Skip to main content

Advertisement

Log in

Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer’s disease

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Sleep disturbance is a recognized risk factor for Alzheimer’s disease (AD), but the underlying micro-pathological evidence remains limited. To bridge this gap, we established an amyloid-β oligomers (AβO)-induced rat model of AD and subjected it to intermittent sleep deprivation (SD). Diffusion tensor imaging (DTI) and transmission electron microscopy were employed to assess white matter (WM) integrity and ultrastructural changes in myelin sheaths. Our findings demonstrated that SD exacerbated AβO-induced cognitive decline. Furthermore, we found SD aggravated AβO-induced asymmetrical impairments in WM, presenting with reductions in tract integrity observed in commissural fibers and association fasciculi, particularly the right anterior commissure, right corpus callosum, and left cingulum. Ultrastructural changes in myelin sheaths within the hippocampus and corpus callosum further confirmed a lateralized effect. Moreover, SD worsened AβO-induced lateralized disruption of the brain structural network, with impairments in critical nodes of the left hemisphere strongly correlated with cognitive dysfunction. This work represents the first identification of a lateralized impact of SD on the mesoscopic network and cognitive deficits in an AD rat model. These findings could deepen our understanding of the complex interplay between sleep disturbance and AD pathology, providing valuable insights into the early progression of the disease, as well as the development of neuroimaging biomarkers for screening early AD patients with self-reported sleep disturbances. Enhanced understanding of these mechanisms may pave the way for targeted interventions to alleviate cognitive decline and improve the quality of life for individuals at risk of or affected by AD.

Graphical Abstract

a AβO injection and sleep deprivation were conducted on adult rats. b Sleep deprivation and AβO-induced neurotoxicity aggravated cognitive disability with a synergistic effect. c Sleep deprivation and AβO-induced neurotoxicity reduced the integrity of specific association fasciculi and commissural fibers with ultrastructural demyelination. d On the basis of white matter integrity destruction, the structural connection was disrupted. The exacerbated topological properties with lateralized effects were correlated with cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source data are provided as Table S7 and S10

Fig. 7

Source data are provided as Table S8, S9, and S11

Similar content being viewed by others

Data availability

All data associated with this study are present in the paper or the Supplementary Materials. Any additional information that supports the findings reported in this study is available by contacting the corresponding author upon reasonable request.

Abbreviations

:

Amyloid-β oligomer injection group

AβO :

Amyloid-β oligomer

AD :

Alzheimer’s disease

ADC :

Apparent diffusion coefficient

AxD :

Axial diffusivity

CC :

Corpus callosum

CG :

Cingulate gyrus

Con :

Control

Cp :

Clustering coefficient

DR :

Discrimination ratio

DTI :

Diffusion tensor imaging

Eg :

Global efficiency

Eloc :

Local efficiency

Ent :

Entorhinal cortex

FA :

Fractional anisotropy

HIP :

Hippocampus

L :

Left

Lp :

Length of shortest path

mPFC :

Medial prefrontal cortex

MCI :

Mild cognitive impairment

MR :

Magnetic resonance

R :

Right

RD :

Radial diffusivity

ROI :

Regions of interest

SD :

Sleep deprivation or sleep deprivation group

SA :

Sleep deprivation combined with amyloid-β oligomer injection group

SWN :

Small world network

SCD :

Subjective cognitive decline

T-Lobe :

Temporal lobe

VBM :

Voxel-based morphometry

References

  1. Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73–88. https://doi.org/10.1038/s41582-018-0116-6.

    Article  PubMed  Google Scholar 

  2. Dean DC 3rd, Hurley SA, Kecskemeti SR, O’Grady JP, Canda C, Davenport-Sis NJ, Carlsson CM, Zetterberg H, Blennow K, Asthana S, et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 2017;74(1):41–9. https://doi.org/10.1001/jamaneurol.2016.3232.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS, et al. Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer’s disease. Neuroimage Clin. 2019;22:101767. https://doi.org/10.1016/j.nicl.2019.101767.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu MY, Xu ZQ, Wang YJ. White matter “matters” in Alzheimer’s disease. Neurosci Bull. 2022;38(3):323–6. https://doi.org/10.1007/s12264-021-00803-8.

