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Abstract  Genetic, metabolic, and clinical evidence 
links lipid dysregulation to an increased risk of Alz-
heimer’s disease (AD). However, the role of lipids in 
the pathophysiological processes of AD and its clini-
cal progression is unclear. We investigated the associ-
ation between cerebrospinal fluid (CSF) lipidome and 
the pathological hallmarks of AD, progression from 
mild cognitive impairment (MCI) to AD, and the rate 
of cognitive decline in MCI patients. The CSF lipi-
dome was analyzed by liquid chromatography cou-
pled to mass spectrometry in an LC-ESI-QTOF-MS/
MS platform for 209 participants: 91 AD, 92 MCI, 

and 26 control participants. The MCI patients were 
followed up for a median of 58 (± 12.5) months to 
evaluate their clinical progression to AD. Forty-eight 
(52.2%) MCI patients progressed to AD during fol-
low-up. We found that higher CSF levels of hexacosa-
noic acid and ceramide Cer(d38:4) were associated 
with an increased risk of amyloid beta 42 (Aβ42) pos-
itivity in CSF, while levels of phosphatidylethanola-
mine PE(40:0) were associated with a reduced risk. 
Higher CSF levels of sphingomyelin SM(30:1) were 
positively associated with pathological levels of phos-
phorylated tau in CSF. Cholesteryl ester CE(11D3:1) 
and an unknown lipid were recognized as the most 
associated lipid species with MCI to AD progression. 
Furthermore, TG(O-52:2) was identified as the lipid 
most strongly associated with the rate of progression. 
Our results indicate the involvement of membrane 
and intracellular neutral lipids in the pathophysiologi-
cal processes of AD and the progression from MCI 
to AD dementia. Therefore, CSF neutral lipids can be 
used as potential prognostic markers for AD.
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Introduction

Alzheimer’s disease (AD) is a human progres-
sive neurodegenerative disease that results from 
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age-related pathological processes. The exact etiology 
of AD is still unknown, and it is believed that apart 
from amyloid and tau pathologies, several other fac-
tors, including genetic, metabolic, bioenergetics, and 
environmental factors, also have a role in the onset 
and development of this disease [1, 2]. AD accounts 
for 60–70% of all dementia cases. The global preva-
lence of dementia was estimated at 57.4 million cases 
in 2019. This number is predicted to increase to 152.8 
million cases in 2050 [3].

The disease is typically characterized by progres-
sive memory impairment and subsequently by the 
gradual affectation of other mental abilities, such as 
behavior, speech, visuospatial orientation, and the 
motor system. The increasing decline in these cog-
nitive capacities affects a person’s ability to perform 
daily routine tasks and finally leads to a complete loss 
of independence, disability, and death [4].

From a pathological point of view, AD is currently 
characterized by the accumulation of extracellular 
abnormally folded amyloid-beta (Aβ) protein into 
amyloid plaques, intracellular aggregations of hyper-
phosphorylated tau protein known as neurofibrillary 
tangles (NFTs), and synaptic and neuronal loss in 
the brain [5]. Clinically, the AD continuum can be 
divided into three stages: preclinical, mild cognitive 
impairment (MCI), and AD dementia [6]. Although 
both pathological and clinical manifestations of AD 
have a progressive nature, there is a weak synchro-
nization between them. Amyloid deposition reaches 
its peak in the AD brain years before the beginning 
of clinical symptoms. Regarding tau pathology and 
synaptic loss, although they continue to progress in 
the symptomatic phase of AD, they also start many 
years before clinical manifestations become evident 
[5]. However, among these mechanisms, the loss of 
synapses and neuronal death have shown a stronger 
correlation with the clinical progression of the dis-
ease [7, 8].

Despite the new advances in the quantification 
and characterization of synaptic markers, the lack of 
specificity of these markers toward synaptic failure 
due to AD is their most important drawback [9]. This 
may mainly originate from our incomplete knowl-
edge about the pathophysiological processes underly-
ing synaptic deficits and subsequent neurodegenera-
tion. The other issue is that there is high variability 
regarding the rate of MCI to AD progression among 
patients, with some having a faster course than others. 

To date, research has mainly focused on discovering 
the risk factors for the disease and the probability of 
developing AD regarding certain risk factors. Con-
sequently, our knowledge about the factors that may 
affect the disease trajectory is highly limited [10].

The human brain is the most lipid-rich organ after 
adipose tissue and contains an incredible mixture of 
lipids [11]. Lipids are an important class of biomol-
ecules that are involved in many vital cellular pro-
cesses, including their role as building blocks of the 
cell membrane, cell signaling, and energy storage 
[12]. Several case‒control studies have associated 
dysregulation in various classes of lipids with AD 
development [13]. In addition, some clinical condi-
tions highly related to lipid dysregulation, such as 
cardiovascular diseases, diabetes, and obesity, are 
among the most frequent comorbidities of AD [14, 
15]. Apart from this clinical evidence, genetic studies 
have also revealed that genes involved in lipid metab-
olism are among the genes most associated with the 
risk of AD [16, 17]. Consistent with this, the inherit-
ance of the apolipoprotein E epsilon 4 allele (APOE 
ɛ4) is the strongest genetic risk factor for AD. APOE 
is involved in the transport and metabolism of choles-
terol [18]. Despite these strong links, little is known 
about the association between brain lipid alterations 
and pathological hallmarks of the disease. In addi-
tion, longitudinal studies investigating the association 
of lipids with AD progression and the rate of progres-
sion are lacking.

