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Abstract Among land vertebrates, the laying hen 
stands out due to its great reproductive efficiency: 
producing an egg daily all year long. This production 
rate makes the laying hen a special model animal to 
study the general process of reproduction and aging. 
One unique aspect of hens is their ability to undergo 
reproductive plasticity and to rejuvenate their repro-
ductive tract during molting, a standard industrial 
feed restriction protocol for transiently pausing repro-
duction, followed by improved laying efficiency 
almost to peak production. Here we use longitudi-
nal metabolomics, immunology, and physiological 
assays to show that molting promotes reproduction, 

compresses morbidity, and restores youthfulness 
when applied to old hens. We identified circulating 
metabolic biomarkers that quantitatively predict the 
reproduction and age of individuals. Lastly, we intro-
duce metabolic noise, a robust, unitless, and quan-
tifiable measure for heterogeneity of the complete 
metabolome as a general marker that can indicate the 
rate of aging of a population. Indeed, metabolic noise 
increased with age in control hens, whereas molted 
hens exhibited reduced noise following molting, indi-
cating systemic rejuvenation. Our results suggest that 
metabolic noise can be used as a quick and univer-
sal proxy for assessing successful aging treatments, 
accelerating the timeline for drug development.
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Introduction

The laying hen provides a special model for aging 
and reproduction, as it produces an egg daily all year 
long [1, 2]. Such laying efficiency provides a unique 
and reliable assay to observe reproductive differences 
even between individuals of the same age and genetic 
background.

One unique aspect of hens is their ability to reju-
venate their reproductive tract during molting [3], a 
severe and acute feed restriction protocol [4, 5] devel-
oped by farmers to extend the profitable period of the 
flock. The procedure is characterized by weight loss, 
shedding of feathers, and complete cessation of egg 
production. Following the molt, the animals gradually 
return to ad libitum feeding, regrow their feathers, and 
exhibit remarkable reproductive plasticity: egg pro-
duction is resumed almost to maximum, significantly 
higher than before the procedure [4]. The importance 
of molting to agriculture has led to an abundance of 
research that focuses on its detailed regulation in the 
context of animal productivity. However, the explicit 
effects of this procedure on aging remain unclear.

This study combined physiological assays, meta-
bolic profiling [6, 7], and cytokines arrays as a non-
invasive methodology to quantify the systemic effect 
of molting on senesce and reproductive aging. Com-
putational and machine learning schemes identified 
metabolic biomarkers that accurately and quantifiably 
predicted metabolic age and reproduction. Together, 
the molecular and physiological data indicated that 
molting systemically slowed down aging and even 
rejuvenated the hens. Furthermore, the aging bio-
markers revealed metabolic changes in the molted 
cohort that are associated with the general process of 
aging, rather than the specific process of molting in 
hens.

We then applied metabolic noise, a quantifiable 
measure of the heterogeneity of the entire metabo-
lome, as a generic and system-independent biomarker 
of aging [6]. The reliability and robustness of meta-
bolic noise were utilized using molting as a reference 
anti-aging treatment.

Indeed, the heterogeneity of control animals 
increased with age, as it represents an increase in 
population variability or entropy with time. How-
ever, molting resulted in reduced metabolic noise, 
indicating reduced population variability and reju-
venating the hens. Metabolic noise, therefore, could 

be used as a quick and universal proxy for success-
ful aging treatments, shortening the timeline for 
anti-aging drug development.

Methods

Animal husbandry

White Leghorn (Lohman) laying hens, all females, 
were purchased from commercial husbandries 
(Hasolelim, Israel) at the age of 1 day and raised 
in the poultry farm of the Volcani Center, Israel. 
Maintenance conditions and feeding formulas were 
according to the Lohman guidelines (https:// hylin 
ena. com/ wp- conte nt/ uploa ds/ 2019/ 10/ Lohma nn_ 
LSL- Lite16- 2. pdf), with free accesses to food and 
water.

Throughout the study, hens were accommodated 
in Individual cages (40 × 40 × 43 cm), one hen per 
cage, to allow longitudinal tracking of egg produc-
tion, egg weight, and egg quality.

Molting protocol

We used a standard molting protocol used in com-
mercial chicken facilities and is typically applied 
around 18 months of age when the flock becomes 
commercially unsustainable due to reproductive 
aging.

