dynamic FrC (dFrC) 
analysis on electroencephalography (EEG) data 
collected from healthy young and elderly popula-
tions. To overcome the aforementioned limitations 
in the connectivity analyses of our previous study 
[26], we utilized detrended cross-correlation analy-
sis (DCCA)—a method introduced by Podobnik and 
Stanley [35] to capture long-term coupling between 
non-stationary signals—to estimate dFrC. DCCA val-
ues were converted into the detrended cross-correla-
tion coefficients (DCCC [36]), a measure more suit-
able for characterizing fractal connectivity strength 
in contrast to the theoretically unbounded DCCA. 
Univariate (i.e., regional) fractal scaling exponents 
of the analyzed signals were also estimated in a time-
resolved manner, permitting a rough assessment of 
the strength of plausible multifractality of neural data 
in line with the so-called direct approach [37, 38]. 
After obtaining raw dFrC estimates, we utilized a 
machine learning approach based on recursive feature 
elimination to identify those connections that best 
discriminate between young and elderly individuals 
based on fractal connectivity strengths. We also com-
pared mean and temporal variance of scaling expo-
nents (i.e., mono- and multifractality of connections) 
between the two groups. Finally, we investigated the 
plausible relationships between FrC strength of most 

discriminative connections and performance meas-
ures from 7 different cognitive tests. Our results indi-
cate that young and elderly individuals can be clas-
sified with high accuracy using FrC patterns which 
also show strong association to diminished cognitive 
performance in the elderly; however, the degree of 
multifractality appears similar in the two age groups.

Materials and methods

Participants and measurement protocol

In this study we analyzed the same dataset as in [26]. 
Therefore, here, we only provide a brief summary 
while for more details on the exclusion/exclusion cri-
teria, measurement protocol and data curation steps, 
the reader is referred to our previous article. The final 
sample consisted of 43 healthy volunteers, with 24 
assigned to the young (aged between 18 and 35 years, 
average: 25.37 ± 3.20) and 19 to the elderly (aged 
over 60 years, average: 66.39 ± 6.09) groups. None of 
the participants reported any history of a neuropsy-
chiatric pathology or chronic pharmaceutical treat-
ment that might affect their cognitive performance. 
Furthermore, they were instructed to avoid any sub-
stances affecting cognitive skills (e.g., alcohol, caf-
feine) for at least 3 h before the measurement and 
to have at least 6 h of sleep the preceding night. All 
participants provided written informed consent prior 
to the recordings and the study was approved by the 
regional ethics committee (Semmelweis University 
Regional and Institutional Committee of Science and 
Research Ethics, approval number: 2020/6).

The resting-state protocol consisted of a 3-min 
period, during which subjects were asked to stay idle 
but awake with eyes closed and refraining from any 
specific mental activity. Volunteers were first presented 
with an audio cue signaling the start of the measure-
ment, while data collection itself started 5 s after to 
allow time for eye closure and for EEG to yield baseline 
activity. After 3 min the end of the recording was indi-
cated by another auditory cue. Note that the full EEG 
measurement protocol then continued with a 3-min 
long eyes-open resting-state recording, and then three 
cognitive tests: an n-back working memory paradigm 
[39], a visual pattern recognition task [25] and a virtual 
spatial orientation task; however, evaluation of those 
datasets are beyond the scope of the current study. The 
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entire EEG recording session took about 75 min, after 
which subjects proceeded to complete a set of standard-
ized cognitive tests (see below).

Detrended cross-correlation analysis

Dynamic fractal connectivity was assessed using the 
recently published real-time algorithm for DCCA (rtD-
CCA) computation [40]. Even though in this study we 
did not utilize online data analysis, the rtDCCA imple-
mentation provides a computationally efficient way of 
estimating DCCA (and DCCC) by greatly reducing 
processing time, and thus it is suitable for dynamic con-
nectivity analysis. Please note that here we only pro-
vide a brief description of the method, while detailed 
descriptions are found in the original publications [35, 
36, 40].

DCCA was originally developed for analyzing the 
covariance of non-stationary time series [35], such as 
EEG signals. This is achieved by locally detrending 
both signals—following integration—at a set of various 
scales s, computing the covariance of the residuals, then 
finally averaging the obtained values over the different 
analysis windows at the given scales used. Precisely, 
given two time series xt and yt of length T , their inte-
grated versions Xt and Yt are first obtained as follows:

Then, at given scale s  the signals are divided into 
Ks = T − s + 1 overlapping windows (each of length 
s). In each window k the local trends Xk and Yk are 
obtained via ordinary least squares (OLS) regression 
and removed from the signals, and the covariance of 
residuals is computed as follows [41]:

Finally, F2

DCCA
(s) is obtained via averaging over all 

windows k:

Notably, the procedure can be equivalently per-
formed by using non-overlapping windows of length 

(1)
Xt =

t
∑

i=1

xi

Yt =
t
∑

i=1

yi.

(2)f 2
DCCA

(s, k) =
1

s − 1

i+s
∑

k=i

(

Xi − Xk,i

)(

Yi − Yk,i

)

.

(3)F2

DCCA
(s) =

1

Ks − 1

∑Ks

k=1
f 2
DCCA

(s, k).

s. Also, in the case of xt = yt, the formula reduces to 
that of Detrended Fluctuation Analysis (DFA), allow-
ing for obtaining the fractal scaling exponent of uni-
variate signals [42]. Therefore, by utilizing the matrix 
notation introduced Kaposzta, Czoch [40], both 
DCCA and DFA scaling functions (and thus coeffi-
cients) of multivariate signals can be obtained at the 
same time in an efficient manner.

DCCA in of itself, however, is not necessarily a 
suitable measure for connectivity analyses, as the 
obtained values are theoretically unbounded, and thus 
DCCA is rather utilized to obtain the bivariate frac-
tal scaling exponent of long-term coupled processes 
[41]. However, DCCA can be further developed into 
the detrended-cross correlation coefficient at scale s 
(DCCC (s)) by dividing the obtained bivariate scaling 
function F2

DCCA
(s) [36]:

where F2

DFA.X
(s) and F2

DFA.Y
(s) are obtained by per-

forming the procedures described in Eqs. (1)–(3) 
with making yt = xt and xt = yt, respectively. It can be 
shown that this measure is indeed bounded between 
–1 and 1 and therefore can be utilized to estimate the 
strength of functional coupling between two non-
stationary processes [41]. Furthermore, as the analy-
sis is carried out over multiple time scales, comput-
ing DCCC between a set of EEG signals yields a set 
of connectivity matrices, one for each scale s of the 
analysis. Finally, in the rtDCCA setting the analysis is 
performed in a sliding window fashion, thus provid-
ing a three-dimensional connectivity matrix of shape 
Nc · Nc · Ns—where Nc and Nsare the number of EEG 
channels and the number of applied scales, respec-
tively—for every time point.

To obtain a robust characterization of functional 
connectivity, we carried out rtDCCC analysis with 
the following parameters. The number of scales was 
set to 5, ranging from  23 to  27 data points in a dyadic 
manner. Note that these scales roughly correspond 
to fluctuations in the frequency range of 2 to 32 Hz. 
The sliding window size was set to 2 s of data (1024 
data points), with a step size of 0.5 s (128 data points, 
75% overlapping windows). This procedure yielded 
Nt = 137, 3-dimensional DCCC matrices for each sub-
ject. Additionally, univariate DFA-exponents were 

(4)DCCC(s) =
F
2

DCCA
(s)

√

F
2

DFA.X
(s) ⋅ F2

DFA,Y
(s)

,
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computed in every window via OLS regression of 
DFA scaling function value on scale following log-
log transformation.