Biofluid analysis is the most convenient way to 
identify and monitor lipid dysregulations in patients. 
Blood, in particular, has been a preferable source 
because its acquisition is less invasive. As a result, 
the vast majority of studies have searched for AD-
related lipid dysregulations in blood (plasma, serum, 
and blood cells) [19–22]. However, we should take 
into consideration that AD, although associated with 
many systemic abnormalities [14, 15], principally 
affects brain functionality. Therefore, cerebrospi-
nal fluid (CSF) may be a more reliable and specific 
source for the examination of lipid alterations in AD 
because of its proximity and direct contact with brain 
tissue.

CSF is the biofluid with the closest relation to the 
brain, containing molecules of neural cell origin, 
which reflect, at least in part, brain metabolic activ-
ity. Among the CSF molecular profile, lipids are a 
preponderant component. It is estimated that the total 
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lipid content of human CSF is around 0.2% of plasma 
levels [23], showing its own lipid profile in compari-
son to plasma (24). More specifically, lipidomic stud-
ies have estimated the presence of about 200–300 
different lipid species, with a preferential quantitative 
presence of glycerophospholipids, followed by neu-
tral lipids and sphingolipids [23, 24], and highlighting 
the triacylglycerides as the lipid class with the highest 
number of lipid species [25]. Consequently, CSF pro-
vides a valuable tool for exploring lipid homeostasis 
in patients with AD and identifying novel biomarkers 
for their diagnosis and prognosis.

In this context, the objectives of the present study 
were as follows: first, to determine the association 
between CSF lipidome and the clinical diagnoses of 
MCI and AD; second, to investigate the relationship 
between CSF lipidome and pathological hallmarks of 
the disease; third, to assess whether CSF lipids could 
be related to MCI to AD progression; fourth, to iden-
tify the lipids that could be associated with the rate 
of progression in MCI patients; and fifth, to evaluate 
whether changes in CSF lipid species could serve as 
prognostic biomarkers of progression and the rate of 
progression from MCI to AD.

Methods

Study population

The study participants were recruited consecutively 
from a sample of outpatients who visited the Cogni-
tive Disorders Unit of the Hospital Universitari Santa 
Maria de Lleida from June, 2014, to December, 2016. 
The inclusion criteria for patients were as follows: 
(1) males and females without specific treatment for 
dementia at the moment of the inclusion, with a new 
diagnosis of MCI or mild and moderate AD (Mini-
Mental State Examination (MMSE) ≥ 20). The diag-
noses of MCI and AD were made according to the cri-
teria of the National Institute on Ageing-Alzheimer’s 
Association [4, 26]; (2) absence of visual or hearing 
problems that, in the investigator’s judgement, would 
decrease the compliance with the neuropsychologi-
cal examination; (3) an informed consent form signed 
by the patient and the responsible caregiver (and/or if 
applicable, the legal representative if different from 
the responsible caregiver); and (4) a knowledgeable 

and reliable caregiver who accompanied the patient to 
all clinic visits during the study.

Controls were subjects without neurological or 
neuropsychiatric diseases who underwent lumbar 
puncture for any other reason. Epidemiological data, 
including age, sex, education, and the time of symp-
tom onset, were recorded using a structured interview 
conducted during the initial patient visit. In addition, 
blood analytical data, including complete blood count 
(CBC) and lipid profile were also registered for each 
subject.

For AD and MCI patients, the exclusion criteria 
were as follows: (1) a diagnosis of dementia other 
than AD or any somatic, psychiatric, or neurological 
disorder that might cause cognitive impairment; (2) 
mild-to-moderate AD with current acetylcholinest-
erase inhibitor treatment or memantine; (3) presence 
of serious comorbidities: cancer, excessive intake of 
alcohol (> 280  g/week), severe depression, severe 
renal or hepatic insufficiency, severe cardiac or res-
piratory failure; (4) investigational drug or device 
use; (5) patient or family declining to take part; (6) 
CT scan or MRI evidence of hydrocephalus, stroke, 
a space-occupying lesion, cerebral infection, or any 
clinically significant central nervous system disease 
other than AD; (7) mental retardation, organic mental 
disorders, or mental disorders due to a general medi-
cal condition (DSM-IV-TR™ criteria [27]); (8) suf-
fering from thyroid and/or vitamin B12 deficiency. 
Patients with vitamin B12 or folate deficiency could 
be enrolled in the study provided they had been on 
a supplement therapy for > 3  months prior to the 
screening visit, and the levels of vitamin B12 or 
folate were stable. Patients with thyroid disease could 
be enrolled in the study provided they were stable and 
euthyroid.