    Article  PubMed  Google Scholar 

  5. Mayo CD, Mazerolle EL, Ritchie L, Fisk JD, Gawryluk JR. Longitudinal changes in microstructural white matter metrics in Alzheimer’s disease. Neuroimage Clin. 2017;13:330–8. https://doi.org/10.1016/j.nicl.2016.12.012.

    Article  PubMed  Google Scholar 

  6. Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T, Overhoff K, Steixner-Kumar AA, Subramanian S, Arinrad S, et al. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature. 2023;618(7964):349–57. https://doi.org/10.1038/s41586-023-06120-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010;330(6005):779–82. https://doi.org/10.1126/science.1190927.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Olson IR. The original social network: white matter and social cognition. Trends Cogn Sci. 2018;22(6):504–16. https://doi.org/10.1016/j.tics.2018.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Möbius W, Goetze B, Jahn HM, Huang W, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron. 2016;91(1):119–32. https://doi.org/10.1016/j.neuron.2016.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020;5(12):e661–71. https://doi.org/10.1016/s2468-2667(20)30185-7.

    Article  PubMed  Google Scholar 

  11. Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, Shi J, Vitiello MV, Lu L. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev. 2018;40:4–16. https://doi.org/10.1016/j.smrv.2017.06.010.

    Article  PubMed  Google Scholar 

  12. de Vivo L, Bellesi M. The role of sleep and wakefulness in myelin plasticity. Glia. 2019;67(11):2142–52. https://doi.org/10.1002/glia.23667.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kocevska D, Tiemeier H, Lysen TS, de Groot M, Muetzel RL, Van Someren EJW, Ikram MA, Vernooij MW, Luik AI. The prospective association of objectively measured sleep and cerebral white matter microstructure in middle-aged and older persons. Sleep. 2019;42(10):zsz140. https://doi.org/10.1093/sleep/zsz140.

  14. Wu Y, Liu M, Zeng S, Ma X, Yan J, Lin C, Xu G, Li G, Yin Y, Fu S, et al. Abnormal topology of the structural connectome in the limbic cortico-basal-ganglia circuit and default-mode network among primary insomnia patients. Front Neurosci. 2018;12:860. https://doi.org/10.3389/fnins.2018.00860.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li S, Tian J, Bauer A, Huang R, Wen H, Li M, Wang T, Xia L, Jiang G. Reduced integrity of right lateralized white matter in patients with primary insomnia: a diffusion-tensor imaging study. Radiology. 2016;280(2):520–8. https://doi.org/10.1148/radiol.2016152038.

    Article  PubMed  Google Scholar 

  16. Hoyer C, Gass N, Weber-Fahr W, Sartorius A. Advantages and challenges of small animal magnetic resonance imaging as a translational tool. Neuropsychobiology. 2014;69(4):187–201. https://doi.org/10.1159/000360859.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Chen X, Du Z, Mao X, Gao R, Chen Z, Wang H, Zhang G, Zhang N, Li H, et al. Knockdown of astrocytic Grin2a exacerbated sleep deprivation-induced cognitive impairments and elevation of amyloid-beta. Sleep Med. 2022;100:280–90. https://doi.org/10.1016/j.sleep.2022.08.021.

    Article  PubMed  Google Scholar 

  18. Chang L, Zhang Y, Liu J, Song Y, Lv A, Li Y, Zhou W, Yan Z, Almeida OF, Wu Y. Differential regulation of N-methyl-D-aspartate receptor subunits is an early event in the actions of soluble amyloid-β(1–40) oligomers on hippocampal neurons. J Alzheimers Dis. 2016;51(1):197–212. https://doi.org/10.3233/jad-150942.

    Article  CAS  PubMed  Google Scholar 

  19. Du Z, Song Y, Chen X, Zhang W, Zhang G, Li H, Chang L, Wu Y. Knockdown of astrocytic Grin2a aggravates β-amyloid-induced memory and cognitive deficits through regulating nerve growth factor. Aging Cell. 2021;20(8):e13437. https://doi.org/10.1111/acel.13437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sawangjit A, Oyanedel CN, Niethard N, Salazar C, Born J, Inostroza M. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature. 2018;564(7734):109–13. https://doi.org/10.1038/s41586-018-0716-8.