Cognitive battery

Cognitive performance was assessed via the Cam-
bridge Neurophysiological Test Automated Battery 
(CANTAB), a state-of-the-art, standardized and vali-
dated tool for cognitive neuroscience (ref?). CAN-
TAB comprises of a collection of short (i.e., few 
minutes-long) tests, each designed to assess various 
aspects of cognition, such as visual information pro-
cessing or spatial/temporal working memory. In this 
study we employed 7 tests (see below). These were 
selected as they challenge cognitive domains that are 
commonly affected in age-related cognitive decline 
and even in early stages of dementia, as well as this 
set of tests was found sensitive in revealing differ-
ences in cognitive performance between young and 
elderly cohorts by previous studies [3, 26]. Partici-
pants used a 10.2-in Apple iPad (9th generation) to 
complete the battery. Participants were provided with 
a digital booklet prior to measurement detailing task 
instructions, as well as each task started with a short 
introduction and practice session for the given test (in 
a language the user was comfortable with), allowing 
the participants to complete the session alone in an 
isolated room excluding external influence/help from 
the experimenter. The cognitive assessment session 
lasted for about 30–50 min, depending on perfor-
mance. Users were instructed to complete the tasks 
using the index finger of their dominant hand.

The seven cognitive tasks were as follows: (I) 
first, the motor screening task (MOT) was presented, 
during which the user had to tap on various colored 
crosses appearing at changing locations as fast and 
accurately as possible (output measures: reaction 
time, precision). (II) Subsequently, reaction time 
(RTI) was assessed in a manner where a changing 
number (one or five) of circles were presented on the 
top of the screen with a button on the bottom. The 
user had to hold their finger on the start button until 
one of the circles turned yellow, after which they had 
to release and quickly tap on the target circle (output 
measures: release time, movement time, accuracy). 
(III) Paired associates learning (PAL) was tested 
with boxes being displayed on the periphery of the 

screen, each of which presenting a unique pattern 
in a randomized order. Then, each pattern was con-
secutively projected to the middle of the display, and 
the volunteer had to correctly identify the box which 
originally included the currently presented pattern. 
In case of an error, the boxes again showed each 
pattern before restarting the trial, with the pattern 
locations staying fixed (output measures: number 
of errors, number of attempts, first attempt memory 
score). (IV) Pattern recognition memory (PRM) 
was assessed by first presenting the participant with 
a series of abstract visual patterns, and then in a 
later phase (~15-min delay, i.e., after completing 
subsequent test), asking them to correctly discrimi-
nate between a pattern they were already presented 
before and a novel pattern appearing side by side on 
the screen (output measures: response latency, num-
ber and percentage of correct responses). (V) During 
the latency period needed for the PRM test, spatial 
working memory (SWM) was assessed via colored 
boxes scattered around the screen. Selecting boxes 
randomly via a process of elimination, the partici-
pant had to find a yellow token hidden under one of 
the boxes. When found, another token was placed, 
always under a different box. The task ended when 
a token was found for all boxes (output measures: 
between errors, within errors, total errors, search 
strategy). (VI) Rapid visual processing (RVP) was 
tested with a central white box that displayed dig-
its from 2 to 9, appearing individually in a pseudo-
random order at 100 digits per minute. Volunteers 
are tasked with identifying 1 to 3-digit sequences 
(e.g.: 2, 4-6, 3-5-7) and reacting to a positive match 
with a press of a button located below the square as 
fast as possible (output measures: response latency, 
number of correct responses, percentage of correct 
responses). Finally, (VII) delayed matching to sam-
ple (DMS) was employed with presenting a complex 
visual pattern followed by the original and three 
similar but slightly different patterns, after a brief 
delay (0, 4, or 12 s). The participants were tasked 
with selecting the originally presented pattern as 
quickly as possible (output measures: response 
latency, number of correct responses).

For more details and visual illustrations of the 
selected cognitive tasks, the reader is referred to the 
official CANTAB website (https:// www. cambr idgec 
ognit ion. com/ cantab/).

https://www.cambridgecognition.com/cantab/
https://www.cambridgecognition.com/cantab/
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EEG data acquisition and pre-processing

Measurements took place in a dark, electrically 
shielded room where the participants were asked to 
sit in a comfortable office chair facing a 24-in com-
puter display and a small speaker. Data acquisition 
was carried out using an Emotiv Epoc+ wireless EEG 
system (Emotiv Systems Inc., San Francisco, CA, 
USA) and its proprietary data management software 
(EmotivPRO, Emotiv Systems Inc., San Francisco, 
CA, USA). This setup allowed for the capturing of 
neural activity from 14 standard locations in accord-
ance with the international 10-10 system (AF3, AF4, 
F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, and 
O2) with CMS and DRL references at P3 and P4 
and ground electrodes positioned at the left and right 
mastoid processes. The device sampled neural activ-
ity at an internal frequency of 2048 Hz, which was 
then passed through a 5th order digital Sinc filter with 
cutoff frequencies 0.2 and 45 Hz and notch filters at 
50 and 60 Hz before down-sampling to 256 Hz and 
transmitting to the recording computer. Electrode 
impedance was kept below 20 kΩ so that all meas-
urements could be carried out with maximal contact 
quality as per manufacturer recommendations.

Raw EEG data was first passed through an addi-
tional 4th order, zero-phase Butterworth filter to 
attenuate effects of spike-like artifacts and slow 
drift (cutoff frequencies: 0.5 and 45 Hz). Then, data 
was visually inspected by two experimenters to 
ensure signal quality was appropriate, and artifact-
free epochs were identified and selected from every 
recording, keeping only those segments that were 
considered artifact-free by both experimenters inde-
pendently. Finally, to ensure equal amount of data 
from each subject, epochs were trimmed randomly 
to the length of the shortest obtained epoch, resulting 
in a final length of 72 s of EEG data for all subjects. 
All following pre-processing steps were carried out 
in MATLAB (MathWorks, Natick, MA, USA) using 
custom functions and scripts or ones of the EEGLAB 
toolbox [43]. Artifact removal was carried out via 
utilizing independent component analysis (ICA). In 
that, data was decomposed into linearly independent 
components using the infomax algorithm [44]. Com-
ponents were visually inspected by two investigators 
adept in EEG analysis, and those associated with eye 
movements, skeletal muscle activity, or other sources 
of noise (such as heart activity or head motion) were 

identified based on their spectral, spatial, and time-
domain features [45, 46] and rejected before reverse 
ICA transformation. Finally, the cleansed EEG 
epochs were re-referenced to the common average 
reference. For more details on data selection and pre-
processing, please see Czoch, Kaposzta [26].

Selection of most discriminative connectivity features

One of our main goals was to test the power of 
dynamic fractal connectivity measures to distin-
guish between young and elderly participants. The 
previously described analysis yielded a set of 137 
time points * 14*(14−1)/2 channel pairs * 5 scales 
= 62335 features for each subject. Therefore, we 
applied a feature selection method termed Support 
Vector Machine with Recursive Feature Elimination 
(SVM-RFE [47]) to select those variables that are 
most discriminative between young and elderly sub-
jects. We chose to utilize SVM-RFE as it has been 
proven effective in identifying connectivity patterns 
discriminating between various cognitive states [48]. 
A brief description of SVM-RFE is provided here, 
while more details of the procedure can be found in 
the original article of Yan and Zhang [47]. SVM-RFE 
eliminates irrelevant features in a recursive fashion 
as follows. The dataset is first divided into training 
and tests sets. Then, at every iteration, a support vec-
tor machine (SVM) is trained on a training set and 
evaluated on test set data. Feature importances are 
extracted as the square of support vector weights, and 
a pre-defined proportion of least important features 
(as ranked by their weights) are discarded from the 
feature set. To avoid removing correlated features col-
lectively identified as less relevant, we also employed 
the correlation bias reduction (CBR) step proposed 
in [47], where at the end of every iteration, if a clus-
ter of highly correlated features were detected in the 
set of eliminated features, the one with the high-
est importance was restored to the remaining active 
features (see below). In the next iteration, another 
SVM is trained on the now-reduced dataset, and fea-
tures are recursively using the procedure described 
above, until only one feature remains. After the pro-
cedure is finished, features are ranked in order of 
their removal. Finally, the set of most discriminative 
features is obtained in another recursive procedure, 
when features are added back one by one in decreas-
ing order of importance, and at each iteration an SVM 
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is trained on the training set and evaluated on the test 
set. The feature set yielding the best classification 
accuracy is denoted as the set of most discriminative 
features between young and elderly groups.