The cognitive state of the study population was 
assessed using MMSE [28] at baseline. The MCI 
patients were followed up for a median of 58 (± 12.5) 
months to assess their progression to AD. For these 
patients, the MMSE was administered at each annual 
visit until the end of the follow-up. The final score 
of MMSE was adjusted by age and educational 
level. Progressive cognitive deterioration from MCI 
to AD was defined as (1) losing more than 3 points 
between the first and last MMSE, (2) having demen-
tia at follow-up, or (3) scoring less than 24 on the 
last MMSE [29]. Therefore, based on the follow-up 
data, we divided the MCI group into progressive and 
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nonprogressive MCI patients to assess the associa-
tion of CSF lipids with MCI to AD progression. The 
rate of progression from MCI to AD dementia was 
defined as the time between the baseline visit and the 
date of the diagnosis of AD. The study was approved 
by the local ethics committee (CEIm 1374).

Sample collection

Fasting blood and CSF samples were collected 
between 8:00 and 10:00 a.m. CSF samples were col-
lected by a lumbar puncture in polypropylene tubes 
and subsequently centrifuged at 2000 × g for 10 min 
at 4  °C to exclude cells or other insoluble material. 
Blood samples were collected in EDTA-containing 
tubes and centrifuged at 1500  rpm for 20  min to 
obtain plasma and the buffy coat. The buffy coat was 
used for DNA extraction and subsequent APOE geno-
typing. All samples were aliquoted and immediately 
stored at − 80  °C until use. Samples were obtained 
with support from IRBLleida Biobank (B.0000682) 
and PLATAFORMA BIOBANCOS PT17/0015/0027, 
following the guidelines of Spanish legislation on this 
matter (Real Decreto 1716/2011).

AD biomarker measurement

The levels of CSF amyloid beta 1–42 (Aβ42) 
(INNOTEST® β-AMYLOID (1–42)), total tau (Ttau) 
(INNOTEST® hTAU Ag), and phosphorylated tau 
(Ptau) (INNOTEST® PHOSPHO-TAU (181P)) were 
determined by ELISA based on the manufacturer’s 
instructions (Fujirebio Europe, Ghent, Belgium). We 
used our own cut-off points that were previously cal-
culated based on another study population. Thus, we 
considered Aβ42 values < 600 pg/mL, Ttau > 425 pg/
mL, and Ptau > 65 pg/mL as positive/abnormal [30].

APOE genotyping

DNA was extracted automatically from the buffy coat 
cells using the Maxwell RSC Buffy Coat DNA Kit 
(Promega Biotech Ibérica SL, Madrid, Spain) and 
the Maxwell RSC instrument according to the manu-
facturer’s instructions. Two microliters of extracted 
DNA was used for APOE genotyping by real-time 
PCR according to the TaqMan® SNP genotyping 
assay user guide (Publication Number MAN0009593, 
revision B.0).

Lipidomics

The CSF lipidome was analyzed using an untargeted 
lipidomic approach. The lipids were extracted using 
a methanol tert butyl ether-based validated method 
[31, 32]. Class representative internal standards (Sup-
plementary Table  1) were added to the extraction 
solvent to check lipid species retention time, to evalu-
ate lipid extraction for each sample, and to use as an 
internal standard for the semiquantitative approach 
used. Lipid extracts were analyzed by liquid chro-
matography‒mass spectrometry (LC‒MS) using an 
Agilent UPLC 1290 liquid chromatograph coupled to 
an Agilent Q-TOF MS/MS 6520 mass spectrometer 
(Agilent Technologies, Barcelona, Spain) as previ-
ously described [33, 34]. The samples were injected 
in a random order, and quality control (QC) samples 
were distributed at five-sample intervals to control 
instrumental drift. QC samples were pools of all the 
samples distributed in different aliquots. Data were 
acquired in both positive and negative ionization 
modes. For MS/MS confirmation, the same param-
eters used for MS analyses were applied, adding colli-
sion voltages of 0 V, 10 V, 20 V, and 40 V. Data were 
acquired using MassHunter Data Acquisition soft-
ware (Agilent Technologies) and preprocessed using 
MassHunter Mass Profiler Professional software 
(Agilent Technologies), as previously described [34]. 
Compounds from different samples were aligned 
using retention time windows of 0.1% ± 0.25 min and 
30  ppm ± 2 mDa. Only features with a minimum of 
2 ions and stable features (found in at least 70% of 
the QC samples) were taken into consideration for the 
analysis and correction of individual bias [35]. The 
signal was corrected using a LOESS approach [36].

Lipid identification

The potential identity of the differentially expressed 
features, defined by exact mass and retention time, 
was searched in the Human Metabolome Database 
(HMDB) [37], while the molecular weight tolerance 
was adjusted to 30 ppm. The adducts considered for 
the HMDB search were the following: positive ioni-
zation: M + H, M + NH4, M + NH4-H2O, M + Na, 
M + K, and M + 2  K-H; negative ionization: M-H, 
M-H2O-H, M + C2H3O2, and M + HCO2. Potential 
identities were confirmed through the comparison 
of the exact mass and MS/MS spectra fragmentation 
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pattern of the class representative internal standards, 
when available, with the public database [34], as well 
as through the comparison of the retention time with 
the expected retention times of the chromatographic 
methodology used (lysophospholipids: 0–3 min; fatty 
acyls: 0–3.5  min; phospholipids, sphyngomyelins, 
and diacylglycerides: 3–7  min; and triacylglycerides 
and cholesteryl esters: 7.5–10.5  min) [33] and with 
the retention times of class-representative internal 
standards.