    Article  CAS  PubMed  Google Scholar 

  21. Winters BD, Saksida LM, Bussey TJ. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev. 2008;32(5):1055–70. https://doi.org/10.1016/j.neubiorev.2008.04.004.

    Article  PubMed  Google Scholar 

  22. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208-219. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  23. Nie B, Wang L, Hu Y, Liang S, Tan Z, Chai P, Tang Y, Shang J, Pan Z, Zhao X, et al. A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model. Neuroimage. 2019;203:116163. https://doi.org/10.1016/j.neuroimage.2019.116163.

    Article  CAS  PubMed  Google Scholar 

  24. Nie B, Chen K, Zhao S, Liu J, Gu X, Yao Q, Hui J, Zhang Z, Teng G, Zhao C, et al. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis. Hum Brain Mapp. 2013;34(6):1306–18. https://doi.org/10.1002/hbm.21511.

    Article  PubMed  Google Scholar 

  25. Liang S, Wu S, Huang Q, Duan S, Liu H, Li Y, Zhao S, Nie B, Shan B. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis. Magn Reson Imaging. 2017;43:122–8. https://doi.org/10.1016/j.mri.2017.07.011.

    Article  PubMed  Google Scholar 

  26. Kreilkamp BAK, Lisanti L, Glenn GR, Wieshmann UC, Das K, Marson AG, Keller SS. Comparison of manual and automated fiber quantification tractography in patients with temporal lobe epilepsy. Neuroimage Clin. 2019;24:102024. https://doi.org/10.1016/j.nicl.2019.102024.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8(7):e68910. https://doi.org/10.1371/journal.pone.0068910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang R, Han H, Shi K, Alberts IL, Rominger A, Yang C, Yan J, Cui D, Peng Y, He Q, et al. The alteration of brain interstitial fluid drainage with myelination development. Aging Dis. 2021;12(7):1729–40. https://doi.org/10.14336/ad.2021.0305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen JF, Liu K, Hu B, Li RR, Xin W, Chen H, Wang F, Chen L, Li RX, Ren SY, et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron. 2021;109(14):2292-2307.e2295. https://doi.org/10.1016/j.neuron.2021.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aggleton JP, O’Mara SM. The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci. 2022;23(8):505–16. https://doi.org/10.1038/s41583-022-00591-8.

    Article  CAS  PubMed  Google Scholar 

  31. Thomason ME, Thompson PM. Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol. 2011;7:63–85. https://doi.org/10.1146/annurev-clinpsy-032210-104507.

    Article  PubMed  Google Scholar 

  32. Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–27. https://doi.org/10.1016/j.neubiorev.2018.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paus T. Tracking development of connectivity in the human brain: axons and dendrites. Biol Psychiatry. 2023;93(5):455–63. https://doi.org/10.1016/j.biopsych.2022.08.019.

    Article  PubMed  Google Scholar 

  34. Uddin MS, Tewari D, Mamun AA, Kabir MT, Niaz K, Wahed MII, Barreto GE, Ashraf GM. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res Rev. 2020;60:101046. https://doi.org/10.1016/j.arr.2020.101046.

    Article  PubMed  Google Scholar 

  35. Oliveira AM, Hawk JD, Abel T, Havekes R. Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learn Mem. 2010;17(3):155–60. https://doi.org/10.1101/lm.1625310.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science. 2021;374(6569):eaba6905. https://doi.org/10.1126/science.aba6905.

    Article  CAS  PubMed  Google Scholar 

  37. Kiely M, Triebswetter C, Cortina LE, Gong Z, Alsameen MH, Spencer RG, Bouhrara M. Insights into human cerebral white matter maturation and degeneration across the adult lifespan. Neuroimage. 2022;247:118727. https://doi.org/10.1016/j.neuroimage.2021.118727.

    Article  PubMed  Google Scholar 

  38. Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging. 2011;32(8):1341–71. https://doi.org/10.1016/j.neurobiolaging.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  39. Lloret A, Esteve D, Lloret MA, Monllor P, López B, León JL, Cervera-Ferri A. Is oxidative stress the link between cerebral small vessel disease, sleep disruption, and oligodendrocyte dysfunction in the onset of Alzheimer’s disease? Front Physiol. 2021;12:708061. https://doi.org/10.3389/fphys.2021.708061.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun. 2018;6(1):22. https://doi.org/10.1186/s40478-018-0515-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kenigsbuch M, Bost P, Halevi S, Chang Y, Chen S, Ma Q, Hajbi R, Schwikowski B, Bodenmiller B, Fu H, et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat Neurosci. 2022;25(7):876–86. https://doi.org/10.1038/s41593-022-01104-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Josselyn SA, Tonegawa S. Memory engrams: recalling the past and imagining the future. Science. 2020;367(6473):eaaw4325. https://doi.org/10.1126/science.aaw4325.