SVM-RFE was performed following the guide-
lines proposed in [47] and the pipeline adopted for 
EEG connectivity features presented in [48]. In case 
of large feature sets many features can be highly cor-
related—indicating that they effectively capture the 
same information—, which can lead to correlation 
bias as their importance can be wrongly underesti-
mated [49, 50]. This also holds for connectivity fea-
tures, and hence SVM-RFE should be carried out 
incorporating the CBR step. In this approach, if there 
are highly correlated clusters of features in the elimi-
nated batch, a representative feature per cluster (the 
one with the highest importance) can be added back 
to the retained features. For computational efficiency, 
in each iteration 50% of features were eliminated, 
and then representative features were added back to 
reduce correlation bias in case of highly correlated 
features in the removed batch. The threshold for 
identifying such clusters were set to 0.9 as suggested 
in [47]. The procedure was continued until only 
20 features remained, from when on features were 
removed one by one. In order to use information in 
the data most efficiently, SVM-RFE was carried out 
in an extensive leave-one-subject-out cross-validation 
(ELOO-CV). Precisely, in each ELOO-CV iteration, 
one subject was selected from each group to form the 
test dataset, and SVM-RFE was performed with the 
rest of the data used as training set. This way if split-
ting the data is essential to ensure that classification 
is based on group effect and not on unique individual 
patterns. The procedure was extensive, as all possible 
train-test divisions (24 · 19 = 456) were utilized, and 
final feature rankings were obtained as the average 
taken over ELOO-CV iterations. Finally, following 
SVM-RFE the selection of the set of most discrimi-
native features was also performed using ELOO-CV, 
where the most discriminative set was defined as the 
one producing the highest average ELOO-CV accu-
racy. During SCM-RFE, SVMs with a linear kernel 
were utilized. The optimal choice of the SVM regu-
larization parameter was obtained by carrying out the 
entire procedure using a range of values  (10−2,  10−1, 
1, 10, and 100).

Performance was characterized on two lev-
els. First, we computed sample-wise accuracy (the 

proportion of correctly classified examples to all 
examples) in each iteration of the ELOO-CV, i.e., 
each test example denoting the connectivity state of 
a test subject at a given time was classified as coming 
from either a young or an elderly individual. Sample-
wise accuracies were averaged over ELOO-CV itera-
tions and contrasted with chance level obtained at 
α = 0.0001  with assuming a binomial distribution of 
classification errors [51]. We evaluated accuracy on 
the subject level, too. In that, at every iteration of the 
ELOO-CV, a majority vote was taken over all predic-
tions for the examples of a given test subject, produc-
ing the subject-wise group label prediction. Subject-
wise accuracies were then computed and averaged 
over all ELOO-CV iterations. Additionally, Cohen’s 
Kappa values were also computed in both settings, 
providing a more explicit measure if classification 
performance surpasses chance level [52].

Statistical analyses

Output variables from CANTAB evaluation were 
compared between young and old groups with two-
sample t-tests or Mann-Whitney U tests, depending 
on the normality of the datasets as evaluated with Lil-
liefors tests. The obtained p-values were adjusted for 
multiple comparisons using the false discovery rate 
(FDR) procedure by Benjamini and Hochberg [53]. 
Note that this analysis was carried out previously and 
reported in [26].

Performance of group separability was assessed as 
described previously. We also performed post hoc 
analyses of dFrC measures to better understand the 
nature of differences between the two age groups. In 
that, mean (μDCCC (s)) and variance ( �2

DCCC(s)
 ) of all 

connections at all scales were computed in the set of 
connections selected by the SVM-RFE method. Since 
these tests were performed on a pre-selected sample 
of data (and thus these comparisons were only con-
ducted to better capture the nature of between-group 
differences), we did not adjust for multiple compari-
sons. Additionally, mean and variance of DFA-expo-
nents for all 14 brain regions were computed and con-
trasted between the two groups using two sample t 
tests or Mann Whitney U tests depending on normal-
ity of data. Results were adjusted for multiple com-
parisons via FDR, given that DFA-exponents were 
not included in the SVM-RFE model.
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The other major goal of this study was to explore 
if dynamic fractal connectivity features identified as 
the most discriminative between young and elderly 
groups are associated with cognitive performance 
as assessed via CANTAB. In that, for each subject 
the mean and variance of fractal connectivity over 
time was computed at every scale for every connec-
tion, then for each feature the Spearman correlation 
coefficient was computed with all CANTAB output 
measures that were found different between the young 
and elderly groups. Given that this analysis was car-
ried out on an already curated dataset (involving only 
those connections that were identified as discrimina-
tive, as well as only CANTAB measures significantly 
differing between the two age groups), the p-values 
obtained for the Spearman correlation coefficients 
were not adjusted.

Results

Cognitive scores

Results of this analysis have been reported in detail 
in [26]; therefore, here, we only provide a brief sum-
mary. In terms of the motor function assessing MOT 
task, our analysis did not reveal any significant differ-
ences in either of the recorded metrics. This finding 
decreases the likelihood that the differences observed 
in other tasks are attributable to sensorimotor impair-
ments or decline, and instead suggests that they are 
more plausibly associated with cognitive differences 
between the two groups. In addition, overall comple-
tion time of the cognitive battery was significantly 
longer for the elderly group (53.37 vs. 57.92 minutes 
for young and elderly, respectively, Wilcoxon rank-
sum test p < 0.0001). For the remaining 6 tests, we 
found significant between-group differences in CAN-
TAB output measures in 54 cases: 16 for PAL, 12 
for SWM, 10 for DMS, 8 for RVP, and 4-4 for RTI 
and PRM tasks. In general, individuals in the elderly 
group executed time-sensitive tasks (i.e., when a 
response had to be provided as fast as possible) with 
increased latency when compared to those in the 
young group, shown in outcomes of 4 cognitive tests 
(i.e., DMS, PRM, RTI, and RVP). Cognitive perfor-
mance (as most often captured in response accuracy, 
or the number of correct/erroneous responses) was 
also found decreased in the elderly group in 4 out of 

6 tasks (PAL, RTI, RVP, and SWM), noting that in 
the RTI and RVP tests both response time and per-
formance was found negatively affected in aging. A 
more detailed description of these outcomes is found 
in [26] as well as all significant differences are pre-
sented in Supplementary Table S1.

Discriminating fractal connectivity between young 
and elderly

When selecting the optimal model to perform classifi-
cation, we tested a set of different values for the regu-
larization parameter C, since its optimal value depend 
on the given dataset and is most commonly chosen 
on a case-by-case basis. In fact, the regularization 
parameter C is the inverse of the regularization con-
stant λ. A higher value of (and thus a lower value of 
C) puts more weight to the regularization term in the 
SVM cost function [54] and thus promotes large mar-
gin classification (i.e., less overfitting) and vice versa. 
As it was not known in advance how well the data 
was linearly separable, we chose to iterate through 
powers of ten ranging from –2 to 2, in order to cover 
a wide range of regularization parameter values. It is 
important to note that setting C too high or too low 
may introduce overfitting or underfitting, respectively, 
along with numerous other unintended behaviors 
of the model such as vastly increased training time, 
model instability or high bias [55].

We obtained the best overall results by setting 
C =  10−2; however, final cross-validation accura-
cies for other values of C were also comparable (see 
Table 1). This model identified 56 connections (from 
all 5 temporal scales considered) as most discrimina-
tory between young and elderly individuals. When 

Table 1  Performance measures for all values of regulariza-
tion parameter C. AccSW: sample-wise accuracy during cross-
validation; KappaSW: sample-wise Cohen’s Kappa value during 
cross-validation; Accsubj: subject-wise accuracy during cross-
validation; Kappasubj: subject-wise Cohen’s Kappa during 
cross-validation

C # connections AccSW KappaSW Accsubj Kappasubj

10−2 56 89.48% 0.7896 92.11% 0.8421
10−1 90 87.07% 0.7414 87.72% 0.7544
1 113 89.28% 0.7856 92.76% 0.8553
10 112 89.02% 0.7804 92.11% 0.8421
100 112 89.02% 0.7804 92.11% 0.8421
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using this selective feature set, the model achieved an 
average sample-wise ELOO-CV accuracy of 89.48% 
with a Cohen’s Kappa coefficient of 0.7896. This 
indicated a significantly better than chance perfor-
mance, which was found to be 61.31%. As expected, 
subject-level performance was even superior with 
92.11% accuracy and a Kappa value of 0.8421. These 
results suggested that the SVM-RFE indeed identi-
fied functional connections that reliably discriminated 
between young and elderly individuals.

