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Abstract The ability to quantify aging-related 
changes in histological samples is important, as it 
allows for evaluation of interventions intended to effect 
health span. We used a machine learning architecture 
that can be trained to detect and quantify these changes 
in the mouse kidney. Using additional held out data, 
we show validation of our model, correlation with 
scores given by pathologists using the Geropathol-
ogy Research Network aging grading scheme, and its 
application in providing reproducible and quantifiable 
age scores for histological samples. Aging quantifica-
tion also provides the insights into possible changes 
in image appearance that are independent of specific 
geropathology-specified lesions. Furthermore, we pro-
vide trained classifiers for H&E-stained slides, as well 
as tutorials on how to use these and how to create addi-
tional classifiers for other histological stains and tissues 

using our architecture. This architecture and combined 
resources allow for the high throughput quantifica-
tion of mouse aging studies in general and specifically 
applicable to kidney tissues.

Keywords Machine learning approach · Mouse 
kidney · Histological evaluation

Introduction

Histological evaluation is often the first stop for diag-
nosis of many diseases, but pathologists rarely define 
age-related changes in their reports, despite age being 
the greatest risk factor for many conditions. The field 
of geropathology is focused on classifying age-related 
changes that occur and can be visualized in histologi-
cal samples. The Geropathology Research Network 
(GRN; see Supplemental Table  1) recently published 
an aging grading scheme for multiple mouse tissues, 
including the kidney [1], and this system has been 
shown to be effective for quantifying the effects of 
interventions [2]. The GRN scoring system has yet to 
be widely adopted, partially due to its novelty. How-
ever, a major limitation for implementing this grading 
scheme at scale is low throughput caused by limited 
access to trained pathologists that can process the large 
numbers of slides that are involved in a typical study. 
Furthermore, pathologist judgments are a combination 
of objective and subjective impressions of extremely 
complex visual patterns, which can result in variability 
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among pathologists and low concordance of final path-
ological scores. Indeed, concordance of GRN scores as 
low as 43% for composite lesion scores in the kidney 
were recently reported [1]. Moreover, while expert-
derived grading systems often capture the biologi-
cally salient differences within and between samples, it 
remains possible that any given scoring system will not 
capture all the possible changes. Taken together, these 
limitations––low throughput, inter-pathologist variabil-
ity, and potentially incomplete annotation––hinder our 
ability to correlate age- or intervention-induced molec-
ular and physiological changes with structural changes 
in the tissues. In this study, we developed a machine 
learning approach to complement expert-derived 
grading schemes and overcome their limitations by 
systematically highlighting putative age-associated 
pathologies without requiring annotations beyond the 
chronological age of the sample.

It is now routine to scan histological slides and 
obtain whole slide images (WSIs) to generate large 
image data sets that can be analyzed and shared with 
the scientific community. These WSIs enable the 
application of the rapidly advancing tools of machine 
learning and artificial intelligence on medical images 
[3]. Machine learning and artificial intelligence appli-
cations have proven to be extremely powerful at solv-
ing many problems, including classifying images by 
expert labels, object localization, and detection (i.e., 
putting a box around when a specific object appears 
in an image), and object segmentation (i.e., outlin-
ing the boundary of an object in an image) [4]. Spe-
cifically in medical imaging, much work has been 
done to classify tissues as being normal or cancer-
ous, as well as for specific segmentation tasks [5]. 
Nevertheless, the major bottleneck to applying these 
approaches is, not the availability of raw image data, 
but a dearth of meaningful annotations as prediction 
targets. The limitations to applying the GRN grading 
scheme at scale is a paradigmatic example of the dif-
ficulty in generating the required training data.