Statistical analysis

One-way ANOVA (or nonparametric Kruskal‒Wal-
lis) and chi-square (or Fisher’s exact) tests were used 
for the analysis of the quantitative and qualitative 
variables among the three diagnostic groups, respec-
tively. Student’s t (or the Mann‒Whitney U) and chi-
square (or Fisher’s exact) tests were used for the anal-
ysis of quantitative and qualitative variables between 
the progressive and nonprogressive MCI groups. The 
quantitative variables are presented as the means 
(± standard deviation, SD) or medians (25th; 75th 
percentiles), and the qualitative variables are pre-
sented as percentages (frequency).

The cross-sectional association of experimental 
variables with quantitative outcomes (the levels of 
Aβ42, Ttau, and Ptau in CSF and the rate of progres-
sion) was assessed using Spearman’s correlation. 
The cross-sectional association of the experimental 
variables with categorical outcomes (diagnosis, Aβ42 
status, Ttau status, Ptau status, and progression/no 
progression) was studied using logistic regression 
analysis. Cox hazard analysis was used to assess the 
association of variables with the rate of progression. 
For regression analyses, the values corresponding 
to each independent variable were dichotomized by 
their median, and the high value (> median) of each 
variable was compared to its low value (≤ median). In 
addition, to determine whether the logistic regression 
models fit our data well, a Hosmer‒Lemeshow test 
was performed for each model. The Hosmer‒Leme-
show statistic indicates a poor fit if its significance 
value is less than 0.05. When analyzing variables 
associated with progression, the AUC of the regres-
sion model, including lipids, was compared to the 
same model without lipids with the Hanley-McNeil 
test [38]. Values of z above the cut-off were taken as 
evidence that the “true” ROC areas were different. To 

minimize the negative effects of overfitting, step-by-
step forward selection with conditional criteria was 
applied as a criterion for the input of the variables 
into the regression models. The selection of vari-
ables by steps also allows the detection of multicol-
linearity. Although the detection of multicollinearity 
increases the precision of estimated coefficients and 
the power of the statistical analysis, some variables 
that may be highly related to the dependent variables 
will be lost (e.g., features from the same metabolic 
pathway). To overcome this problem, after running 
each regression analysis, we eliminated the variables 
that had been inputted into the model, and the analy-
sis was run again to let other influential lipids, if they 
existed, enter the model. This process was continued 
until the AUC of the regression model reached < 80. 
Finally, all of the statistical analyses were adjusted 
for age, sex, APOE ɛ4 allele status, MMSE score, 
and, if applicable, appropriate AD CSF biomarkers 
(Aβ42, Ttau, and Ptau), including these parameters 
as predictors. All statistical analyses were performed 
using IBM SPSS version 25 (SPSS Inc., Chicago, IL, 
USA).

Results

Study population

Our study population included 209 participants who 
were divided into three diagnostic groups: 91 (43.5%) 
AD, 92 (44.6%) MCI, and 26 (12.4%) control (CTL) 
participants (Table  1). Our results showed that 44 
patients (47.8%) remained cognitively stable, while 
48 patients (52.2%) progressed to AD dementia after 
a median follow-up of 58 (± 12.5) months (Table 2). 
None of the MCI patients progressed to non-AD 
dementia.

CSF lipids associated with the diagnoses of MCI and 
AD

The CSF samples were analyzed in positive and 
negative ionization modes. After baseline correction, 
peak picking and alignment, and further corrections, 
including quality control assessment, filtering, and 
the correction of the signal, 201 features remained for 
evaluation, among which 174 features were detected 
in positive and 27 in negative ionization mode. Our 
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analysis detected no lipids associated with the diag-
nosis of MCI or AD versus the control. In addition, 
after analyzing the whole CSF lipidome, we did not 
identify any lipid profile specific to any individual 
diagnostic group (Supplementary Figs. 1 and 2).

CSF lipids associated with CSF measures of AD 
pathology

The association of lipid species with amyloid 
pathology was evaluated by comparing the CSF 
lipidome profile between participants with abnor-
mal levels of Aβ42 in CSF and participants with 
normal levels of this biomarker. Our analysis 
detected hexacosanoic acid C26:0 (p < 0.001), 

ceramide Cer(d38:4) (p = 0.007), phosphatidyletha-
nolamine PE(40:0) (p = 0.007), and two unknown 
lipids (mass 746.7401, RT 7.47 (p < 0.001) and 
mass 1464.461, RT 10.27 (p = 0.001)) as the most 
associated CSF lipids with Aβ42 positivity in CSF 
(Table  3). Regarding the association of CSF lipids 
with Ptau positivity in CSF, our analysis detected 
sphingomyelin SM(30:1) (p = 0.01) as the most 
associated lipid (Table  3), and an unknown lipid 
(mass 636.5484, RT 8.21, (p < 0.047)) was associ-
ated with the pathological levels of Ttau (Supple-
mentary Table 2). Other lipids significantly associ-
ated with each AD-related pathology are presented 
in Supplementary Table 2.