  43. Gudberg C, Stevelink R, Douaud G, Wulff K, Lazari A, Fleming MK, Johansen-Berg H. Individual differences in slow wave sleep architecture relate to variation in white matter microstructure across adulthood. Front Aging Neurosci. 2022;14:745014. https://doi.org/10.3389/fnagi.2022.745014.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, Steenland HW, Monje M, Josselyn SA, Frankland PW. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron. 2020;105(1):150-164.e156. https://doi.org/10.1016/j.neuron.2019.10.013.

    Article  CAS  PubMed  Google Scholar 

  45. He F, Li Y, Li C, Zhao J, Liu T, Fan L, Zhang X, Wang J. Changes in the connection network of whole-brain fiber tracts in patients with Alzheimer’s disease have a tendency of lateralization. Neuroreport. 2021;32(14):1175–82. https://doi.org/10.1097/wnr.0000000000001708.

    Article  PubMed  Google Scholar 

  46. Yan J, Raja VV, Huang Z, Amico E, Nho K, Fang S, Sporns O, Wu YC, Saykin A, Goni J, et al. Brain-wide structural connectivity alterations under the control of Alzheimer risk genes. Int J Comput Biol Drug Des. 2020;13(1):58–70. https://doi.org/10.1504/ijcbdd.2020.10026789.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lavrador JP, Ferreira V, Lourenço M, Alexandre I, Rocha M, Oliveira E, Kailaya-Vasan A, Neto L. White-matter commissures: a clinically focused anatomical review. Surg Radiol Anat. 2019;41(6):613–24. https://doi.org/10.1007/s00276-019-02218-7.

    Article  PubMed  Google Scholar 

  48. Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain. 2000;123(Pt 7):1293–326. https://doi.org/10.1093/brain/123.7.1293.

    Article  PubMed  Google Scholar 

  49. Wang Z, Wang J, Zhang H, McHugh R, Sun X, Li K, Yang QX. Interhemispheric functional and structural disconnection in Alzheimer’s disease: a combined resting-state fMRI and DTI study. PLoS One. 2015;10(5):e0126310. https://doi.org/10.1371/journal.pone.0126310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17(1):85–100. https://doi.org/10.1037//0882-7974.17.1.85.

    Article  PubMed  Google Scholar 

  51. Li K, Luo X, Zeng Q, Jiaerken Y, Wang S, Xu X, Xu X, Xu J, Wang C, Zhou J, et al. Interactions between sleep disturbances and Alzheimer’s disease on brain function: a preliminary study combining the static and dynamic functional MRI. Sci Rep. 2019;9(1):19064. https://doi.org/10.1038/s41598-019-55452-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: a comparative perspective. Physiol Rev. 2020;100(3):1019–63. https://doi.org/10.1152/physrev.00006.2019.

    Article  CAS  PubMed  Google Scholar 

  53. Roe JM, Vidal-Piñeiro D, Sørensen Ø, Brandmaier AM, Düzel S, Gonzalez HA, Kievit RA, Knights E, Kühn S, Lindenberger U, et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat Commun. 2021;12(1):721. https://doi.org/10.1038/s41467-021-21057-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kong XZ, Mathias SR, Guadalupe T, Glahn DC, Franke B, Crivello F, Tzourio-Mazoyer N, Fisher SE, Thompson PM, Francks C. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A. 2018;115(22):E5154-e5163. https://doi.org/10.1073/pnas.1718418115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jordan JT. The rodent hippocampus as a bilateral structure: a review of hemispheric lateralization. Hippocampus. 2020;30(3):278–92. https://doi.org/10.1002/hipo.23188.

    Article  PubMed  Google Scholar 

  56. Mengotti P, Käsbauer AS, Fink GR, Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex. 2020;132:206–22. https://doi.org/10.1016/j.cortex.2020.08.022.