Molting protocol included food deprivation for 10 
days, until the hens lost about 30% of body weight 
(down to 1300 g). We then let them recover for 11 
more days under 120 g molting mixture every other 
day. The molting mixture is low in protein and calo-
ries, so it does not support egg production, and only 
allows safe recovery from the fasting period. Twenty-
one days after the start of the procedure, the hens 
returned to ad libitum feeding. Throughout the whole 
procedure, the animals had unlimited access to water 
and they were supplemented with 40 g of lime (solid 
calcium) for the period of food deprivation to sup-
port their bones, and prevent leg fractures due to flow 
of calcium to support egg production. The fasting 
period resulted in complete cessation of egg produc-
tion, shedding of feathers, and weight loss, which all 
recovered fully.

https://hylinena.com/wp-content/uploads/2019/10/Lohmann_LSL-Lite16-2.pdf
https://hylinena.com/wp-content/uploads/2019/10/Lohmann_LSL-Lite16-2.pdf
https://hylinena.com/wp-content/uploads/2019/10/Lohmann_LSL-Lite16-2.pdf
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Experimental setup

We started with 64 individually labeled laying hens, 
each accommodated in an individual cage. At 21 
months of age, the hens were randomly assigned 
into a control, ad libitum, group, and molted group, 
which resumed ad libitum feeding after the proce-
dure. Laying efficiency and body weight were similar 
between the groups before the procedure (Supple-
mentary Table  2). Molting resulted in complete ste-
rility and about 30% loss of body weight. After the 
molt, the transient for full recovery took another cou-
ple of weeks, so a steady state was achieved only at 
24 months of age. All 32 animals that went through 
the molt remained alive and healthy throughout the 
procedure, at least until steady state at 23 months of 
age. However, three hens remained completely infer-
tile for an unknown reason, but other than that looked 
healthy and did not show any signs of stress or unu-
sual behavior. While the qualitative conclusions of 
this study are valid with these infertile animals, this 
study focuses on the biology of responding hens. 
Therefore, the three non-responders were excluded 
from the analysis. All other 29 hens resumed laying 
potency of at least 40% and were all included in the 
study.

Laying efficiency of a hen (sample) is calculated 
per month, as the total number of laid eggs divided 
by the number of days. Median laying efficiency of 
a cohort is calculated monthly by first finding the 
median production of the cohort, then dividing by 
the number of days. When we correlated true-to-pre-
dicted laying efficiency, the true laying efficiency was 
calculated implicitly for the month that the hens were 
sampled.

Figure 2A follows the effect of molting on the per-
formance of the whole population of the two groups. 
To do this, dead hens must also be considered, as 
ignoring individuals that left the cohort (i.e., dead) 
would present a bias towards strong animals rather 
than representing the whole diversified population.

We defined an animal as sterile after three consec-
utive weeks of ceasing egg production. In our facili-
ties, there is no recovery under standard conditions 
after such a stretch of no production. In our hands, 
some animals can undergo periods of no production 
and recover even after a week of sterility, especially 
if the low efficiency is a consequence of heat stress 
during the summer. In the vast majority of case, 

3–4 weeks of sterility are followed by mortality as 
described in the “Results” section.

Blood sampling

From each layer, 1 mL of blood samples was taken 
from the wing vein and immediately added to a solu-
tion of 100 μL heparin-PBS (Sigma) at 10 mg/mL to 
prevent clotting. Samples were kept on ice for about 1 
h and then centrifuged for 20 min at 10,000 rpm and 
4°C in a refrigerated tabletop centrifuge. Plasma sam-
ples were aspirated to new tubes (Eppendorf 2 mL, 
safe lock 0030120094), froze immediately in liquid 
nitrogen, and stored at −80°C.

Python programming and code deposit

Unless specified explicitly, the statistical analysis 
and computational work were done using Python 
programming language (version 3.9). All machine 
learning analyses were done using scikit-learn pack-
age, version 1.0.1. Mann–Whitney U test and permu-
tations statistics were done using scipy version 1.7.2 
and numpy 1.21.4. FDR correction was calculated 
using statsmodels package, version 0.13.0.

Selection of hens for metabolomics

Note that metabolomics profiling was performed 
for all samples together after concluding the experi-
ments, so individual performance and mortality 
were already known. Due to financial constraints, we 
selected 12 hens from each group and time point for 
metabolomics.

We set the baseline for evaluating metabolic age 
according to the control group. To do this, we ran-
domly selected 12 hens at four time points: 21 months 
just before molt, 23 months, 27 months, and 33 
months. A random selection of controls reflects the 
metabolic aging of untreated population.

As for the treated hens, to validate the efficiency 
of the treatment, we selected a subset of 12 hens 
that were less healthy than controls prior to molt-
ing, at 21 month of age, namely at t21 (Fig.  2C). 
Specifically, we excluded the top 10% of egg-pro-
ducing animals, and randomly selected 12 animals 
from the remaining lower 90% of the population. 
The top 10% of producing animals consisted of 
animals with about 100% laying efficiency, and we 
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did not want to test the effect of molting on these 
extremely healthy hens. This selection process 
resulted in lower initial efficiency of treated hens 
(Fig.  2C). We then followed the same hens longi-
tudinally to directly associate any improvement in 
health to the treatment rather than population vari-
ability. By excluding the top 10% of animals based 
on their production prior to molting and randomly 
selecting only 12 hens from the remaining group, 
the heterogeneity of the initial pool of these treated 
animals is reduced compared to the control group. 
This reduced heterogeneity is demonstrated by a 
lower level of initial metabolic or reproductive 
noise, as shown in Fig. 6.