Table 1  Characteristics of the study population based on the differential diagnosis

AD Alzheimer’s disease, MCI mild cognitive impairment, CTL control, MMSE Mini-Mental State Examination, Aβ42 amyloid beta 
1–42, Ttau total tau, Ptau phosphorylated tau, APOE ɛ4 apolipoprotein E ɛ4 allele, P values were calculated by comparing diagnos-
tic groups using one-way ANOVA (or nonparametric Kruskal‒Wallis test) for quantitative variables and chi-square test for qualita-
tive variables

Total (N = 209) AD (N = 91) MCI (N = 92) CTL (N = 26) p

Demographic data
Age 74 [70;78] 76 [72;80] 73 [69; 77] 66 [60;74]  < 0.001
Sex (female) 54.3% (114) 59.3% (54) 51.1% (47) 50% (13) 0.437
Education 0.074

  Illiterate 8% (14) 7.2% (6) 6.5% (6) 20.0% (2)
  Primary 68.5% (120) 78.0% (65) 59.0% (49) 60.0% (6)
  Secondary 17.7% (31) 12.0% (10) 23.1% (19) 20.0% (2)
  University 5.7% (10) 2.4% (2) 9.7% (8) 0% (0)

Comorbidities
  Depression 33.9% (71) 30.7% (28) 42.3% (39) 15.3% (4) 0.029
  Hypertension 56.4% (118) 57.1% (52) 60.8% (56) 38.4% (10) 0.138
  Stroke 3.8% (8) 5.4% (5) 2.1% (2) 3.8% (1) 0.496
  Diabetes mellitus 20.5% (43) 19.7% (18) 21.7% (20) 19.2% (5) 0.945
  Dyslipidemia 40.1% (84) 47.2% (43) 33.6% (31) 38.4% (10) 0.154

Complete blood count
  Hemoglobin (g/dL) 13.7 (1.72) 13.9 (1.46) 13.5 (1.62) 13.1 (3.45) 0.158
  Hematocrit (%) 41.5 (5.07) 42.4 (4.35) 41.0 (5.02) 40 (9.15) 0.093
  WBC (×  109/L) 7.1 [5.9;8.5] 6.9 [5.8;7.9] 7.6 [6.3;10.0] 6.7 [5.7;10.4] 0.073
  Platelet (×  109/L) 224 [195;264] 222 [195;254] 216 [187;282] 265 [218;282] 0.399

CSF AD biomarkers
  Aβ42 (pg/mL) 551 [420;729] 493 [395;583] 595 [435;864] 1029 [634;1331]  < 0.001
  Ttau (pg/mL) 400 [248;601] 494 [357;705] 334 [229;542] 247 [139;313]  < 0.001
  Ptau (pg/mL) 67.35 [48;92] 81 [54; 98] 63 [44;87] 45 [30;63]  < 0.001
  MMSE score 25 [23;28] 23 [22;25] 27 [25;28] 30 [28;30]  < 0.001
  APOE ɛ4 43.4% (86) 51.6% (47) 40.2% (37) 7.7% (2) 0.003
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Table 2  Characteristics of the progressive and nonprogressive MCI patients

MCI mild cognitive impairment, WBC white blood cell, CSF cerebrospinal fluid, Aβ42 amyloid beta 1–42, Ttau total tau, Ptau phos-
phorylated tau, MMSE Mini-Mental State Examination, APOE ɛ4 apolipoprotein E ɛ4 allele. P values were calculated by comparing 
groups using Student’s t-test (or Mann–Whitney U test) for quantitative variables and Pearson’s chi-square test for qualitative vari-
ables

Total MCI (N = 92) Progressive (N = 48) Nonprogressive (N = 44) p

Demographic data
Age 72 (6.0) 73 (6.0) 72 (5.4) 0.328
Sex (female) 50% (46) 52.1% (25) 47.7% (21) 0.673
Education 0.549

  Illiterate 7.3% (6) 10.6% (5) 2.9% (1)
  Primary 59.8% (49) 55.3% (26) 65.7% (23)
  Secondary 23.2% (19) 23.4% (11) 22.9% (8)
  University 9.8% (8) 10.6% (5) 8.6% (3)

Comorbidities
  Depression 42.3% (39) 41.6% (20) 43.1% (19) 0.817
  Hypertension 60.8% (56) 54.1% (26) 68.1% (30) 0.137
  Stroke 2.1% (2) 0% (0) 4.5% (2) 0.131
  Diabetes mellitus 21.7% (20) 18.7% (9) 25% (11) 0.437
  Dyslipidemia 33.6% (31) 29.1% (14) 38.6% (17) 0.304

Complete blood count
  Hemoglobin (g/dL) 13.5 (1.62) 13.1 (1.34) 13.7 (1.77) 0.255
  Hematocrit (%) 41.0 (5.02) 40.3 (4.24) 41.5 (5.50) 0.221
  WBC (×  109/L) 7.6 [6.3;10.0] 6.7 [5.6;8.4] 8.2 [6.4;10.7] 0.061
  Platelet (×  109/L) 216 [187;282] 209 [159;232] 235 [196;286] 0.241