Topology and nature of the 56 most discriminatory 
connections are illustrated in Fig. 1. In general, con-
nections were selected from over the entire cortex, as 
well as the 56 connections were distributed approxi-
mately evenly among the 5 different time scales, indi-
cating age-related alterations of neural dynamics in a 
broad range of brain rhythms. Proportion of connec-
tions with positive and negative μDCCC (s) values were 
fairly balanced in both groups (32 to 24 in the young 
and 29 to 27 in the elderly group). Notably, the 
strength of FrC—i.e., the absolute value of μDCCC (s) 
including both positive and negative connections—
tended to be higher in the elderly group (41 out of 56 

connections overall), except at s = 16 where the pat-
tern was rather dominated by more negative occipito-
frontal connections in the young group. Additionally, 
only 5 connections were among the set where the sign 
of μDCCC (s) was opposite in the two age groups. On the 
other hand, when investigating the variance of the 
identified connections, it appeared that �2

DCCC(s)
 was 

higher in the young when compared to the elderly 
group in the majority (34 out of 56) of cases. Again, in 
contrast to the general pattern, at s = 16 occipito-fron-
tal connections could be characterized with higher 
�
2

DCCC(16)
 in the elderly than in the young group.

As noted previously, conventional statistical 
analysis would have been impractical in case of 
such a wide set of variables (455 connections dis-
regarding time, at sample sizes 24 and 19), hence 
necessitating the implementation of the feature 
selection approach. However, to gain more insight 
on the nature of dFrC differences between young 
and elderly populations, we compared μDCCC (s) and 
�
2

DCCC(s)
 of the selected 56 connections between the 

two groups. Results of these post hoc analyses are 

Fig. 1  Most discriminative connections between young and 
elderly groups across the five time scales investigated (col-
umns). Black dots denote the 14 EEG channels with their 
layout reflecting the utilized montage from a top-down view, 
while colored lines represent the connections identified by 
SVM-RFE linking the corresponding brain regions. Rows 
show how μDCCC (s) (upper) and �2

DCCC(s)
 (lower) differed in the 

two groups, with orange and blue indicating higher absolute 
values in the elderly and in the young groups, respectively. In 
the upper row, solid/dashed lines denote connections with posi-
tive/negative grand averages in both groups, while dotted lines 
indicate that the sign of μDCCC (s) was opposite in the two age 
groups
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presented in Table 2. Precisely, μDCCC (s) was found 
significantly different (p < 0.05, unadjusted) in case 
of 9 connections. Notably, 7 out of 9 indicated anti-
correlated activity between the given brain region 
pairs in both groups, with the elderly population 
expressing more negative values, while for the 
remaining 2 connections, positive connection 
strength was also weaker in the young group. On 
the other hand, �2

DCCC(s)
 was found differing for only 

2 connections, showing decreased dFrC variance in 
the elderly.

Finally, we evaluated the mean and variance 
of regional DFA-exponents (Fig.  2). Note that the 
analysis regarding the mean values is equivalent to 
that carried out in [26], given that scaling exponents 
obtained in the frequency and time domains are inher-
ently related [56, 57] and thus we expected similar 
results. Indeed, we found reduced mean DFA-expo-
nents in the elderly group over 11 cortical regions 

(AF3, AF4, F3, F4, F8, FC6, T7, T8, P7, P8, and O1, 
p<0.05 in all cases, FDR-adjusted) when compared 
to those in the young group. However, no significant 
between-group differences could be identified in the 
temporal variance of fractal scaling (i.e., degree of 
multifractality).

Task specific topology

The applied cognitive battery encompassed a diverse 
set of tests designed to assess various aspects of cog-
nitive functioning. Since different cognitive functions 
could be associated to a varying set of brain regions 
[58], it is crucial to evaluate which connections may 
be associated with performance in specific cognitive 
domains. Hence, we present the topology of signifi-
cant correlations found between dFrC indices 
(μDCCC (s) �2

DCCC(s)
 ) and cognitive performance meas-

Table 2  Connections 
among the selected 
56 channels showing 
difference between young 
and elderly groups in 
μDCCC (s) and �2

DCCC(s)
 . Ch1, 2: 

corresponding channels of 
the given connection; s : 
temporal scale of DCCC 
analysis; Eyoung, elderly: the 
expected value of the given 
measure in the young and 
elderly groups, respectively

Measure Ch1 Ch2 s Eyoung Eelderly p

μDCCC (s) AF3 F3 8 0.4773 0.6286 0.0425
T7 T8 16 −0.2775 −0.3924 0.0388
T7 T8 32 −0.2696 −0.3849 0.0222
AF3 F3 64 0.4082 0.5876 0.0287
AF3 O2 64 −0.5464 −0.6683 0.0490
F3 P8 64 −0.4501 −0.5851 0.0114
T7 T8 64 −0.1623 −0.3212 0.0411
AF3 O2 128 −0.4959 −0.6339 0.0237
F3 P8 128 −0.4053 −0.5587 0.0064

�
2

DCCC(s)
T7 T8 8 0.0103 0.0074 0.0324
T8 FC6 64 0.0241 0.0161 0.0396

Fig. 2  DFA scaling exponents in the young (blue) and elderly (orange) groups. Asterisk symbols denote significant differences (p < 
0.05, FDR-adjusted) between the two age groups
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ures for each CANTAB task individually. On all fig-
ures, lighter/darker shades indicate a negative/posi-
tive correlation with the given cognitive measure, 
with continuous lines denoting connections correlated 
with accuracy (ACC)-like measures (e.g., number of 
correct responses/errors), dashed lines indicating 
those associated to response time (RT)-like measures 
(e.g., response latency), and dotted lines those that 
were found related to both cognitive dimensions. For 
the sake of clarity, please note that this notation 
always reflects relation to ideal task performance and 
not the sign of the correlation coefficient itself 
between dFrC measures and cognitive scores; i.e., a 
dark blue line implying poμDCCC (s) and RTμDCCC (s) 
and response latency, where shorter latency means 
better performance (and similarly for positive/nega-
tive correlations with number of correct responses/
errors, respectively). A summary of identified corre-
lations between dFrC and CANTAB scores in all 
tasks are provided in Table 3, while below we present 
task-specific topologies for each test individually.

Visual pattern recognition memory and matching 
ability was challenged by the DMS and PRM tasks, 
where performance was characterized by RT and 
ACC (Fig. 1). Notably, dFrC was only found associ-
ated with RT but not with ACC in both tasks. Pre-
cisely, response latency in the DMS task had an over-
all distinct association with frontal intra- and 
inter-hemispheric patterns with a left hemispheric 
dominance involving inter-parietal connections in the 
young group (Fig. 3, left). This was apparent in both 
mean and variance of DCCC (s), with the latter also 
involving occipitofrontal connections. Conversely, the 
elderly group exhibited more complex intra- and 
inter-hemispheric associations between μDCCC (s) and 
RT, generally involving most of the frontal and pre-
frontal regions. DMS RT indices were found corre-
lated with �2

DCCC(s)
 of connections spanning the whole 

cortex, however substantially more connections were 
found related to DMS performance in the elderly (13) 
than in the young (7) group. In both age groups, dFrC 
indices of most frontal connections were positively 
related to response time, while most longitudinal 
(e.g., occipito-frontal) connections expressed an 
inverse relationship with performance. On the other 
hand, PRM expressed remarkably few associations 
with dFrC in contrast to the quite similar DMS task, 
mostly involving occipito-frontal connections (Fig. 3, 
right). Similar to DMS, however, dFrC was correlated 
with RT measures for more connections in the elderly 
than in the young group in terms of both mean and 
variance of DCCC (s) and most longitudinal connec-
tions were anticorrelated to task performance.