In this scheme, better performance after molt could 
not be attributed to better initial health, and the longi-
tudinal tracking of the same individuals implies that 
any beneficial effect would be a consequence of molt-
ing procedure rather than population variance.

Cytokine array

Chicken sera and their cytokine profiles were ana-
lyzed with a semiquantitative chicken cytokine anti-
body array that detects 10 chicken cytokines in one 
sample as in [8] (RayBio G-Series Chicken Cytokine 
Array 1, Raybiotech, Norcross GA USA https:// www. 
raybi otech. com/ chick en- cytok ine- array- gs1- en, Octo-
ber 2021).

Statistics

Aging biomarkers

The aging biomarker identification strategy is incor-
porated in the main text.

In addition to using Mann-Whitney with FDR cor-
rection using a cutoff of 0.1, we validated the statis-
tical procedure by two independent experimental 
methods: first, a validation control cohort at t23 (Sup-
plementary Fig1C, D). These control animals were 
deliberately excluded from the statistical analysis 
aimed at identifying biomarkers, resulting in the for-
mation of a sound test cohort. Second, the biomark-
ers predicted the correct temporal behavior of molted 
animals, which could be used as a completely inde-
pendent validation group for this matter (Fig. 3C, D).

Laying biomarkers

The laying biomarker identification strategy is incor-
porated in the main text.

The use of PCA or machine learning algorithm to 
test the collective strength of the markers results from 
the fact that individually, due to variance between 
animals of the same age and the complexity of aging, 
no individual marker could separate well between 
individuals. However, in an analogy to the “wisdom 
of the crowd” principle, since the markers are inde-
pendent, their collective predictions were much better 
than the prediction of any individual biomarker.

Significance tests

Student t-test associated with laying efficiency was 
applied to the total number of eggs laid per hen in a 
month (0–31 per animal). We subsequently compared 
the two groups based on the number of eggs laid by 
each individual. Since each group has about 30 hens, 
we have egg production of 30 independent individu-
als per group for the t-test.

Random permutation was always carried out by 
permuting the animals and counting the number of 
events by which the difference between the median 
of control and treated animals in the permuted con-
figuration is equal to or bigger than the difference in 
the original groups. This number was then normal-
ized by the total number of permutations to get the 
p-value. Significance for Fig. 6B inset was calculated 
by permuting the animals and testing the number of 
events by which the difference between the permuted 
control-to-treated slope is equal or higher than the 
original, unpermuted, differences in the slope.

Data normalization

Due to orders of magnitude differences in the expres-
sion values among the various metabolites, we used 
data normalization for principal component analysis 
(PCA). Normalization was done on each metabolite 
to adjust its mean to zero and standard deviation to 1.

Noise statistics

The noise, CV, for egg production per group was cal-
culated as the standard deviation, σ, over the mean, 
μ, for each month. As this was a longitudinal study, 

https://www.raybiotech.com/chicken-cytokine-array-gs1-en
https://www.raybiotech.com/chicken-cytokine-array-gs1-en
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daily egg production for each individual was obtained 
throughout the study. Thus, at each month, the CV for 
each group was calculated where σ and μ were based 
on individual monthly laying efficiency.

To obtain significance for noise in egg production, 
we first noticed that the CV in molted hens resumes 
its initial value only 7 months after the procedure. We 
compared the slope in this 7-month period between 
control and molted cohorts. Since egg production is 
followed longitudinally over the same animals, we 
used paired-based permutation and permuted the val-
ues only within the same hen. We then recalculated 
the slope for the CVs within these 7 months, and 
compared the difference between the slope, the per-
muted control, and molted hens to the difference in 
the reference values before molt.

The noise for a given metabolite in a group was 
calculated as in [6]: the standard deviation, σ, divided 
by the mean, μ. This value is also referred to as the 
coefficient of variation, CV, for this metabolite. Thus, 
for each age group, we had 693 CVs, correspond-
ing to the 693 metabolites. The representative noise 
of a group was considered the median of the CVs in 
the group. To obtain significance for the difference 
between 2 noise histograms, we used random per-
mutation statistics, by permuting the labels (hens) 
of each group. To obtain significance for the behav-
ior of the medians, we used random permutation of 
the labels and counted the number of times (of 1000 
permutations) that the permutated set had the same or 
higher difference between of the medians compared 
to the original groups.

Machine learning implementation

Predicting metabolic age and laying efficiency was 
carried out under random forest regressor (RFR). 
To validate control hens at time point t23 or define 
the metabolic age of molted animals, the model 
was trained exclusively on the biomarkers obtained 
from the control data at time points t21, t27, and t33. 
Then the model was validated over the desired data 
set for predictions. To predict laying efficiency of 
molt hens, the model was trained on control and pre-
dictions were ran for molt data. Predictions for lay-
ing efficiency of control under laying and aging bio-
markers were performed using leave-one-out scheme 

under RFR. Additionally, to improve performance, 
we stacked LASSO and RFR together.