To overcome the lack of annotated tissue images 
for learning age-associated kidney changes, we used a 
relatively new machine learning strategy called weakly 
supervised learning [6]. Formally, machine learn-
ing and artificial intelligence techniques are classified 
as either supervised, meaning that they are trained as 
predictive models for a specific target, or unsuper-
vised, meaning that they are trained to learn descrip-
tors of heterogeneity within a data set but not predict 

a specific target. Weakly supervised learning refers to 
the situation where the prediction target is extremely 
loosely specified and is a hybrid of supervised and 
unsupervised learning. The distinction between tra-
ditional supervised and weakly supervised learning is 
perhaps best made with an everyday example. We can 
imagine learning the name and shape of a stop sign by 
looking at close-up photographs of road signs with the 
labels “This image is a stop sign” and “This image is 
not a stop sign”. This is the typical supervised-learning 
setting for deep learning in medical imaging, where 
there are highly specific annotations for each training 
image, e.g., “This image is of a tumor.” We can also 
imagine learning to recognize a stop sign by studying 
everyday photographs of roadways––each containing a 
multitude of cars, buildings, and signs––with the labels 
“This image contains a stop sign” and “This image 
does not contain a stop sign.” This second case corre-
sponds to weakly supervised learning. Many features 
within the image set will be common to both classes 
(such as cars, buildings, road signs that are not stop 
signs), and the model must learn to recognize what a 
stop sign is as the common feature from one class that 
is absent in the other. Thus, weakly supervised learning 
accomplishes a distinct and harder task than traditional 
supervised learning. In our example, the model must 
both recognize stop signs on their own and localize 
them within images containing many other features. 
In this way, weakly supervised learning is especially 
useful for taking image-level labels and training pixel-
level classifiers [7]. Thus, weakly supervised learning 
holds the promise to learn age-associated histopatholo-
gies de novo, starting only with the sample-level chron-
ological age for a WSI, where higher chronological age 
acts, effectively, as the label, “This slide contains age-
associated histopathologies.”

In this study, using kidney as a proof of concept, we 
sought to determine whether weakly supervised learn-
ing of age would also help us localize age-associated 
histopathological lesions within that image. We devel-
oped a novel machine learning algorithm to predict 
the age of the kidney in each tissue image and trained 
the model using an innovative ordinal classification 
scheme, where we rigorously modeled the cumulative 
changes in the tissue as a function of increasing age. 
Our weakly supervised ordinal classifier thus pro-
vides pixel-level information about age to detect spa-
tial variation in the appearance of tissue age, which 
we rigorously compared to sub-anatomic site-specific 
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annotations from the GRN grading scheme by expert 
pathologists. Overall, our approach allows for high-
throughput and reproducible quantification for large 
numbers of WSIs. Moreover, because the pixel-level 
classifications do not target a priori known pathologies, 
our approach enables unbiased detection of novel age-
associated histopathologies (Fig. 1).

Methods

Mice and slides

Mice from previously published works, as well as 
C57BL/6  J mice from The Jackson Laboratory’s aging 
colony were used in this study. Mice from The Jackson 

Laboratory’s aging colony were maintained at a 12  h 
(6AM–6PM) light dark cycle and fed a rodent diet 
(5KOG LabDiet, St. Louis, MO) in a pathogen-free room 
(see Supplement for room health report). Kidneys were 
fixed in 10%NBF for 24  h before paraffin embedding. 
Blocks were cut into 3–5-micron sections and stained 
with hematoxylin and eosin (H&E) using a Leica auto-
stainer XL ST5020. The slides where then scanned using 
brightfield imaging and a 40 × objective with a Hama-
matsu nanozoomer 2.0HT digital slide scanner.

Set 1 is a subset of H&E slides from kidneys pre-
viously described [1] and from kidneys from The 
Jackson Laboratory’s aging colony. Details for each 
of the slides in this set can be found in Supplemental 
Table 2. Images can be found in the eGPS projects at 
https:// images. jax. org.