CSF AD biomarkers
  Aβ42 (pg/mL) 589[432;864] 478 [374;619] 798 [582;928]  < 0.001
  Ttau (pg/mL) 333 [227;534] 447 [259;709] 265 [198;353]  < 0.001
  Ptau (pg/mL) 64 [43;86] 76 [49;107] 54 [40;66] 0.001
  MMSE score 27 [25;28] 26 [24;28] 27 [26;29] 0.063
  APOE ɛ4 40.2% (37) 63% (29) 19.5% (8)  < 0.001

Table 3  CSF lipids associated with the positivity of each AD-related CSF biomarker

RT retention time, OR odds ratio, CI confidence interval, Aβ42 amyloid beta 1–42, Ptau phosphorylated tau, Ttau total tau, C26:0 
hexacosanoic acid, Cer ceramide, SM sphingomyelin

Lipid name Mass RT p OR 99% CI for OR

Aβ42 C26:0 396.3861 3.92  < 0.001 0.159 0.049–0.521
Unknown 746.7401 7.47  < 0.001 6.729 1.973–22.956
Cer(d38:4) 587.5138 7.85 0.007 0.302 0.096–0.946
PE(40:0) 803.6014 8.03 0.007 3.696 1.063–12.850
Unknown 1464.461 10.27 0.001 5.146 1.419–18.665

Ptau SM(30:1) 692.5416 8.73 0.010 5.349 1.472–19.442
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CSF lipids associated with progression and the rate 
of progression from MCI to AD

The association of lipids with MCI to AD progression 
was evaluated by comparing the CSF lipidome profile 
of patients who progressed to AD (N = 48) with that 
of patients who did not progress (N = 44) to AD dur-
ing the follow-up. After adjusting for age, sex, APOE 
ɛ4 status, MMSE score, and AD CSF biomarkers, 
higher CSF levels of cholesteryl ester CE(11D3:1) 

(p = 0.01) and an unknown lipid (mass 528.4519, RT 
8.59) (p = 0.048) were associated with a significantly 
greater risk of MCI to AD progression (Table 4). A 
regression model consisting of these two lipids and 
covariates yielded an AUC = 0.88 (p < 0.001, 95% 
CI 0.79–0.97), and the Hosmer‒Lemeshow test 
yielded p = 0.357. The AUC of the statistical model 
without these significantly associated lipids was 0.86 
(p < 0.001, 95% CI 0.762–0.962), which was not sig-
nificantly different from the model including these 
lipids (z = 0.425, |z|< 1.96).

The Cox hazard analysis detected ether-linked 
triglyceride TG(O-52:2) in CSF as the most influen-
tial lipid on the rate of progression. Higher levels of 
this lipid in CSF were associated with a higher rate 
of progression (p < 0.001) (Table  5). The compari-
son of the predictive performance of the Cox model 
including TG(O-52:2) as a predictor with the real rate 
of progression calculated by Kaplan‒Meier analysis 
showed that the model has good predictive power 
regarding the rate of MCI to AD progression (Fig. 1). 
Five other lipid species, including two phospha-
tidic acids and a ceramide, were also associated with 
the rate of MCI to AD progression (Supplementary 
Table 3).

Discussion

We performed an untargeted lipidomic analysis aimed 
at identifying CSF lipids associated with the clinical 

Table 4  CSF lipids associated with progression from MCI to 
AD

RT retention time, OR odds ratio, CI confidence interval, CE 
cholesteryl ester

Lipid name Mass RT p OR 95% CI for OR

Unknown 528.4519 8.59 0.048 0.219 0.048–0.989
CE(11D3:1) 688.5836 9.17 0.010 9.288 1.670–51.647

Table 5  Plasma lipids associated with the rate of progression 
from MCI to AD

RT retention time, OR odds ratio, CI confidence interval, Aβ42 
amyloid beta 1–42, Ttau total tau, TG(O) ether-linked triglyc-
eride

Name Mass RT p OR 99% CI for 
OR

Aβ42  < 0.001 0.997 0.995–0.999
Ttau  < 0.001 1.002 1.001–1.003
TG(O-52:2) 861.8141 10.4 0.003 2.700 1.138–6.403

Fig. 1  Prediction of the 
rate of MCI to AD progres-
sion. Rate of progression 
predicted by the Cox hazard 
model (black line) com-
pared to the rate of progres-
sion based on the clinical 
data that were calculated 
by Kaplan‒Meier analysis 
(blue line)
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diagnosis of AD and the levels of AD CSF biomark-
ers. We also searched for the association of CSF 
lipids with the progression and rate of progression 
from MCI to AD. The data were adjusted for age, 
sex, MMSE score, APOE ɛ4 status, and levels of CSF 
AD biomarkers. When searching for the association 
of lipids with each CSF biomarker, we adjusted the 
data for two other CSF biomarkers to identify specific 
lipid alterations related to that biomarker. Control-
ling for the CSF AD biomarkers also permitted us to 
explore the involvement of lipids in disease progres-
sion independent of their possible role in the altera-
tions of core AD biomarkers. Despite controlling for 
several variables, we identified sets of CSF lipids that 
were associated with each AD biomarker and MCI to 
AD progression, suggesting that the role of lipids in 
AD pathology and progression is broader than their 
possible role in the development of pathological hall-
marks of AD and the influence of APOE ɛ4.