Identification of common markers for aging 
and reproduction

Common markers for aging and reproduction were fea-
tures that appear both  in the list of 212 aging biomark-
ers and in the list of 189 reproduction biomarkers, and 
were also consistent with molting slowing down aging 
and improving performance.

Of the features that were found, α-ketoglutarate 
(AKG) stood out, as it has been linked to extending 
lifespan in model animals [9–12]. To further confirm 
the role of AKG in molting, we run pathway enrich-
ment analysis on the 212 aging and 189 laying bio-
markers (MetaboAnalyst platform).

Metabolite extraction

Extraction and analysis of lipids and polar/semipolar 
metabolites were performed as previously described in 
the works of Malitsky et al. (34) and Zheng et al. (35) 
with some modifications that are described in detail in 
[6].

Liquid chromatography–mass spectrometry 
for lipidomics analysis

Lipid extracts were analyzed using a Waters ACQUITY 
I Class UPLC System coupled to a mass spectrometer 
(Thermo Exactive Plus Orbitrap) which was operated 
in switching positive and negative ionization mode. 
The analysis was performed using ACQUITY UPLC 
System combined with chromatographic conditions as 
described in [6].

Lipid identification and quantification

Orbitrap data were analyzed using LipidSearch software 
(version 4.2; Thermo Fisher Scientific, Waltham, MA). 
The validation of the putative identification of lipids 
was performed by comparing to the home-made library 
which contains lipids produced by various organisms 
and on the correlation between retention time (RT) and 
carbon chain length and degree of unsaturation. Relative 
levels of lipids were normalized to the internal standards 
and the amount of plasma used for analysis.
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Liquid chromatography–mass spectrometry polar 
metabolite analysis

Metabolic profiling of the polar phase was done as 
described by Zheng et al. (35) and more specifically 
in [6].

The data processing was done using TraceFinder 
version 4.1 SP3 (Thermo Fisher Scientific) when 
detected compounds were identified by accurate 
mass, RT, isotope pattern, fragments, and verified 
using an in-house-generated mass spectra library.

Results

A transient pause of reproduction promotes 
reproductive plasticity and health and reduces 
mortality in old hens

A schematic illustration of an aging-driven induced 
molting cycle and its comparison to control is shown 
in Fig. 1. At 21 months of age, the flock demonstrates 
variable aging phenotype [13] with an overall pro-
gressive and systemic decline in animal health, num-
ber of eggs laid, and egg shell quality (A). A transient 

caloric restriction protocol is applied, resulting in 
shedding of feathers (i.e., molt) and sterility (B). Once 
the molt is complete, the flock gradually resumes ad 
libitum feeding, resulting in rapid regrowth of feath-
ers and reproductive plasticity, where egg production 
(and egg shell quality) recovers almost to its maximal 
rate. Control animals continue to age and display a 
progressive decline in reproduction (C). At 33 months 
of age, both groups display notable aging phenotypes. 
Nevertheless, treated hens appear younger and exhibit 
higher reproduction relative to control (D).

We started by validating the main characteristics 
of molting, focusing on egg production, mortality, 
and body weight [3–5].

Figure  2 illustrates the effect of molting on egg 
production (2A) and mortality (2B) for the control 
and treated hens (see methods). Figure  2C and D 
illustrate the effect of molting on two subsets con-
sisting of 12 individuals each, derived from a control 
group and a treated group, which were chosen for 
metabolomics analysis (see the “Methods” section).

Consistent with previous reports [14], molted hens 
show increased reproduction, lower mortality, and 
even a higher body weight in old age than control 
(Fig. 2D).

21m 22mAge: 27m 33m

Restricted feeding
For 10 days

= Blood sampling
(metabolomics, cytokine array)

Daily egg collec�on

Ad libitum 
feeding

Ad libitum 
feeding

Mol�ng phase

A B C D

Fig. 1  Illustration of an aging-driven induced molting cycle 
in hens. A At 21 months of age, reproductive aging lowers 
egg production, such that the flock becomes commercially 
unsustainable. B At 22 months of age, animals were randomly 
assigned into control, ad libitum fed hens, and treated hens, 
which underwent acute and sever caloric restriction protocol. 
The protocol resulted in shedding of feathers (i.e., molting) 
and complete cessation of reproduction. Note that in reality, 
the shedding of feathers does not result in nakedness, and the 

patchy bald areas are for illustrative purposes. C At 27 months 
of age, control hens continue to age and display a progres-
sive decline in egg production. However, following the molt, 
and upon resuming ad libitum feeding, treated hens undergo a 
renewal of feather growth and reproductive plasticity as laying 
efficiency recovers almost to peak production. D At 33 months 
of age, both groups display progressive aging phenotype. How-
ever, post-molt recovery results in lower mortality and higher 
reproduction of treated animals



2349GeroScience (2024) 46:2343–2358 

1 3
Vol.: (0123456789)

Increased efficiency and body weight after the 
molt, when the animals resumed AL feeding, suggest 
a more efficient and possibly younger metabolism 
induced by the procedure. Last, we tested whether 
improved health can result exclusively from the cessa-
tion of reproduction. In the untreated control cohort, 
14 of the 32 animals became sterile during the study. 
Of these, 10 cases were followed by mortality (out 
of 11 deaths), whereas only four of the surviving 21 
hens were sterile (p = 0.0001, Fisher test). Therefore, 

naturally pausing egg production is an indication of 
frailty rather than improved health.