Fig. 1  Overview for computing the eGPS. We trained a deep 
neural network to predict mouse age. The input to the network 
is an RGB whole-slide image. The output of the network is a 
pixel-level age score that predicts mouse age based on the 
nearby tissue. Integrating the pixel-level age score over the 
whole-slide image yields the eGPS, which discriminates the 

ages from each other. The network can then easily be applied 
to new images, without retraining. Directions and tutorials on 
how to do this can be found at geropathology-imaging.org. 
*Represents statistically different (p < 0.05) from 8  months. 
**Represents statistically different (p < 0.05) from 16 months. 
***Represents statistically different (p < 0.05) from 20 months

https://images.jax.org
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Set 2 are the H&E slides from kidneys previously 
described [1]. Details for each of the slides for this set 
can be found in Supplemental Table 3. Images can be 
found in the eGPS projects at https:// images. jax. org.

Set 3 were H&E slides from C57BL/6 J mice from 
The Jackson Laboratory’s aging colony. Details for 
each of the slides for this set can be found in Sup-
plemental Table 4. Images can be found in the eGPS 
projects at https:// images. jax. org.

Set 4 were a subset of H&E slides from kidneys 
previously described [2]. Details for each of the slides 
for this set can be found in Supplemental Table  5. 
We have 7 female control animals and 8 female mice 
with rapamycin treatment. Images can be found in the 
eGPS projects at https:// images. jax. org.

All animal experiments were performed in accord-
ance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals (National 
Research Council) and were approved by The Jackson 
Laboratory’s Animal Care and Use Committee.

Tissue localization

Qupath was used for flexibly of using slides that 
have tissue from multiple different organs on the 
same slide, such as the slides from the geropathology 
research network (GRN). Qupath enables the isola-
tion of only the kidney tissue and allows for further 
fine tuning of other slides, after images were loaded 
into Qupath. Using the wand tool tissue outlines were 
created and only the relevant areas of the slide were 
exported as tiles. The export was done using Qupath 
scripts available at https:// github. com/ TheJa ckson 
Labor atory/ DIY- Gerop athol ogy. Tutorials on how to 
do this can be found at https:// www. gerop athol oy- 
imagi ng. org/.

Data preparation

To enable efficient image handling for training, we 
down sampled the data or took only a small sub-
set of the image. To do this, we split the image into 
512 × 512 -pixel tiles with no overlap and kept every 
20-s image. The down sampling results in an image 
similar to using a 2 × objective. This is used to pro-
vide an appropriate amount of context for the machine 
learning to decide at the pixel level. As a preprocess-
ing step, we performed the image normalization to 
reduce the variance for staining batches in the images. 

For each of the three-color channels (red, green, and 
blue), the normalized pixel value is the pixel value 
minus the mean of all pixels in that channel divided 
by the standard deviation of the pixel values. We took 
into consideration that tissue images contain empty 
area on the edges, as some tiles do not have any tissue 
or have few pixels of tissue data. We removed those 
tiles as they have little effect on the training. Only 
tiles which are covered by at least 90% of tissue pix-
els were considered for training.

Next, we created a system that would classify mul-
tiple age groups using the pixel values. We constructed 
slide-level training labels based on an ordinal system 
where; for every pixel, we predict a binary output 
vector with components labeled by the chronologi-
cal ages––8, 16, 20, and 32 months––and every com-
ponent corresponding to ages less than or equal to 
the sample are filled with a one and the remainder are 
filled with zeros. For example, the slide-level training 
label for an 8- month-old sample is (0,0,0), while the 
label for a 20-month-old sample is (1,1,0). We note 
that these ordinal training labels are distinct from cat-
egorical training labels for predicting the exact chrono-
logical age (for example, using the target (0,1,0) for a 
20-month-old sample) or numerical targets in a regres-
sion (i.e., numerically predicting “8” for 8-month-old 
samples and “32” for 32-month-old samples). By using 
ordinal labels in contrast to categorical labels, we can 
model cumulative changes from young through middle 
age to old age, without requiring the model to detect 
patterns that are entirely specific to, say, 20-month-old 
samples that are categorically distinct from 16-month-
old samples. Indeed, preliminary experiments demon-
strated that such an approach had systematic difficulty 
discriminating adjacent ages, particularly 16- and 
20-month-old samples (data not shown). Similarly, 
using an ordinal system instead of regression for 
numerical age, we can model cumulative changes with 
the assumption that there is a uniform, quantitative 
change between age groups.