Counter to the previous tasks, RVP and RTI 
tested other cognitive domains, namely, sustained 
attention, and motor and mental response speed. 
Connections that correlated with CANTAB meas-
ures (for both RT and ACC) are illustrated in Fig. 4. 
In both tasks, most dFrC indices were found cor-
related to RT; however, some were also identified 
sporadically as being related to task ACC. Interest-
ingly, none of the connections expressed a signifi-
cant correlation with RT and ACC simultaneously. 
Notably, very few longitudinal connections were 
found related to task performance. In detail, RVP 
performance only expressed sporadic associations 
with dFrC indices, with a tendency towards inter-
hemispheric connections (Fig. 4, left). With regards 
to RTI, the spatial pattern was found similar to that 
with RVP, only more connections were identified 
as related (involving as well μDCCC (s) of that linking 
O2 and F3 or F7) with a frontal dominance (Fig. 4, 
right). Also, in sharp contrast with DMS and PRM, 
more connections were found correlated to task 
performance in the young compared to the elderly 
group in case of RVP and RTI tasks.

Table 3  Total number of 
correlations found between 
dFrC and fractal neural 
dynamics and CANTAB 
output measures

DMS PRM RVP RTI PAL SWM

Young μDCCC (S) 19 3 10 19 19 8
�
2

DCCC(s)
26 7 16 11 32 17

μDFA 3 0 6 0 0 0
Elderly μDCCC (S) 31 11 9 12 20 31

�
2

DCCC(s)
39 6 4 4 48 29

μDFA 0 2 20 6 7 0
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Finally, PAL and SWM tasks required memorizing 
and manipulating visuo-spatial information (Fig.  5). 
Response time was not considered in these tasks but 
instead performance was characterized by task accu-
racy and strategy. Additionally, these tasks were more 
complex and difficult than those discussed previously. 
The PAL task, where most significant differences in 
task performance (for 16 CANTAB measures) were 
found, showed to be associated with a more inter-
hemispheric pattern (Fig. 5, left). In the elderly popu-
lation this concerned identical regions of the different 
hemispheres for μDCCC (s), whereas in the young cohort 
μDCCC (s) of occipito- and parieto-frontal connections 
was found correlated with PAL performance. Vari-
ance of DCCC (s) in both groups exerted a global 
association pattern, which, however, showed less 
involvement in the frontal lobe. Notably, this topol-
ogy was found comparable in the two age groups. 
Finally, SWM performance showed an association 

pattern to dFrC quite similar to that found in case of 
DMS (Fig. 5, right). In that, in terms of both μDCCC (s) 
and �2

DCCC(s)
 , dFrC was found correlated with task 

performance for fewer connections in the young com-
pared to the elderly group. Also, these involved 
mostly frontal regions in the young cohort, while 
expressed a global pattern in elderly individuals.

It is important to stress that Figs. 3, 4, and 5 only 
illustrate a summary of the patterns for the various 
tasks, i.e., results were collapsed in case of all scales 
and all CANTAB output variables for the given tasks. 
Therefore, we discuss task performance measures 
associated with dFrC in more detail below.

Correlation of cognitive scores with fractal 
connectivity measures

However, distilling general patterns from these 
outcome measures is not trivial, as some of them 

Fig. 3  Connections expressing correlations with output meas-
ures in the DMS (left) and PRM (right) tasks. Black dots 
denote the 14 EEG channels with their layout reflecting the 
utilized montage from a top-down view, while colored lines 
represent the connections linking the corresponding brain 
regions where a significant relationship was found between 
connectivity and behavior in at least one of the five temporal 

scales. Young and elderly groups are illustrated using blue and 
orange colors, respectively. Positive correlations are marked 
with a darker color, and negative correlations are marked with 
a lighter color. Dashed and solid lines represent temporal and 
accuracy-based metrics, respectively. Upper row denotes cor-
relations with μDCCC (s), while the lower row is the same for 
�
2

DCCC(s)
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are redundant (e.g., mean or median of correct 
responses), inversely related (e.g., the number of 
correct responses is complimented by the number 
of errors), or a positive correlation with connectiv-
ity might in fact represent an inverse relationship to 
performance (e.g., positive correlation between con-
nectivity and response latency implies an inverse 
relationship, as better performance is characterized 
by lower RT). In what follows we apply the same 
grouping of tasks based on their similarity as above, 
however instead on focusing on topological associa-
tions, we discuss most relevant output measures indi-
vidually for each test and their association to dFrC 
in general. A summary of the results is presented in 
Fig.  6, while the full list and details of correlations 
between CANTAB output variables and dFrC meas-
ures (including DFA exponents) is provided in Sup-
plementary Tables S2-S7 in tabular format.

For DMS, response times were measured in vari-
ous difficulty settings, including simultaneous 

(denoted by S in the metric registry) and delayed (0-, 
4-, or 12-second latency) pattern presentation, both 
individually and all conditions combined. Across 
increasing difficulty levels, the mean (ML*) and 
median (MDL*) response times demonstrated pre-
dominantly negative associations with interhemi-
spheric dFrC. Notably, standard deviation of response 
times (*SD metrics) showed no significant associa-
tions, except for the medium difficulty level (4-s 
delay, L4SD), which displayed similar cortical pattern 
of associations. In general, RT in more difficult work-
loads were negatively associated with more elaborate 
dFrC patterns regarding both μDCCC (s) and �2

DCCC(s)
 . 

This trend was more pronounced in the elderly group, 
except for standard deviation, where the observed 
dFrC patterns of the young group displayed increased 
positive correlations with the metrics. The PRM and 
DMS tests might appear somewhat similar in nature; 
however, the former also tests long-term, while the 
latter only short-term and working visual memory. 

Fig. 4  Connections expressing correlations with output meas-
ures in the RVP (left) and RTI (right) tasks. Black dots denote 
the 14 EEG channels with their layout reflecting the utilized 
montage from a top-down view, while colored lines represent 
the connections linking the corresponding brain regions where 
a significant relationship was found between connectivity and 

behavior in at least one of the five temporal scales. Young and 
elderly groups are illustrated using blue and orange colors, 
respectively. Positive correlations are marked with a darker 
color, and negative correlations are marked with a lighter 
color. Dashed and solid lines represent temporal and accuracy-
based metrics, respectively. Upper �

DCCC(s) �
2

DCCC(s)
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Consequently, the two measures might associate with 
different FrC-patterns. PRM measured less metrics 
overall and exhibited notably fewer correlations with 
dFrC compared to DMS regarding both immediate 
and delayed difficulty levels (denoted by I and D char-
acters, respectively, in the metric register). Similarly, 
only mean (MCL*) and median (MDCL*) metrics of 
correct answer RTs were associated with dFrC in both 
groups. In the less demanding immediate recall varia-
tion, both μDCCC (s) and �2

DCCC(s)
 in the elderly group 

were mostly negatively associated with RT, while 
dFrC in the young group showed no correlations, 
except for �2

DCCC(s)
 with median RT, where fronto-

occipital connections were negatively associated with 
response time. As task difficulty increased, more 
dFrC patterns associated with performance emerged 
in both groups, with connectivity strength of most 
connections becoming negatively correlated with RT 
(and thus positively with performance).