Molting slows down metabolic aging

Next, we assayed for systemic molecular effects of 
molting on aging. Since metabolism becomes ineffi-
cient with age [15], we assessed the effect of molt-
ing on metabolic aging, using metabolomics profiling 
from the circulating plasma of live hens [6].

Fig. 2  A Molting improves reproduction. Median laying effi-
ciency of molted (green) and control (red) groups. Error bars 
are SEM for laying efficiency. Molting started at 22 months 
of age and continued through 23 months of age. The gray 
rectangle labels the transient period until reproduction, feath-
ering, and body weight recovered at 24 months of age. BW 
of control (1688 ± 156)g, and molt (1763 ± 177)g for (aver-
age ± SD) before the procedure were not significantly differ-
ent. Median efficiency at each age is calculated for the entire 
32 (29) animals that composed the original control (molted) 
group. B Molting reduces mortality. Mortality of control (red) 
and molted (green) groups throughout the study. Control hens 
lost 34% of the population, while molted group 13%.* denotes 
p < 0.05; p = 0.013 for the difference in survival values, sig-
nificance was calculated using two-sided binomial test. C 

Molting improves reproduction of the metabolomics-selected 
hens. Laying efficiency of the molt (green) and control (red) 
groups at 21 months (before molt), 27, and 33 months of age 
presented as boxplots. Red dots and open green squares rep-
resent individuals of control and molted cohorts respectively. 
Each cohort consisted the 12 animals that were also sampled 
for serum metabolomics. ** denotes p < 0.01 (under t-test, 
calculated according to the total raw number of monthly egg 
production across individuals—see the “Methods” section). D 
Molted hens have a higher body weight than controls in old 
age. Body weight of control (red) and molted (green) groups at 
21 months (before molt), 27, and 33 months of age depicted as 
boxplots. Red dots and open green squares represent individu-
als of control and molted cohorts respectively. * denotes p < 
0.05 (under t-test)
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Fig. 3  A Temporal behavior of the aging biomarkers illus-
trated as a heatmap. The three age groups, t21, t27, and, t33, 
of control hens are clustered in the x-axis, and the metabolites 
in the y-axis. Each row represents a metabolic feature and each 
column represents an individual hen. Only chemical groups 
that have more than 10 metabolites are shown explicitly. The 
markers are spread all over the metabolome (Supplementary 
Table 1). Number of animals for each group, n = 12. Blue (red) 
indicates low (high) relative expression. Expression levels for 
each feature were normalized to have mean = 0 and a stand-
ard deviation of 1. B Metabolic aging biomarkers project the 
correct temporal hierarchy and a slower aging rate for molted 
hens. Principal component analysis (PCA) of individual sam-
ples according to age groups based on 212 aging biomarkers, 
for control and molted animals. Shown are the two PCs with 
the largest variance (29% and 11% for PC1 and PC2, respec-
tively). Vertical lines represent the medians of the correspond-
ing groups. Red, blue, and green dots (and vertical lines) cor-
respond to the 36 samples of control groups. Gold, purple, and 
black dots (and vertical lines) correspond to the 36 samples of 
the molted groups. The projections maintain the correct hier-
archy of the molted animals. In the case of molted animals, 
the projections correspond to longitudinal tracking following 
the same animals in the three time points. On the main axis, 
which represents metabolic aging, the molted group appears 
to have an initial older metabolic age and a younger final age 
relative to control, indicating slower metabolic aging. C Meta-