We found no association between detected CSF 
lipid species and the diagnoses of MCI and AD vs. 
control. This dissociation between the current param-
eters of both MCI and AD diagnoses and the CSF 
lipidome was also reported previously. In a study 
by Wood et  al., these investigators found no lipid 
alteration in postmortem CSF of demented patients 
compared to controls except for decreased levels of 
docosahexaenoic acid in MCI and demented patients 
compared with control participants [39]. In another 
study, Toledo et  al. found no association between 
the dysregulation of serum lipid species and the dif-
ferential diagnosis of MCI and AD vs. control. In the 
latter study, the detection of lipid dysregulations was 
observed only after the substratification of the diag-
nostic groups (control, MCI, and AD) based on CSF 
biomarkers [21]. This lack of association between 
lipids and differential diagnosis of patients in the AD 
continuum that was observed in our study and some 
previous studies might be a consequence of a diver-
gent mechanistic relationship but may also indicate 
the importance of the definition of diagnostic groups 
based on biological pathology. The other possibility 
that may have led to this lack of association might be 
the methodological constraints imposed in our analy-
sis, which may have led to a lack of convergence in 
our statistical models.

Our analysis associated several lipid species 
with pathological levels of Aβ42 in CSF. The most 
associated lipids with a known identity were C26:0, 

Cer(d38:4), and PE(40:0). C26:0 is a saturated very 
long-chain fatty acid (VLCFA). In line with our 
finding, Iuliano et  al. found lower levels of C26:0 
in the plasma of AD and aMCI patients compared 
to controls [40]. However, in a study by Zarrouk 
et  al., plasma and red blood cell levels of C26:0 
were reported to be significantly higher in demented 
patients than in control participants [41]. Neverthe-
less, it has been shown that there is no correlation 
between most CSF and plasma lipids and, therefore, 
the comparison of lipids in these two biofluids may 
not be entirely correct and they may not be used 
interchangeably [24, 32].

An in  vitro experiment showed that C26:0 
increased amyloid precursor protein (APP) process-
ing and Aβ42 generation [42]. However, there is no 
previous report concerning the effect of C26:0 on 
the production/clearance of Aβ42 in  vivo. A brain 
tissue analysis showed higher levels of VLCFAs in 
Braak stage V–VI compared to stage I–II and higher 
levels of brain cortical C26:0 in stage V–VI com-
pared to stage I–II and III–IV [43].

VLCFAs, including C26:0, are metabolized in 
peroxisomes. This result may indicate the involve-
ment of peroxisomes in amyloid pathology. 
Although peroxisomal dysfunction has been pre-
viously reported in AD [43–45], a direct effect of 
peroxisomal dysfunction on amyloid pathology has 
not been studied. Some peroxisome proliferator-
activated receptor-alpha (PPARα) ligands have 
been shown to reduce amyloid plaque pathology in 
transgenic animal models of AD [46]. Furthermore, 
the ADAM10 gene has been demonstrated to be a 
PPARα target [47]. Therefore, it is possible that 
PPARα mediates both APP processing and peroxi-
somal lipid homeostasis, and therefore, its dysregu-
lation in AD [48, 49] affects both processes.

Ceramides and phospholipids are structural con-
stituents of biological membranes where APP pro-
cessing occurs. It is now well known that membrane 
composition can affect the activity of membrane-
embedded enzymes, including those involved in 
APP processing [50–52]. In addition, they can have 
roles as bioactive molecules in a variety of biologi-
cal events that can be involved in Aβ production, such 
as inflammation and oxidative stress [53]. In turn, 
Aβ can stimulate ceramide production by activating 
sphingomyelinase, which converts SM into ceramide 
[54, 55]. Furthermore, ether-linked phospholipids 
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may protect other membrane lipids against oxidation 
[56].

We found that higher CSF levels of SM(30:1) were 
associated with Ptau positivity in our study popula-
tion. In agreement with our results, Varma et  al. 
reported a positive correlation between brain levels 
of several SM species and disease severity deter-
mined by Braak scores [20]. SM is highly enriched 
in myelin sheaths. Myelin sheaths produced by oli-
godendrocytes cover axonal projections, where large 
quantities of tau are localized. This proximity may 
also suggest some bidirectional impact between SMs 
and tau protein. In addition, in oligodendrocytes, the 
proteins, and messenger RNAs necessary for myeli-
nation should be translocated to their target site at the 
tips of very long processes via cytoskeleton translo-
cation machinery [57]. The hyperphosphorylation 
of tau disrupts tau sorting into these projections and 
interferes with the sorting mechanism that underlies 
myelin formation [58]. A recent finding suggests that 
oligodendrocytes may have a role in the seeding and 
spreading of Ptau [59]. It has also been shown that 
some tau phosphorylation kinases affect myelination 
[60, 61]. Interestingly, recent evidence points to the 
possible role of sphingolipid biosynthesis in the phos-
phorylation of tau protein [62]. However, additional 
studies are required to understand the functional con-
sequences of these dysregulations on AD pathology 
and vice versa.