To predict training labels at the pixel level, we cre-
ated a 3-channel binary image over the tissue mask 
for each input image, where at each pixel we dupli-
cated the slide-level training label. Thus, for each 
input image, the pixel-level training labels are given 
by duplicating the tissue mask in each age channel 
corresponding to an age less than for equal to the 
sample age, and all zeros in the remaining channels. 
Thus, we call the training data the ordinal mask.

https://images.jax.org
https://images.jax.org
https://images.jax.org
https://github.com/TheJacksonLaboratory/DIY-Geropathology
https://github.com/TheJacksonLaboratory/DIY-Geropathology
https://www.geropatholoy-imaging.org/
https://www.geropatholoy-imaging.org/
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Machine learning network architecture

To predict the ordinal mask as a function of histo-
logical image, we adapted the LinkNet architecture 
[8], which was originally designed for segmentation 
models. LinkNet is an efficient segmentation neural 
network derived from the architecture of ResNet [9]. 
Briefly, the LinkNet architecture is a fully convolu-
tional neural network that uses a cascade of convolu-
tions and transposed convolutions to predict a target 
binary mask from an RGB input image. The output of 
the LinkNet is a multi-channel probability mask that 
scores every pixel for the probability that it has a 1 
in each output channel, which is our case correspond 
to the ordinal training labels. The loss function for 
training is the standard cross-entropy loss common in 
binary prediction problems [10].

From the probability masks for each sample, we 
combined the multi-channel output into a pixel-level 
summary score by rank normalizing each channel to 
follow the standard normal distribution and averaging 
the normalized scores at each pixel, yielding pixel-
level electronic Geropathology Scores (eGPS). For a 
whole-slide image, we computed the mean electronic 
geropathology score to score to yield sample-level 
electronic geropathology scores.

Training parameters

The training dataset consisted of 16 kidneys from 
four age groups. The images are broken into tiles of 
512 × 512 pixels. There were 300 tiles in total used 
for training. The LinkNet model was trained for 60 
epochs using Adadelta optimizer [11]. The initial 
learning rate was loaded with batch size 20. The loss 
function is defined using binary cross-entropy with 
SoftMax activation function. The neural network 
model and loss functions were implemented in Julia 
1.6 environment with Flux v0.11.6.

Statistical methods

Statistical analysis was done using R-studio build 
485. Using base functions, ANOVAs were calculated 
using the aov function. Specific group-level p values 
were calculated using the TukeyHSD function. Partial 
correlations were done using the cor function on the 
residuals corrected for age.

Classifiers and code

All code to execute the classifiers on your own 
images can be found at https:// github. com/ TheJa 
ckson Labor atory/ DIY- Gerop athol ogy. Additionally, 
we are providing https:// www. gerop athol ogy- imagi 
ng. org/ which has tutorials and step by step directions 
on how to implement the code provided on GitHub.

Results

Training and validation of the classifier on aged 
kidneys

We trained a weakly supervised ordinal classifier to 
detect aging at the pixel level using 16 H&E-stained 
kidney slides, specifically 8 kidneys processed and 
assessed by the GRN, supplemented with 8 kid-
neys from The Jackson Laboratory (Supplemen-
tal Table  2). By monitoring the value of the loss 
function, i.e., the penalty for a bad prediction, on a 
held-out set of images (annotated in Supplemental 
Table 3), we can determine how well the model has 
learned the task over time and whether it continues to 
improve. If this stabilizes and stops changing at a low 
value, we infer that the predictive ability of our model 
has learned all of the relevant information contained 
in the training data. Indeed, as training progressed, 
the loss function decreased systematically over time, 
as assessed using a held-out test set of images (Sup-
plemental Fig. 1), implying that the output electronic 
geropathology score is capturing differences in the 
appearance of the training samples by age.