bolic aging of control (red) and molted (green) animals over 
one chronological year according to the first PCA component 
(panel B), illustrated by boxplots. The representative metabolic 
aging for each group between t21 to t33 is represented by the 
difference between he medians of each cohort (p = 0.0094, 
random permutations). D Random forest regressor predicts a 
slower metabolic aging rate for molted hens. Horizontal lines 
indicate the correct age of control hens at time-points t21 (red), 
t27 (blue), and t33 (green) that were the reference for selecting 
the aging biomarkers. The three box plots refer to the predicted 
age of 12 individually tracked hens of the molting cohort. The 
same molted hens were sampled at 21, 27, and 33 months of 
age, resulting in three samples per live hen. The initial median 
predicted age is 23 months (solid gold line within the box), 
and the last median age is 31 months (solid black line). The 
box plots show no outliers and illustrate the correct hierarchy 
within the molted cohort. The model was trained exclusively 
on control hens, and predictions were given for all 36 sam-
ples of the 12 molted animals. While control hens aged by 12 
months, molted hens aged by 8 months according to the bio-
markers. E Top hits of metabolic pathways based on aging bio-
markers. The list of the metabolic biomarkers was run through 
MetaboAnalyst platform for enrichment analysis. F A heatmap 
of common biomarkers of aging and reproduction (Supplemen-
tary Table  1), presented as in panel A. The y-axis represents 
the chemical groups of the markers
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We, therefore, set out to find molecular aging 
biomarkers in order to model the metabolic age of 
individuals. Animals were sampled at 3 time-points: 
t21, at 21 months of age, just before molt; t27, at 27 
months of age; and t33, at 33 months of age. Control 
hens were also sampled at 23 months of age, t23, to 
be used as a validation cohort for aging biomarkers. 
Consequently, these control animals were excluded 
from the statistical analysis aimed at identifying bio-
markers to generate a reliable test cohort. To generate 
aging biomarkers, we focused exclusively on control 
hens, as these set the baseline for aging in the refer-
ence population. We, therefore, randomly selected a 
subset of 12 animals at each time point from the con-
trol cohort as a representative sample. On the other 
hand, to ensure that the beneficial effects of molting 
are not attributed to improved baseline health relative 
to controls, we excluded the top 10% of egg-produc-
ing animals (100% efficiency) of the molting cohort 
at 21 months of age, prior to the initiation of molt-
ing, and randomly selected a subset of 12 animals 
from the remaining population. Indeed, these animals 
exhibited lower performance with respect to controls 
(Fig.  2C and the “Methods” section). We further 
tracked the same animals longitudinally, so that any 
changes in metabolism could be directly linked to 
molting and would not be affected by population vari-
ability (see Methods).

The aging biomarkers were determined based 
on three time points, i.e., t21, t27, and t33, from the 
list of 693 metabolic features as follows: First, for a 
given pair of time points (e.g., t21–t27), a two-tailed 
Mann-Whitney test was utilized to obtain a p-value 
for each individual feature. Subsequently, the list of 
p-values was FDR corrected (Benjamini–Hochberg, 
[6]) using a cutoff of 0.1. This resulted in a list of 
significant features for the given pair of time points. 
We then used an OR condition to generate a pool of 
possible markers; namely, we pooled all the signifi-
cant features that appeared even in one of the three 
possible pairs, t21–t27, t21–t33, and t27–t33. Lastly, 
we removed from the list any features whose median 
values were not monotonic with time. Thus, the final 
list of 212 aging biomarkers included features that 
change monotonically with age between the three 
time points and exhibit significance in at least one 
pair of time points (Supplementary Table 1).

Figure 3A presents the temporal expression pattern 
of the markers as a heatmap. The heatmap shows that 

the aging biomarkers are spread all over the metabolic 
chemical groups. Further, while most markers clearly 
distinguished between two age groups, none appeared 
as a clear-cut separator between all three time points. 
Therefore, we wanted to test whether, collectively, the 
212 aging biomarkers can separate well between all 
three age groups.

Supplementary Figure  1 summarizes the collec-
tive power of the biomarkers. First, PCA projections 
and random forest classifier validated that the mark-
ers can assign the correct age group to control hens 
at t21, t27, and t33 (Supplementary Figure  1A, B). 
Second, PCA projection and random forest regressor 
assigned the correct age to the validation cohort, at 
time t23. The regressor assigned a median age of 24 
months, where all hens were within the normal range 
as seen in the corresponding box plot (Supplementary 
Figure 1C, D). Thus, the metabolic aging biomarkers 
evaluated well the true age of the control cohort.

We then tested the predictions of the aging bio-
markers obtained exclusively from control groups on 
molted animals. Figure 3B presents PCA projections 
at t21, t27, and t33 of control and molted animals. 
The projection assigns the correct time hierarchy for 
molted hens, indicating that the markers also repre-
sent aging in molted hens. In addition, the distance on 
the main axis between t21 to t33 in molted animals 
is smaller than the distance in controls, indicating 
slower metabolic aging. Lastly, the initial selection of 
hens with relatively lower health status in the treated 
group is represented by the first principal compo-
nent (PCA1) in Fig. 3B: the initial metabolic age of 
molted hens is older than the controls (Fig. 3B, age is 
reflected in the PCA1 axis in right-to-left directional-
ity). However, molting slows down metabolic aging, 
so treated hens are metabolically younger than con-
trols after one chronological year (Fig. 3B, C).

We subsequently assessed explicitly the difference 
in metabolic aging based on the main PCA axis as a 
proxy for metabolic age (Fig.  3C). By utilizing the 
medians of each group as representatives of metabolic 
age (as depicted in Fig. 3B), molted hens underwent a 
significantly slower metabolic aging relative to con-
trol over one chronological year, namely between t21 
and t33 (Fig. 3C, p = 0.0094, random permutation).