In the RVP task, mean and median RT (ML and 
MDL, respectively), total number and percentage of 
hits (TH, PH), as well as total number of misses (TM) 
were measured along with a task-specific strategy 
index (A). Interhemispheric temporal and frontal con-
nections were shown to be negatively associated with 
accuracy regarding μDCCC (s) in both groups. Mean-
while, �2

DCCC(s)
 exhibited between-group disparities, 

wherein the young group was negatively associated 
with accuracy and response time, but the only signifi-
cant intertemporal connection was shown to be posi-
tively associated with accuracy in the elderly group. 
The RTI task included two distinct difficulty levels, 
namely one- (S* metrics) and five-choice (F* met-
rics) scenarios. Only the more difficult, five-choice 
task was associated with dFrC patterns in both ACC 
(FESI) and all recorded RT (FMRT, FMDRT, 
FMTSD) metrics. As such, the score-specific patterns 
aligned closely with the unique task-specific topology 
previously outlined, which highlighted increased 

Fig. 5  Connections expressing correlations with output meas-
ures in the DMS (left) and PRM (right) tasks. Black dots 
denote the 14 EEG channels with their layout reflecting the uti-
lized montage from a top-down view, while colored lines rep-
resent the connections linking the corresponding brain regions 
where a significant relationship was found between connec-

tivity and behavior in at least one of the five temporal scales. 
Young and elderly groups are illustrated using blue and orange 
colors, respectively. Positive correlations are marked with a 
darker, negative correlations with a lighter color. Dashed and 
solid lines represent temporal and accuracy-based metrics, 
respectively. Upper �

DCCC(s) �
2

DCCC(s)
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frontal dominance compared to the DMS and PRM 
tasks as well as the increased prevalence of negatively 
associated connections regarding response time and 
accuracy in the young group.

In the visuospatial-oriented PAL task, ACC-based 
metrics (total number of attempts, TA; total number 
of errors, TE; adjusted number of errors, TEA) were 
recorded both individually for various difficulties (2, 
4, 6, 8, and 12 patterns) and summarized for all diffi-
culty levels except the hardest setting (i.e., from 2 to 
8 patterns, TE28, TA28, TEA28, FAMS28, 
METS28). Similar to the PRM task, the simplest dif-
ficulty setting showed no associations with dFrC in 
either group; however as difficulty increased, associ-
ations emerged in the elderly group between TA, TE, 
and TEA metrics and �2

DCCC(s)
 of frontal and tempo-

ral, interhemispheric connections. Further increase 
of difficulty (4, 6 targets) resulted in associations 
also manifesting in the young group, with the corre-
lated dFrC patterns becoming more global, with 
μDCCC (s) correlating with increased performance in 
the young and with decreased performance in the 
elderly groups. On the other hand, �2

DCCC(s)
 was ubiq-

uitously correlated with decreased performance. 
With substantial increase in difficulty (8 targets), 
associations became sparser, mostly observed in 
�
2

DCCC(s)
 in the young and μDCCC (s) regarding in the 

elderly groups. At the highest difficulty level; how-
ever, both μDCCC (s) and �2

DCCC(s)
 showed more associ-

ations with performance compared to the preceding 
level. Notably, these were overwhelmingly positively 
associated with the error count in the young group as 
well, a shift from the negative association observed 
in lower difficulties. In the summarized metrics, 
associations between dFrC and performance were 
sparse, showing positive associations with the num-
ber of attempts and—consequently—negative asso-
ciations with error score. Finally, in SWM also only 
accuracy-based metrics (within-, between-, delay-, 
and total-errors, WE, BE, DE, and TE, respectively, 
along with strategy scores SX, S6, and S) were 
obtained, individually (for 4, 6, 8, 12 targets) and 
summarized for all but the most challenging setting. 
Among these, delay errors exhibited no associations 
with dFrC at any level. Within-error metrics 

Fig. 6  Summary of all CANTAB output variables considered 
for all 7 tasks. The upper portion, separated by a dashed line, 
displays accuracy-related indices, while the lower part illus-
trates response time-like measures. The spatial arrangement 
of these tasks and their associated measures to one another 
visually represent variable similarity between each battery, 
regarding execution and workload. Connecting lines denote 
similar measures (e.g., median, mean, and standard deviation 

of response times). Colored squares denote measures where 
significant associations were found between the measures and 
connectivity; the top two squares denote the mean, while the 
bottom two pertain to variance of DCCC (s). Following the 
color scheme utilized in previous figures, shades of blue and 
orange denote the young and elderly group, respectively, with 
darker shades denoting positive, and lighter shades negative 
associations
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displayed sparse associations, only in the second 
hardest difficulty. Between-errors, meanwhile, dem-
onstrated consistent association with dFrC in all but 
the second hardest difficulty level, mirroring the pat-
terns seen in total errors. Thus, topological changes 
related to difficulty will be illustrated through this 
latter metric. In SWM, similar to PAL, only a limited 
number of associations were observed between and 
�
2

DCCC(s)
 at lower difficulties. Precisely, μDCCC (s) was 

found being positively, while �2

DCCC(s)
 being nega-

tively associated with error rates in the elderly group 
on low difficulty. This pattern reversed at the highest 
difficulty level, where interhemispheric associations 
increased; error scores negatively correlated with 
μDCCC (s) in both groups, with positive correlations 
with �2

DCCC(s)
 , observed in the young group only. 

Notably, for summary metrics TE468 and BE468, 
both μDCCC (s) and �2

DCCC(s)
 were found negatively 

associated in the young, while the opposite pattern 
emerged in the elderly group. Strategy scores showed 
associations with a global dFrC pattern with a dis-
tinct frontal dominance that was especially prevalent 
in the elderly group. These associations were gener-
ally positive with μDCCC (s) and negative with �2

DCCC(s)
.

Discussion

It has been shown [3] and confirmed [26] previ-
ously that CANTAB measures obtained from the 
seven administered tasks reveal an age-related 
decline in cognitive performance even in a healthy 
population. Csipo and colleagues suggested that 
impaired peripheral vascular health was a predic-
tor of cognitive decline [3], while in our previous 
paper, we found that reduced cognitive scores were 
associated with altered fractal scaling exponent of 
functional connections. Even though our previous 
approach established a link between aging, cogni-
tive decline and FrC, that analysis focused on frac-
tal temporal scaling in connectivity, but not con-
nectivity strength itself. In the present work one of 
our main goals was to alleviate this limitation. As 
between-group differences in cognitive test scores 
in the same cohort had already been reported pre-
viously [26], here, we omit the detailed discussion 
of these results; instead, we refer the reader to the 
original article.

Dynamic fractal connectivity in healthy aging

Our analyses implied that fractal connectivity strength, 
on a connection-by-connection basis is quite similar in 
the two age groups. This result appears to be in con-
trast with those reporting age-related changes in FC by 
other studies [59–61]; however, (i) fractal connectivity 
strength has not been investigated in healthy aging pre-
viously, as well as (ii) our current results could be 
expected to some extent, as we found no difference 
previously in cross-spectral power between young and 
elderly participants in the same cohort [26]. Addition-
ally, it has also been reported that only structural but 
not functional connectivity might be associated with 
healthy aging [9]. Nevertheless, a more elaborate 
machine learning approach—taking all connections 
into consideration at the same time—indeed revealed a 
subset of connections that could discriminate between 
young and elderly individuals with high cross-valida-
tion (CV) accuracy. This indicates that not only fractal 
scaling of connectivity is reduced in aging [26], but 
also FrC patterns change with age in terms of strength, 
as well as to some extent, temporal variance. However, 
before we further discuss these findings, we should 
address certain specifics of the employed approach to 
clarify interpretation. Our exploration of the input 
parameter space indicated that the revealed separability 
was robust and not specific to regularization parameter 
C, as even though the number of identified connections 
varied to a larger extent (from 56 to 113, see Table 1), 
performance was comparable in all cases (in the range 
of 87 and 90% sample-wise). Notably, outcome meas-
ures at C = 10 and C = 100 were found to match exactly. 
We implemented our pipeline in Python 3.7.3 using the 
support vector classification method, abbreviated to 
SVC, of the Scikit-Learn library with a linear kernel. 
In this implementation, C is in fact the inverse of the 
constant λ of the regularization term in the cost func-
tion of an SVM [55]. Therefore, the most likely expla-
nation for this result is that the regularization term was 
already rendered negligible at C = 10 (λ =  10−1), and 
thus further increasing C had no additional effect on 
classifier performance. Also, during the SVM-RFE, all 
time point estimates from all subjects were utilized in 
order to provide a large enough sample size for the vast 
number of features. However, the utilized SVM model 
treated all examples as independent, thus practically 
disregarding any dependence found in the temporal 
evolution of FrC patterns. Consequently, the subset of 
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connections identified could discriminate young and 
elderly individuals based on the mean but not on the 
variance of DCCC (s). In fact, connections with 
stronger temporal fluctuations were penalized as they 
produce less reliable sample-wise predictions. With 
these considerations in mind, our analyses regarding 
�
2