After training the classifier, we validated the model 
on H&E-stained kidneys from 78 male mice of differ-
ent ages (Supplemental Table 4). The sample-level elec-
tronic geropathology score (see Materials and methods) 
were significantly different across chronological age 
groups, with a monotonic increase in value as a function 
of chronological age (p = 3.63 ×  10−14 (Fig. 2)). In multi-
way comparisons, only the 8- and 16-month age groups 
were not statistically different from each other. Notably, 
in the original GRN paper, no significant difference 
between 8- and 16-month samples was observed. All 
other pairwise age-group comparisons were statistically 
significant at the 95% level using the Tukey multiple 
comparison of means analysis.

https://github.com/TheJacksonLaboratory/DIY-Geropathology
https://github.com/TheJacksonLaboratory/DIY-Geropathology
https://www.geropathology-imaging.org/
https://www.geropathology-imaging.org/
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The electronic geropathology score also corre-
lated with the average score using the GRN grad-
ing scheme given by three independent patholo-
gists for the same samples (R = 0.57, p = 2.37 ×  10−7 
(Fig. 3)). While this correlation is strong, it is driven 
by the fact that both scores are correlated with age. 
After regressing our calendar age from both scores, 
the residual correlation, i.e., partial correlation, was 
not significant (R_partial = 0.12, p = 0.2811). We are 

unable to apply the same statistics presented in the 
Snyder et  al. paper [1] to our data because we have 
a slightly different score. Using linear correlation on 
our electronic geropathology score, we correlate with 
each pathologist 0.5 and with the mean of the pathol-
ogist 0.55. By this same measure, the pathologists 
agree with each other more (between 0.75 and 0.83) 
than we agree with their mean. This is the first piece 
of evidence that we see something a little different 

Fig. 2  Mean computer 
age scores for kidney: 
kidneys from 78 animals 
were run through the renal 
aging classifier. Their 
mean computer age score 
is shown on the y axis, 
and they are grouped by 
calendar age on the x axis. 
Also shown along the 
x-axis is a representative 
painting or visualization of 
the computer age scores. 
Dark blue is 8 months, 
royal blue 16 months, 
yellow 20 months, orange 
32 months. Original H&E 
images can be observed at 
images.jax.org

Fig. 3  eGPS correlation 
with GRN: this shows the 
average of three patholo-
gists scores on the y axis 
and the computer-generated 
score on the x-axis. 
There is a significant 
(p = 2.37 ×  10−7) posi-
tive (R = 0.57) correlation 
between the two scores. 
Original H&E images can 
be observed at images.jax.
org
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than the GRN score. The GRN score correlates with 
age, and the electronic geropathology score correlates 
with age when we adjust the correlations for age, but 
we do see a non-significant correlation between the 
GRN scores and the electronic geropathology score. 
This indicates that we detect the GRN changes plus 
something else.

Visualization and correlation with aging lesions

We sought to determine whether the image features 
detected by our model overlapped with those used by 
the GRN. In other words, does our model “see” the 
same age-related changes that are scored by the GRN 
scheme. Using GRN-based annotation by a board-
certified veterinary pathologist (JK), we compared the 
spatial variation in pixel-level electronic geropathol-
ogy score with presence or absence of specific lesions 
in an 8-month and a 32-month-old sample. Overall, 
the pixel-level electronic geropathology scores are 
systematically higher in the 32-month-old samples 
in regions annotated by the pathologist compared to 
unannotated 32-month-old pixels and an 8-month-old 
image (Fig. 4). In regions annotated as having lesions 
as part of the GRN score, not only do we detect ele-
vated age scores in all lesion types, but we also detect 
pixels with low electronic geropathology scores in 
these lesions. Interestingly, we also observed unan-
notated pixels in the 32-month-old sample with high 
electronic geropathology scores, indicating that our 
model is sensitive to a broader set of features than 
the GRN grading scheme, potentially accounting for 
the lack of partial correlation between the electronic 
geropathology score and the GRN score (Fig. 3). We 
also note that the unannotated pixels that were not 
in lesions annotated by the pathologist have higher 
variance in electronic geropathology score than those 
within any particular lesion type.