Figure  3D illustrates the quantitative age assigned 
by random forest regressor at t21, t27, and t33 to 
molted groups after training exclusively on control ani-
mals. The quantitative model exhibits the correct age 
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hierarchy in molted groups, predicts a slower aging 
rate of about 25%, and assigns an initial older age to 

molted animals with respect to controls. The box plots 
also indicated that all molted animals were within the 
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normal range without any outliers. To establish a con-
nection between aging biomarkers and overall metabo-
lism in vertebrates, we sought to identify the meta-
bolic pathways in vertebrates that are enriched by the 
biomarkers. Figure 3E illustrates the top hits of path-
way enrichment analysis based on the aging biomark-
ers using the MetaboAnalyst platform. These findings 
reveal that all of the top enriched pathways are funda-
mental in vertebrates, for example, amino acid metabo-
lism and the urea cycle. In laying hens, daily egg pro-
duction establishes a robust connection between aging 
and reproduction. Consequently, we aimed to identify 

specific metabolic features that are conserved among 
vertebrates and hold significance in aging and repro-
duction. Figure 3F presents a collection of 23 features 
that appear both in the list of aging and reproductive 
biomarkers in the form of a heatmap (see the next sec-
tion and the “Discussion” section).

In summary, the aging marker set shows a slower 
rate of metabolic aging for molted hens.

Laying biomarkers indicate a younger reproductive 
age for molted animals

Laying an egg daily allows a clear distinction in 
reproduction even between individuals of the same 
age. We, therefore, wanted to develop metabolic lay-
ing biomarkers based on circulating plasma to quan-
tify the reproduction of individuals.

Biomarkers of reproduction were derived using 
Spearman correlation and FDR correction for each 
metabolite across the 47 control hens. Specifically, we 
did the following: (i) For each metabolic feature, we 
extracted its values from the profiling dataset (metab-
olomics Tables) for each of the 47 control hens. (ii) 
We calculated the monthly reproductive efficiency 
of each of the 47 hens based on the month in which 
they were blood sampled. This allowed us to obtain 
both the metabolic expression profile and correspond-
ing reproductive efficiency of each hen explicitly at 
the time of blood sampling. (iii) We applied Spear-
man correlation, along with its p-value, between the 
expression values and reproductive efficiency across 
the 47 hens for each metabolite. After correcting for 
multiple hypotheses using FDR, a list of 189 signifi-
cant biomarkers was obtained.

Figure  4A presents the correlation between indi-
vidual reproductive markers and reproductive effi-
ciency as a heatmap. Similar to the aging biomark-
ers, biomarkers of reproduction are spread all over 
the metabolome, and no individual marker appears to 
predict well the efficiency of the 47 animals.

We, therefore, applied linear regression to test the 
collective predictive power of all markers. Figure 4B 
shows a significant correlation between the true value 
and the predicted value of reproductive efficiency (R 
= 0.66, p = 3.6×10(−7)). The predictive power of the 
blood-based markers is independent of age, where 
either young or old hens fit the model to the same 
extent (Supplementary Figure 2A). Additionally, the 
fertility markers can distinguish between individuals 

Fig. 4  A Correlations between individual laying biomarkers 
and laying efficiency illustrated as a heatmap. Each row repre-
sents the expression of the corresponding metabolite. Bars at 
the bottom illustrate are monthly laying efficiency of individual 
animals at the age of blood sampling. Therefore, each column 
represents expression values of all laying biomarkers of the 
same individual, whose efficiency is presented at the bottom. 
Implicit metabolite groups are shown only for chemical groups 
that have more than 10 features. Note that the markers are spread 
all over the metabolome (Supplementary Table  1). Number of 
animals, n = 47. Color bar on the right side: Blue (red) indicate 
low (high) relative expression. Expression levels for each fea-
ture were normalized to have mean = 0 and standard deviation 
of 1. B Metabolic laying biomarkers predict the reproductive 
efficiency of control hens. Predicted laying efficiency (y-axis) 
vs. true laying efficiency of 47 control hens at time points 21, 
23, 27, and 33 months. Predictions are based on 189 laying bio-
markers and calculated using leave-one-out scheme. Each point 
represents an average efficiency of individual hens over the cor-
responding month. The prediction was calculated using leave-
one-out scheme. The red line represents a linear regression, R 
= 0.66 (Pearson), p = 3.6×10(−7). C Metabolic laying biomark-
ers predict the correct range of laying efficiency in molted hens. 
Predicted laying efficiency (y-axis) vs. true laying efficiency of 
24 molted hens at time points 27 and 33 months, i.e., post molt-
ing. Predictions are based on 189 laying biomarkers identified 
from the control group. The model was trained exclusively on 
control hens and used for predictions on molted animals. Each 
point represents an average efficiency of individual hens over 
the corresponding month. D Metabolic aging biomarkers pre-
dict the laying efficiency of control hens. Predicted laying effi-
ciency (y-axis) vs. true laying efficiency of 36 control hens at 
time points 21, 27, and 33 months. The predictions were based 
on the 212 aging biomarkers using leave-one-out scheme. Each 
point represents an average efficiency of individual hens over 
the corresponding month. The prediction was calculated under 
RFR using leave-one-out scheme. R = 0.4 (Pearson), p = 0.014. 
E Top hits of metabolic pathways based on the biomarkers of 
reproduction. The list of the metabolic biomarkers was run 
through MetaboAnalyst platform for enrichment analysis. F 
A heatmap of common biomarkers of aging and reproduction 
(Supplementary Table  1), presented as in panel A. The y-axis 
represents the chemical groups of the markers