DCCC(s)
 should be considered exploratory. This also 

provides a partial explanation on why variance of only 
two connections (among the reduced set) were signifi-
cantly different between the two age groups (Table 2). 
Nevertheless, �2

DCCC(s)
 still showed strong associations 

with cognitive functions, underscoring its relevance for 
better understanding age-related cognitive decline. 
Therefore, as the presented results indicate the rele-
vance of dFrC in aging [62], more research is called for 
employing machine learning models [63] able to take 
into account temporal information for identifying rele-
vant dynamic connections, such as recurrent neural 
networks or long short-term memory architectures 
[64–66]. Finally, we need to address another limitation 
of this approach. Precisely, even though performance 
was evaluated in a CV setting, the whole dataset was 
utilized to obtain the feature ranking, which was then 
evaluated again (also in a CV setting) to obtain the 
number of connections best separating the two groups. 
Therefore, our proposed model is not viable for auto-
mated classification of young and elderly individuals 
based on EEG data only, and we would expect a drop 
in performance if tested for classifying newly obtained 
recordings as young or elderly. However, we did not 
utilize SVM-RFE for that purpose in this study, but 
instead to identify a subset of connections that can best 
separate the two (or more) populations, such as in [48]. 
Indeed, for this goal SVM-RFE performed well, pro-
viding a subject-wise classification accuracy of 92% on 
average—comparable with that reported in other stud-
ies, e.g., [67]—, in contrast to the marginal difference 
identified by traditional statistical analysis considering 
every dFrC measure independently.

The SVM-RFE approach with the best performance 
identified a set of 56 connections distinguishing young 
from elderly, although we could not pinpoint a char-
acteristic pattern in terms of temporal scale or cortical 
location. In general, connections in the frontal cortex 
mostly showed positive DCCC (s), while longitudinal 
connections appeared to be anticorrelated. Connectivity 
strength (captured as the absolute value of μDCCC (s)) was 
predominantly higher in the elderly group, implying 

stronger functional cooperation between brain regions 
in 41 out of 56 connections. This dominance appeared 
to be reversed at s = 16 and balanced at s = 32 (time 
scales corresponding to 16 and 8 Hz) where instead 
connection strength was rather higher in the young 
group for most connections. These results are in partial 
agreement with those published previously, indicat-
ing increased functional connectivity in healthy aging 
(when compared to healthy young) over a broad range 
of frequencies and cortical regions [68], while contra-
dictory findings have also been reported [67, 69]. In 
fact, the majority of former studies reported a decrease 
instead of an increase of FC in aging [7]. However, 
most of the utilized approaches did not take into consid-
eration that scaling of fractal dynamics (i.e., long-term 
autocorrelation) was shown to be reduced in aging [21, 
23, 26, 34]. Given that strong autocorrelation can result 
in spurious estimates of cross-correlation [33], this 
commonly found age-related weakening in FC might 
be explained by the concurrent reduction of scale-free 
dynamics. On the other hand, DCCC normalizes the 
covariance estimate by the scale free measure of the 
individual signals (see Eq. (4)) and thus likely elimi-
nates this bias. With this in mind, our results might sug-
gest that reduction of FC in aging might be confounded 
by the weakened autocorrelation of neural dynamics, 
as DCCC rather implied higher connectivity strength 
in the elderly. Nevertheless, this hypothesis warrants 
further, more elaborate research in the future. Other 
sources of discrepancy are also most likely related to 
the different analysis strategies for FC estimation; in 
our study not only did we compute fractal connectivity, 
but our evaluation included negative correlations, too, 
that are most often excluded from analysis [70]. Never-
theless, the observed increase in connectivity strength 
might reflect a compensatory mechanism [71] for loss 
in structural connectivity in order to maintain healthy 
cognition [72].

Previous dynamic functional connectivity (DFC) 
approaches identified reduced temporal variability in 
aging [30–32]. Our results appear to be in line with 
these in terms of FrC dynamics and generally reduced 
�
2

DCCC(s)
 values in the elderly group (see Fig.  1.). 

Notably, �2

DCCC(s)
 and μDCCC (s) appeared to express 

opposite patterns in the two groups, with those con-
nections with higher connectivity strength in one 
group mostly expressing stronger temporal variability 
in the other (Fig.  1).The variance of DCCC (s) was 
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decreased in general in the elderly population. 
Although DFC approaches to healthy aging are yet 
sparse, similar patterns have been observed before 
[31]. To understand this inverse relationship between 
μDCCC (s) and �2

DCCC(s)
 , we computed their Pearson 

cross-correlation coefficient. Apparently, the mean 
(as ⟨|DCCC (s)|⟩) and variance of fractal connectivity 
was inversely related, with stronger functional cou-
plings being less volatile over time, however this pat-
tern appeared to be comparable (r =  − 0.5546 and 
r =  − 0.5447) in the young and elderly groups, respec-
tively (Fig.  7). A similar relationship was found 
between the long-term autocorrelation and degree of 
multifractality in delta-band connections [18, 28]. 
Our present results indicate that this interesting pat-
tern is a characteristic of functional connectivity 
dynamics that remains unaffected by age; however, 
better understanding its physiological relevance 
requires further research.

Mono- and multifractal dynamics of neural activity

One advantage of utilizing the matrix-notation for-
mula for multi-channel rtDCCA analysis is that DFA-
exponents—characterizing fractal temporal scaling 
in the univariate signals individually [73]—are also 
obtained simultaneously [40]. Since in this study, uti-
lizing a sliding window approach, we reconstructed 
the temporal evolution of DFA-exponents, thus allow-
ing for evaluating not only their means but how much 

they vary over time. In this case—when fractal scal-
ing becomes a local instead of a global property—the 
process is deemed multifractal [74, 75]. It has been 
suggested before that mono- and multifractal proper-
ties of neural activity change with age and reflect a 
maturation of the brain at an early age [76], as well as 
such properties are affected in the case of MCI or AD 
[29, 77]. Nevertheless, the plausible effect of healthy 
aging on multifractal characteristics of resting-state 
EEG has only been addressed scarcely [23].

Regarding the monofractal characteristic of regional 
neural activity, in our previous study we found reduced 
fractal scaling exponents over 7 out of 14 brain regions 
in the elderly when compared to young individuals [26]. 
As expected, we replicated this outcome in this analy-
sis with a different (time domain) approach; however, 
in this case mean DFA-exponents were found reduced 
in 11 out of 14 regions. Similar age-related reduction in 
spectral slope has been identified by previous studies, 
too [21, 34]. In our previous study, we utilized multiple-
resampling cross-spectral analysis (MRCSA) to obtain 
cross-spectral scaling exponents characterizing fractal 
connectivity [78]. MRCSA is a method designed for 
separating the fractal and oscillatory components of 
the cross-power spectrum and thus provides an unbi-
ased estimate of the scaling exponent. Our current 
results imply that even though the MRCSA approach 
[78] might provide more precise estimates of the scal-
ing exponent, the sliding-window DCCA evaluation was 
more sensitive in revealing between group differences. 

Fig. 7  Correlation of ∣μDCCC (s)∣ and �2

DCCC(s)
 in the young (left) and elderly (middle) groups, as well as combining both age groups 

(right). The solid line illustrates the ordinary least squares regression line
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Moreover, we identified a total of 35 variables that cor-
related with the mean DFA exponent (μDFA) of brain 
regions in the elderly group, while this number was only 
9 in the young group [26]. Notably, in the elderly group 
20 out of these were output measures for the RVP task, 
again in line with our previous results [26]. These dif-
ferent findings might be the result of statistically more 
robust estimates in our current analysis approach, as in 
our previous study spectral slopes from 9 epochs were 
averaged compared to the 137 overlapping windows uti-
lized here. Furthermore, by computing the variance of 
DFA exponents over time, we obtained a crude assess-
ment on the degree of multifractality (i.e., the spread of 
the distribution of local scaling exponents [37, 75]) as 
well. Our results suggest that the degree of multifractal-
ity in regional neural activity remains intact in healthy 
aging; however, more elaborate research would be desir-
able to confirm this question, addressing it directly with 
more appropriate tools, such as multifractal DFA [79] or 
focus-based multifractal formalism [75].