To further visualize our scores and enable hypoth-
esis generation, we plotted electronic geropathology 
scores as a heat map that can be compared to the raw 
image. By looking at these “paintings,” we observe 
overt differences in overall pixel value by age, as 
expected, but also our model detects aging as a pro-
cess that happens first in the cortex (see Fig. 2, Fig. 6, 
and visit Images.jax.org for all images used in paper). 
These visualizations allow researchers to explore the 
tissues scores systematically and begin to open the 
machine learning “black box.”

The lack of significant partial correlation between 
the eGPS and the GRN score suggests that the eGPS 
identifies novel features that are not accounted for by 
the GRN scheme. We noted that in Fig.  2 there are 
instances where horizontal bands can be seen. The 
green band highlights one example, this implies vari-
ation of the eGPS among images with nearly equal 
GRN score. To explore this further, we identified four 
example images contained in the green band, all com-
ing from C56Bl/6 J mice but with different chronolog-
ical age. These images were scored with differential 
eGPSs allowing for the classification of age but had 
nearly identical GRN score. Viewing these images, 
we were able to qualitatively observe subtle changes 
in the tissue structure that change with age but were 
not fully captured in the GRN score (see images.jax.
org). Specifically, there are subtle irregularities in 
the capsule/subcapsular cortex (cortical depressions) 
in the younger mice. These can happen with han-
dling the tissue/artifact, but also with pathology as 
accounted for in the GRN (infarct and nephropathy). 
The infarct is more distinct usually and wedge shaped 
with larger depth of involvement. The GRN definition 
[1] lumps the glomerular, tubular, and other changes 
that occur into one definition. The eGPS may be sepa-
rating out glomerular from tubular changes (split-
ting) and assigning weight to them possibly render-
ing the eGPS to be more sensitive. Instead of present 

Fig. 4  eGPS separated by regions of pathologist annota-
tion. Kidney tissue from 6 animals (three 32 month and three 
8-month tissues were annotated by a pathologist for locations 
of lesions meeting the GRN score). We then plotted the pixel-
level eGPS on the y-axis and the lesion category plus unan-
notated categories on the x axis. Colors indicate age 8-month 
samples in blue and 32-month samples in orange
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or absent (0–1) as used in the GRN, the eGPS could 
be assigning weight or breaking down age further for 
example by size (including smaller infarcts that may 
not meet subjective threshold criteria on a 0–1 grad-
ing scale). Features in the eGPS detects may be over-
looked or may be lumped into nephropathy based on 
overlapping/similar features.

Quantification of intervention

Given that one of the primary goals for any aging met-
ric is to detect the efficacy of potential therapies to 
limit age-associated pathologies, we tested our model 
on kidney samples from a published intervention study 
by Jiang et al., showing that the GRN score detected a 
significant decrease in histopathology after rapamycin 
treatment [2]. Using slides from 7 female C57BL/6  J 
mice fed control diet and 8 female C57BL/6 J mice fed 
a diet with rapamycin, we also found a statistically sig-
nificant decrease in electronic geropathology score in 
the females that were given rapamycin (Fig.  5). This 
is a strong validation result, as all these mice were the 
same chronological age, which shows that our model is 
sensitive to the effect of anti-aging interventions.