Our analysis identified two lipid species associated 
with MCI to AD progression: a CE and an unknown 
lipid. We found that higher CSF levels of CE(11D3:1) 
were associated with an increased risk of progres-
sion. These two lipids slightly increased the predic-
tive value of the statistical model from 0.86 to 0.88, 
indicating that lipids can have an additive value to 
the predictive power of known markers (markers of 
pathology, the presence of the APOE ɛ4 allele, and 
baseline cognition) that affect the progression from 
MCI to AD.

The accumulation of CEs in lipid droplet (LD, the 
storage site for neutral lipids, including CE and TG) 
organelles has been reported in the AD brain [63, 
64] and in AD transgenic mice [65–67]. We previ-
ously found that plasma neutral lipid dysregulations 
were associated with MCI to AD progression [68]. 
Some previous lipidomic studies have linked plasma 
and CSF levels of CE species with the diagnoses of 
MCI and AD [69]. CE species have also been shown 

to be modulators of amyloid [70, 71] and tau patholo-
gies [72]. Therefore, by regulating amyloid and tau 
pathologies, intracellular levels of cholesterol, in the 
form of CEs, could play an important role in neu-
rodegeneration. On the other hand, cholesterol, as 
a main component of cellular membranes, has been 
demonstrated to play fundamental roles in synaptic 
plasticity and function in the brain [73]. Therefore, 
dysregulation in brain cholesterol homeostasis would 
affect cognitive abilities, as evidenced recently [74]. 
In addition, LDs have been shown to be active signal-
ing organelles that regulate processes such as protea-
some activity, inflammation, and oxidative stress, all 
of which are possible drivers of neuronal injury and 
cell death [75].

The association we found between higher levels of 
CE in CSF and increased risk of progression may be 
the cause or consequence of neurodegeneration. If it 
is the cause, there may be some problem in the trans-
port of cholesterol from astrocytes to neurons [76] or 
the transport of this molecule from the brain to the 
periphery [77, 78]. These processes have been asso-
ciated with a more rapid course of cognitive decline 
in later life [79]. If it is the consequence of neurode-
generation, it may indicate that dying neurons gener-
ate high levels of cholesterol-rich debris that could be 
swallowed by glial cells and lead to increased intra-
cellular cholesterol in the form of CE in these cells 
(80). Nevertheless, our data, for the first time, link 
higher levels of CEs in CSF with an increased risk of 
progression from MCI to AD.

Based on our findings, higher CSF levels of 
ether-linked triglyceride TG(O-52:2) were associ-
ated with a faster rate of progression. In an agree-
ment with this result, our previous study also 
related plasma TG(O) dysregulation to the rate of 
MCI to AD progression [68]. TG(O) are lipid spe-
cies that have been found in LDs. The exact role 
of TG(O) lipids in cell biology is not clear. One of 
the possible functions of TG(O) in LDs could be 
the protection of FAs attached to other TGs in LDs 
from oxidative stress. This function has been dem-
onstrated for their phospholipid counterparts (either 
phospholipids or plasmalogens), whose presence in 
the membrane protects other lipids against oxida-
tion (56). In the AD brain, it seems that the accu-
mulation of LDs is more pronounced in glia. This 
increase has been related to increased oxidative 
stress in the AD brain and the role that glia have 
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in the detoxification and storage of oxidized lipids 
[81]. Previous studies have found elevated lipoxida-
tion markers in AD and MCI brains [82]. Therefore, 
the formation of LDs in AD could be a strategy for 
delaying neurotoxicity and neuronal death and, as 
a result, could affect time to progression. However, 
this strategy eventually fails because of the limited 
capacity of glia [83]. Whether neutral lipid dysregu-
lation is the cause or consequence of neurodegen-
eration or both, our data link them to the cognitive 
impairment and the clinical progression of MCI 
patients. Therefore, the measurement of these lipids 
may have prognostic value in these patients.

Our study has some strengths and limitations. The 
strengths of our study include the following: first, we 
evaluated the association of lipids with each AD bio-
marker by controlling for other core AD biomarkers. 
This analysis permitted us to discover lipids that are 
specifically associated with each AD pathological 
hallmark. Second, our MCI group had a long follow-
up period that increased the accuracy of our defined 
groups as progressive or nonprogressive MCI. Third, 
for the first time, we assessed the association of lipids 
with AD diagnosis and progression, independent of 
their possible role in known pathological hallmarks of 
the disease. However, we did not access data regard-
ing medication and diet that may have affected our 
results and should be taken into consideration for 
future studies. Furthermore, there is a need for stud-
ies, especially at the tissue level, to connect metabolic 
changes within a pathway and network context.

In conclusion, our results indicated that CSF 
lipids were associated with CSF measures of AD 
pathology. With respect to the progression from 
MCI to AD dementia, our results suggest that neu-
tral lipids are involved in the pathophysiological 
processes underlying neurodegeneration. In addi-
tion, dysregulated lipids in CSF may be useful bio-
markers for the prediction of the progression and 
rate of progression from MCI to AD.
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