    Article  PubMed  Google Scholar 

  57. Duboc V, Dufourcq P, Blader P, Roussigné M. Asymmetry of the brain: development and implications. Annu Rev Genet. 2015;49:647–72. https://doi.org/10.1146/annurev-genet-112414-055322.

    Article  CAS  PubMed  Google Scholar 

  58. Esteves M, Lopes SS, Almeida A, Sousa N, Leite-Almeida H. Unmasking the relevance of hemispheric asymmetries-Break on through (to the other side). Prog Neurobiol. 2020;192:101823. https://doi.org/10.1016/j.pneurobio.2020.101823.

    Article  PubMed  Google Scholar 

  59. Vallortigara G, Rogers LJ. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci. 2005;28(4):575–89. https://doi.org/10.1017/s0140525x05000105. (discussion 589-633).

    Article  PubMed  Google Scholar 

  60. Klur S, Muller C, Pereira de Vasconcelos A, Ballard T, Lopez J, Galani R, Certa U, Cassel JC. Hippocampal-dependent spatial memory functions might be lateralized in rats: an approach combining gene expression profiling and reversible inactivation. Hippocampus. 2009;19(9):800–16. https://doi.org/10.1002/hipo.20562.

    Article  CAS  PubMed  Google Scholar 

  61. Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol. 2023;38(2):156–70. https://doi.org/10.1016/j.tree.2022.10.004.

    Article  PubMed  Google Scholar 

  62. Anafi RC, Kayser MS, Raizen DM. Exploring phylogeny to find the function of sleep. Nat Rev Neurosci. 2019;20(2):109–16. https://doi.org/10.1038/s41583-018-0098-9.

    Article  CAS  PubMed  Google Scholar 

  63. Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: toward elucidating an enigma. Sleep Med Rev. 2016;28:46–54. https://doi.org/10.1016/j.smrv.2015.08.005.

    Article  PubMed  Google Scholar 

  64. Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature. 2023;616(7956):312–8. https://doi.org/10.1038/s41586-023-05827-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron. 2021;109(13):2075–90. https://doi.org/10.1016/j.neuron.2021.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohtasib R, Alghamdi J, Jobeir A, Masawi A, Pedrosa de Barros N, Billiet T, Struyfs H, Phan TV, Van Hecke W, Ribbens A. MRI biomarkers for Alzheimer’s disease: the impact of functional connectivity in the default mode network and structural connectivity between lobes on diagnostic accuracy. Heliyon. 2022;8(2):e08901. https://doi.org/10.1016/j.heliyon.2022.e08901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, Démonet JF, Garibotto V, Giannakopoulos P, Gietl A, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16(8):661–76. https://doi.org/10.1016/s1474-4422(17)30159-x.

    Article  PubMed  Google Scholar 

  68. Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017;157:230–46. https://doi.org/10.1016/j.pneurobio.2015.12.007.

    Article  PubMed  Google Scholar 

  69. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307(5713):1282–8. https://doi.org/10.1126/science.1105681.

    Article  CAS  PubMed  Google Scholar 

  70. Zamponi E, Pigino GF. Protein misfolding, signaling abnormalities and altered fast axonal transport: implications for Alzheimer and prion diseases. Front Cell Neurosci. 2019;13:350. https://doi.org/10.3389/fncel.2019.00350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–24. https://doi.org/10.1016/s1474-4422(18)30318-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan T, Zhan W, Dini D. Linking fluid-axons interactions to the macroscopic fluid transport properties of the brain. Acta Biomater. 2023;160:152–63. https://doi.org/10.1016/j.actbio.2023.02.010.

    Article  CAS  PubMed  Google Scholar 

  73. Wang A, Wang R, Cui D, Huang X, Yuan L, Liu H, Fu Y, Liang L, Wang W, He Q, et al. The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination. Aging Dis. 2019;10(5):937–48. https://doi.org/10.14336/ad.2018.1206.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vaquer-Alicea J, Diamond MI. propagation of protein aggregation in neurodegenerative diseases. Annu Rev Biochem. 2019;88:785–810. https://doi.org/10.1146/annurev-biochem-061516-045049.