Fractal connectivity dynamics and cognitive 
performance

The most important contribution of this work is the 
identification of associations between fractal connec-
tivity dynamics and cognitive performance in the 
young and elderly groups. In that regard, here, we 
extended our previous approach that only considered 
the fractal scaling exponents of functional connec-
tions and regional neural activity [26] and showed 
that strength and temporal variance of resting-state 
FrC is also related to cognitive functioning in both 
young and elderly individuals. In sharp contrast to 
our previous analysis, where fractal connectivity and 
neural activity were only found scarcely related to 
CANTAB scores in the young group—precisely, 
FrC-CANTAB correlations were significant only in a 
total of 7 instances [26]—, our current approach 
indicated widespread associations between dFrC and 
cognitive performance in both age groups (see 
Figs.  3, 4, and 5). In fact, significant correlations 
between CANTAB scores and μDCCC (S) (all scales 
combined) were found in 78 and 114 cases in the 
young and elderly groups, respectively, while in 109 
and 130 cases with regards to �2

DCCC(s)
 (a full list of 

these is reported in the Supplementary Tables S2-
S5). Interestingly, despite the fact that connections 

were primarily selected based on μDCCC (S) by the 
SVM-RFE, it appears that the temporal volatility of 
resting-state FrC shows more and stronger associa-
tions to cognitive performance, especially in the 
elderly group. Despite this, dynamic functional con-
nectivity studies are scarce in the healthy aging pop-
ulation (e.g., [31, 80, 81]), especially those contrast-
ing connectivity dynamics with cognitive 
performance. In our previous study we demonstrated 
that long-term memory in functional coupling of dis-
tinct brain regions is reduced in healthy aging, and 
that this reduction correlates with performance in 
cognitive tasks [26], while here we report that the 
temporal variance of FrC is also associated with cog-
nitive decline. More specifically, increased variance 
in frontal connections was mostly found positively, 
while that of longitudinal connections was found 
negatively correlated with performance (see Figs. 3, 
4, and 5). Taken together, these results emphasize the 
relevance of not only FC, but connectivity dynamics 
with regards to age-related cognitive decline, and 
thus call for more elaborate research in the future.

Figure 6 illustrated the overall pattern of associations 
between dFrC and all cognitive performance scores in 
the two age groups, from which we could draw the fol-
lowing conclusions. First, for the DSM, PRM, and RTI 
tasks only response time measures were found corre-
lated with dFrC measures (except for five-choice error 
scores in the young group). Second, for a large propor-
tion of the cases, the detected associations were found to 
be similar in nature in the two groups. Therefore, for 
those dFrC-CANTAB relations that were identified in 
both groups, it is reasonable to focus on those that were 
different in nature (i.e., with opposite sign) in the young 
and elderly cohorts. Notably, this was the case for 
�
2

DCCC(s)
 and all relevant measures of DMS and RTI, 

where consistently a lower variance in the young, but 
higher variance in the elderly group correlated with bet-
ter performance. This indicates that at a younger age, a 
more consistent connectivity is ideal for better perfor-
mance (RT); however, in aging more flexibility in con-
nectivity promotes faster task solving. These findings 
further support the role of connectivity dynamics in 
healthy aging and cognitive functioning, an association 
that has not been shown previously to the best of our 
knowledge. Third, we could identify those associations 
that were only characteristic to one age group. Most 
apparently, performance in the lower difficulty settings 
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of the PAL and SWM tasks (especially with 4-choice 
problems) correlated with dFrC only in the elderly group 
(regarding both μDCCC (s) and �2

DCCC(s)
 ), while on higher 

difficulty levels this distinction vanishes, and instead 
connectivity was similarly related to CANTAB meas-
ures in both groups. These results indicate an already 
diminished cognitive reserve in the elderly population 
[82], showing that a smaller mental workload already 
poses a significant challenge reflected in fractal connec-
tivity dynamics that is yet absent in the young group.

Limitations and future perspectives

Our analyses revealed an elaborate pattern of dFrC-
CANTAB score associations. However, we should 
refrain from drawing conclusions on how connectiv-
ity between specific cortical regions drives various 
cognitive domains in healthy aging, given the limited 
spatial resolution of our experimental setup (14-chan-
nel EEG). Furthermore, even though we found frontal 
connections to be more prevalently related to cog-
nitive performance, this observation is most likely 
biased by the fact that electrode density was also 
higher over those regions, naturally providing more 
details compared to, e.g., motor, parietal and occipital 
cortices. The same argument holds for the topology 
that was revealed by the subset of connections most 
discriminative between young and elderly popula-
tions. Therefore, a better understanding of the phe-
nomena addressed here could only be achieved by 
confirming our results with higher spatial resolution, 
where source reconstruction is also applicable [83]. 
Furthermore, our analysis of correlations between 
dFrC measures and CANTAB output variables should 
be considered exploratory, as our intention was to 
cover a wide range of cognitive aspects that might 
be affected in healthy aging, instead of focusing on 
a few selected measures. However, our results—com-
plementing those reported in [26]—provide relevant 
guidance for future studies on which cognitive func-
tions to put more emphasis on. Namely, response time 
is ubiquitously affected in healthy aging but appears 
as a compensatory mechanism [71] for reduced pro-
cessing speed in order to maintain precise task solv-
ing [84, 85], as well as performance is already chal-
lenged even regarding lower difficulty settings in the 
elderly population (e.g., [86]). Another aspect we 
did not address was the possible confounding effect 

of education on the outcomes. Volunteers for both 
groups were recruited at Semmelweis University; 
thus, most members of the elderly group possessed a 
university degree (or higher), while the young group 
was mainly composed of undergraduate and graduate 
students. Therefore, even though both groups could 
be considered well-educated, differences in education 
would be also strongly correlated with group assign-
ment, simply reflecting that most individuals in the 
young group could not obtain a university degree yet 
due to their age. We believe these effects to be negli-
gible in our study; however, this aspect should also be 
more rigorously assessed and controlled for in future 
studies. It is also important to highlight that even 
though our study is one of the first to report fractal 
connectivity alterations in healthy aging, we did not 
contrast our results with those obtained with another, 
‘conventional’ FC estimator (see [87] for a review). 
Given the extensive nature of the utilized analy-
sis pipeline, we concluded that introducing another 
FC estimator would overburden the study and thus 
it is beyond its scope. Nevertheless, comparing FrC 
measures with those obtained by conventional FC 
analyses is a relevant research question – especially 
in light of the somewhat contradictory nature of our 
present findings – and warrants further investigation. 
Finally, identifying the neurophysiological correlates 
of age-related cognitive decline is not only important 
for better understanding its pathophysiology, but also 
to identify potential targets and develop preventive/
therapeutic intervention strategies, which we intend 
to focus on in future research.

Conclusions

In this study, we analyzed dynamic fractal connectiv-
ity in young and healthy elderly individuals. Utilizing a 
machine learning-based feature selection method, we 
identified a subset of connections best discriminating 
between the two age groups, yielding much better per-
formance than considering connections individually. Our 
analysis of how fractal connectivity dynamics in this sub-
set are related to cognitive performance in a wide range 
of domains revealed key insights. In most tasks, length-
ened response latency was associated with connectiv-
ity in both groups, as well as changes in dFrC reflected 
reduced cognitive performance in the elderly group even 
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on lighter difficulty settings. Interestingly, the temporal 
variance of FrC revealed more distinctive associations 
with performance, as the identified correlations were dif-
ferent in nature in the two age groups. Despite its limita-
tions, our results—in accordance with those reported in 
[26]—underscore the importance of fractal connectivity 
and a dynamic connectivity approach in understanding 
aging-related cognitive decline, and thus, they call for 
future research targeting this issue in a more elaborate 
setting.
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