Throughput, portability, and further validation of the 
model

The above analyses were run on a high-performance 
computing cluster, which involves significant over-
head and is not available to all investigators. To test 
the throughput and portability of our classifier, we ran 
a second dataset containing 29 slides from C57BL/6 J 
male mice aged 13 months and 20 months that were 
raised in the Nathan Shock Center and processed at 
The Jackson Laboratory (see Materials and methods). 
These mice were housed and prepared completely 
separately from the training and validation data 
above. Using an Apple MacBook Pro with a 2.6 GHz 
6 core intel Core i7 processor, processing took an 
average of 1  min 37  s per slide to run through the 
classifier, and we can detect significant difference by 
age (p = 0.0001; see Supplemental Fig.  2). We have 
also further tested on six H&E-stained slides from 
frozen sections, rather than FFPE sections, and again 
obtained a significant difference with age (p = 4.963e-
05; see Fig. 6). Thus, while our model runs quickly on 
a large computer cluster with parallel processing, it is 
feasible to run our model on individual computers.

Discussion

There are many metrics that can be used to measure 
aging, but automated digital pathology is attractive 
for multiple reasons. First, generating histological 
images is highly optimized and routine, while also 
yielding a wealth of structural information. Sec-
ond, with modern automated staining systems and 
slide scanners, histological imaging is now a high-
throughput data modality. The rate-limiting step to 
applying modern computer vision workflows had 
seemed to be a lack of annotated images, which rely 
on expert human scoring. In this study, we sought 
to determine whether we could measure aging using 
computer vision of WSIs in a manner consistent with 
the GRN grading scheme, but without ground-truth 
lesion labels a priori. With our approach, we directly 
learned age-associated histopathologies by only pre-
dicting sample age at the whole-slide level (Fig.  2). 
Our approach predicted an electronic geropathology 
score (eGPS), pixel by pixel, using information from 
the surrounding tissue using a convolutional neural 
network (CNN) architecture. The output of the model 

Fig. 5  SLAM data. Electronic geropathology scores from 
female kidneys from 7 mice on control and 8 mice treated with 
rapamycin from [2] are shown along with the paintings of their 
electronic geropathology scores. Original H&E images can be 
observed at images.jax.org



2579GeroScience (2024) 46:2571–2581 

1 3
Vol.: (0123456789)

is a pixel-level electronic geropathology score that we 
can further mine for important age-associated pat-
terns. In post hoc analyses, we show that regions with 
ground-truth pathologist annotations have elevated 
electronic geropathology scores relative to young 
tissue, but we also demonstrate that unannotated 
regions had higher electronic geropathology scores, 
implicated further age-associated features beyond the 
lesions scored in the GRN grading scheme (Fig. 4).

The correlation between the predicted electronic 
geropathology score and the GRN-pathologist age 
score (Fig. 3) was comparable to the level of agree-
ment among pathologists [1]. The inter-rater reliabil-
ity of pathologist assessments has been the subject of 
ongoing debate as a reliable outcome measure [12], 
so the prospect of completely reproducible machine 
scoring that gets within the bounds of inter-patholo-
gist reliability may soon yield robust histology scores 
for intervention studies. There are several alternative 
grading schemes built to measure chronic changes in 
kidney pathology. For example, Sethi et al. proposed 
a grading scheme for age-related changes in human 
tissue that does not completely overlap the GRN sys-
tem [13]. Some age-related changes are species-spe-
cific and have no known negative effects on health, 

so not all grading schemes will overlap entirely. Even 
within the field of age-associated pathology, there is 
no consensus yet on which features are most the rel-
evant or robust markers of aging. In this light, it is 
not surprising that our electronic geropathology score 
does not simply surrogate the GRN scores. Indeed, 
we think it is likely that the electronic geropathol-
ogy score is sensitive to changes that are not captured 
in the GRN score. These changes could be larger, 
lesion-level differences such as the alternative grad-
ing scheme proposed by Sethi et  al., but they could 
also be smaller, non-lesional changes in the appear-
ance of the tissue is detectable but not yet included in 
any visual assessment because of the need to isolate 
and name features. The second option is more likely 
given the subtle changes observed by a pathologist 
when exploring difference in C67Bl/6 J mice depicted 
in the green band in Fig. 3. A clear further action out-
side the scope of this paper is to work with the GRN 
to quantify these changes and determine if they hap-
pen in other strains. There is precedent for this type of 
non-lesional difference being detected with machine 
learning, where computer vision can help direct 
pathologists to smaller yet quantifiable and verifiable 
changes that are not overtly visible as lesions [14]. 