    Article  CAS  PubMed  Google Scholar 

  75. Mueller SG, Weiner MW. Amyloid associated intermittent network disruptions in cognitively intact older subjects: structural connectivity matters. Front Aging Neurosci. 2017;9:418. https://doi.org/10.3389/fnagi.2017.00418.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Scientific Research Key Program of the Beijing Municipal Commission of Education (KZ202110025032), the National Natural Science Foundation of China (81771370, 82071514), the National Key Research and Development Program of China (2020YFC2005300, 2022YFC2503900) and the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201810025004, KM202110025029).

Author information

Authors and Affiliations

Authors

Contributions

Y. W. and L. C. conceived and designed the study. X. M. and D. H. performed animal experiments. B. N. and H. L. performed MRI data processing, L. J. performed the experiment of transmission electron microscopy, and W. G., W. Z., and H. W. performed data analyses. X. M., D. H., and L. C. interpreted the data and wrote the original manuscript. G. Z., N. Z., Y. S., and Y. W. provided constructive comments and discussion of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yan Wu or Lirong Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11357_2023_1000_MOESM1_ESM.tif

Supplementary file1 (TIF 2752 KB) Sleep deprivation combined with AβO aggravated the cognitive decline. (a) Timeline of the experimental design, indicating OPR task was conducted after sleep deprivation. (b) Diagram of the object place recognition test. (c) Quantification of average locomotor speed. (d) Quantification of discrimination ratio for novel place of object. (e) Quantification of times of interaction with novel place of object. Error bars represent standard deviations; One-way ANOVA with Turkey's multiple comparison test between four groups. * vs Con, ***p < 0.001; vs SD, △△p < 0.01, △△△p < 0.001; n = 5-8 rats /group.

11357_2023_1000_MOESM2_ESM.tif

Supplementary file2 (TIF 13138 KB) Maps of volume for white matter in voxel-wise analysis. Regional difference between Con and SD (a), Aβ (b), SA (c) groups were compared, and specific significant clusters were showed in Supplementary Table S1-S3.

11357_2023_1000_MOESM3_ESM.tif

Supplementary file3 (TIF 474 KB) Bilateral difference between left and right hippocampus and mPFC of rats in tractography. (a, c) Quantification of the number (a) and mean FA value (c) of tracts between left and right hippocampus. (b, d) Estimation plots reevaluate the bilateral difference of hippocampal tracts. (e, g) Quantification of bilateral difference of the number (e) and mean FA value (g) of tracts in left and right mPFC. (f, h) Estimation plots reevaluate the difference between left and right mPFCs. Dots with wathet, pink, green and purple in estimation plots represent Con, SD, Aβ and SA groups respectively. Error bars represent standard deviations; Paired samples t test between bilateral number and mean FA value of tracts in four groups, #p < 0.05, ##p < 0.01; n = 6-11 rats /group.

11357_2023_1000_MOESM4_ESM.tif

Supplementary file4 (TIF 2112 KB) The AxD and RD values changed asymmetrically in specific tracts linking cognition related regions. (a) A heat map for AxD value change in related association fasciculi and commissural fibers. (b-h) Quantification of AxD value difference in bilateral forceps minor of corpus callosum (b), anterior commissure (c), cingulum (d), ventral hippocampal commissure (e), fornix (f), dorsal hippocampal commissure (g) and forceps major of corpus callosum (h) within four groups. (i) A bar chart for bilateral difference of AxD value in above tracts. (j) A heat map for RD value change in related association fasciculus and commissural fibers. (k-q) Quantification of RD value difference in bilateral forceps minor of corpus callosum (k), anterior commissure (l), cingulum (m), ventral hippocampal commissure (n), fornix (o), dorsal hippocampal commissure (p) and forceps major of corpus callosum (q) within four groups. (r) A bar chart for bilateral difference of RD value in above tracts. Error bars represent standard deviations; One-way ANOVA with Turkey's multiple comparison test between ipsilateral tracts in four groups. * vs Con, *p < 0.05, **p < 0.01, ***p < 0.001; vs SD, p < 0.05, △△p < 0.01, △△△p < 0.001; + vs Aβ, +p < 0.05, ++p < 0.01; Paired samples T test between bilateral ROIs in four groups, #p < 0.05, ##p < 0.01; n = 6-11 rats /group.

11357_2023_1000_MOESM5_ESM.tif

Supplementary file5 (TIF 812 KB) The FA, ADC and volume changed in corpus callosum and hippocampus commissure. (a-d) Quantification of FA value difference in forceps minor of corpus callosum (a), forceps major of corpus callosum (b), ventral hippocampal commissure (c), and dorsal hippocampal commissure (d) within four groups. (e-g) Quantification of ADC value difference in forceps minor of corpus callosum (e), forceps major of corpus callosum (f), ventral hippocampal commissure (g), and dorsal hippocampal commissure (h) within four groups. (i-l) Quantification of difference of white matter volume in forceps minor of corpus callosum (i), forceps major of corpus callosum (j), ventral hippocampal commissure (k), and dorsal hippocampal commissure (l) within four groups. Error bars represent standard deviations; One-way ANOVA with Turkey's multiple comparison test between ipsilateral tracts in four groups. * vs Con, *p < 0.05, **p < 0.01, ***p < 0.001; vs SD, p < 0.05, △△p < 0.01, △△△p < 0.001; + vs Aβ, +p < 0.05, +++p < 0.001; Paired samples T test between bilateral ROIs in four groups, #p < 0.05, ##p < 0.01, ###p < 0.001; n = 6-11 rats /group.

11357_2023_1000_MOESM6_ESM.tif

Supplementary file6 (TIF 1030 KB) Bilateral difference of FA value in association fasciculi and commissural fibers. (a) Abar chart for bilateral difference of FA value in some related association fasciculi and commissural fibers. (b, d, f, h, j, l and n) Quantification of the FA value change within bilateral forceps minor of corpus callosum (b), anterior commissure (d), cingulum (f), ventral hippocampal commissure (h), fornix (j), dorsal hippocampal commissure (l) and forceps major of corpus callosum (n) within four groups. (c, e, g, i, k, m and o) Estimation plots reevaluate the bilateral susceptibility in above tracts when weighting different interventions. Dots with wathet, pink, green and purple represent Con, SD, Aβ and SA groups respectively. Error bars represent standard deviations; Paired samples t test between bilateral mean FA values of tracts in four groups, #p < 0.05, ##p < 0.01, ###p < 0.001; n = 6-11 rats /group.

11357_2023_1000_MOESM7_ESM.tif

Supplementary file7 (TIF 1033 KB) Bilateral difference of ADC value in association fasciculi and commissural fibers. (a) A bar chart for bilateral difference of ADC value in some related association fasciculi and commissural fibers. (b, d, f, h, j, l and n) Quantification of the ADC value change within bilateral forceps minor of corpus callosum (b), anterior commissure (d), cingulum (f), ventral hippocampal commissure (h), fornix (j), dorsal hippocampal commissure (l) and forceps major of corpus callosum (n) within four groups. (c, e, g, i, k, m and o) Estimation plots reevaluate the bilateral susceptibility in above tracts when weighting different interventions. Dots with wathet, pink, green and purple represent Con, SD, Aβ and SA groups respectively. Error bars represent standard deviations; Paired samples t test between bilateral mean ADC value of tracts in four groups, #p < 0.05, ##p < 0.01, ###p < 0.001; n = 6-11 rats /group.

11357_2023_1000_MOESM8_ESM.tif

Supplementary file8 (TIF 978 KB) Bilateral difference of volumes in association fasciculi and commissural fibers. (a) A bar chart for bilateral difference of volumes in some related association fasciculi and commissural fibers. (b, d, f, h, j, l and n) Quantification of the volumes change within bilateral forceps minor of corpus callosum (b), anterior commissure (d), cingulum (f), ventral hippocampal commissure (h), fornix (j), dorsal hippocampal commissure (l) and forceps major of corpus callosum (n) within four groups. (c, e, g, i, k, m and o) Estimation plots reevaluate the bilateral susceptibility in above tracts when weighting different interventions. Dots with wathet, pink, green and purple represent Con, SD, Aβ and SA groups respectively. Error bars represent standard deviations; Paired samples t test between bilateral mean volume of tracts in four groups, #p < 0.05, ##p < 0.01; n = 6-11 rats /group.

Supplementary file9 (DOCX 70 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Han, D., Guo, W. et al. Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer’s disease. GeroScience 46, 2295–2315 (2024). https://doi.org/10.1007/s11357-023-01000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01000-3

Keywords

Navigation