Fig. 6  Frozen sections. 
Electronic geropathology 
scores from C57BL/6 J 
frozen sections from mice 
at 4 months (n = 3) and 
24 months (n = 3) with 
corresponding paintings. 
Original H&E images can 
be observed at images.jax.
org
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Another possible explanation for the lack of partial 
correlations might be the magnifications explored. 
Original GRN scores were made at 20 × while the 
electronic geropathology score was calculated on a 
down sampled 20 × image which equated to approxi-
mately a 2 × magnification. It has been shown that 
making annotations at different levels than machine 
learning algorithms function at can have variable 
effects on false positives and false negatives [15].

We note an interesting interpretation regarding 
the difference between electronic geropathology 
score and pathologist scores. The electronic gero-
pathology scores were more often lower than the 
pathologist scores in the young time points, while 
the pathologists’ scores trended higher than the elec-
tronic geropathology score for older tissues. We infer 
that if tissue is largely healthy with a few isolated 
age-associated lesions, then a pathologist searching 
for lesions might focus on these, producing compara-
tively higher scores relative to the amount of healthy 
tissue. Likewise, in older tissue, it can be harder to 
gauge the amount of normal tissue, instead focusing 
on the age-associated lesions, leading again to higher 
scores despite the present of relatively healthy tissue. 
In contrast, using computer scoring allows all pixels 
to be examined in their context to generate an unbi-
ased score that accounts for all tissue.

The reproducibility and unbiased nature of compu-
tational scoring cannot be underestimated when dis-
cussing the applications of quantitative histology as 
outcome measures. For example, the generalization of 
our model to samples examining the lifespan-extend-
ing effects of rapamycin shows that even within the 
same age group the variation in electronic geropa-
thology score corresponds to measurable histologi-
cal effects. The fact that these scores are, in princi-
ple, scalable to thousands of images may enable large 
intervention studies with valid, high-throughput his-
tological endpoints. However, electronic geropathol-
ogy scores are not immune to data quality issues and 
do not substitute for good experimental design. We 
can see by examining our pixel-level scores that elec-
tronic geropathology scores are not uniform across 
different parts of the kidney. Thus, care should be 
taken in the design and collection of samples to make 
sure that the same plane of tissue is used for com-
parison between animals. As with any image analy-
sis process, but especially with computerized scoring, 

sample processing from collection, fixation, section-
ing and staining variation, and batch effects can have 
a significant effect on the results. For example, batch 
effects due to differences in staining protocol and 
image resolution can subtly influence the pixel-level 
intensity values and therefore the features computed 
by the model. Methodologically, the computational 
load for training any image analysis model scales 
with the resolution of the images. This compounds 
the “black box” problem of deep learning models, 
because the model may detect features at the training 
resolution that are not obvious at the optimal resolu-
tions. For detecting specific lesions, the elaboration 
of the complete set of features learned by our eGPS 
model is beyond the scope of the present study, but 
we expect future approaches may incorporate multi-
scale features to better interpolate between full reso-
lution and higher scale.

Our tools are intended to help researchers and 
pathologists by robustly and reproducibly automating 
the tedious tasks and freeing time for more insight-
ful links to be made. Visual inspection of all results is 
possible, while the model output itself can highlight 
extremes that might warrant further investigation. 
However, tools are only useful if there is knowledge of 
how to implement them, including training. In addition 
to providing code and trained classifiers in this paper, 
we also provide a website with tutorials and informa-
tion on how to utilize these tools on your own data 
(https:// www. gerop athol ogy- imagi ng. org/). We note, in 
particular, that our general approach to aging classifiers 
(i.e., weakly supervised ordinal regression) is general-
izable to any tissue or imaging modality. Beyond the 
use case presented here, we expect this approach to be 
valuable in many geropathology contexts in the future.
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