◂
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of the same age (Supplementary Figure 2A). In terms 
of identifying animals with above 50% efficiency, the 
model captures 97% of this group, proving a practical 
tool for breeding selection (Fig. 4B).

We then set out to test the ability of the laying 
biomarkers to predict the efficiency of molted hens. 
However, the variance in the molting group between 
t27 and t33 is very low (both groups have a median 
of 90% efficiency), so we needed the markers to iden-
tify the correct range of production. Indeed, Fig. 4C 
shows that the laying biomarkers selected and trained 
exclusively on control hens predicted the correct 
range of reproduction for molted animals. Last, as 
aging and reproductive aging are linked, we tested 
the predictive power of the aging biomarkers in pre-
dicting laying efficiency and found a significant cor-
relation (R = 0.4, p = 0.014) between actual and pre-
dicted reproduction (Fig. 4D). This prediction is not 
biased by age group (Supplementary Figure 2B). Fig-
ure 4E illustrates the top hits of pathway enrichment 
analysis based on the reproduction biomarkers using 
the MetaboAnalyst platform. These findings reveal 
that all of the highly enriched pathways are funda-
mental in vertebrates, for example, the urea cycle. 
The 23 markers that are common to aging and repro-
duction are shown in Fig. 4F as a heatmap (see also 
the “Discussion” section).

Molting slows down aging in the immune system

The immune system is strongly affected by aging 
[16]. We used an array-based assay (RayBiotech, 
GSG CTY-1, [8]) to measure the expression of nine 
immuno-proteins in the blood directly. Since seven of 
the nine proteins are cytokines, we will refer to the 
array as a cytokine array. Subsequently, the median 
expression of the nine array elements was employed 
as a representative measure of the cytokine array for 
every time point and cohort. Figure 5A and B sum-
marize data from two repeats at t21, t27, and t33 
for control and molted hens; first, cytokine expres-
sion decline with age. Second, there is an increase 
in immunological values due to molting, suggesting 
that molting rejuvenates the immune system (Fig. 5A, 
B). Last, at the same age, the molt cohort appears sig-
nificantly younger than the control indicating younger 
immunological age (p = 0.04 under random permuta-
tion test). Taken together, the data obtained from the 

cytokine array suggest that molting slows down or 
even reverses immunological aging.

Molting reduces heterogeneity between individuals

A common aspect of aging is increased heterogeneity 
between individuals [6, 17, 18].

This property has been demonstrated in many 
organisms and multiple tests, such as gene expres-
sion, metabolism, and cognition [6, 18–20]. In 
particular, an increase in heterogeneity with age 
was linked to an increase in frailness in humans 
[21].

We have previously introduced a simple and 
straightforward measure of heterogeneity of a fea-
ture in a population, noise, defined as its standard 
deviation normalized by the mean, namely the CV 
[22]. Indeed, noise has been shown to be a univer-
sal metabolic marker of aging in hens, humans, and 
mice [6]. Because aging is a complex phenomenon 
affected by many pathways [23], noise of an indi-
vidual feature may not be sufficient to capture aging 
rates between various treatments. Therefore, we set 
out to use noise of the complete metabolome [6], 
the median of the set of CVs of all features, as a 
robust marker evaluating aging rates of molted and 
control groups.

Figure  6 illustrates how noise changes due to 
molting: First, molting reduces the heterogeneity of 
the metabolome (Fig. 6A, p = 0.01, random permu-
tation test), as reflected by the decline in metabolic 
noise between t21, before the procedure, to t27. Con-
trol animals, however, exhibit a steady increase in 
metabolic noise during this period (Fig.  6A). Sec-
ond, molted hens are always less heterogeneous than 
control. A reduction in noise at the last time point in 
the control group is similar to what is seen in demo-
graphic aging in older adults [24]; the higher mor-
tality in the control group generates a selection for 
strong animals at old age, which increases homogene-
ity. Lastly, prior to molting, at 21 month of age, the 
treated group displays a reduced level of metabolic 
noise relative to the control group. This difference is 
attributed to a selection bias in the treated group for 
animals with lower performance (see the “Methods” 
section).

As aging rejuvenates the reproductive tract, we 
expected the procedure to reduce the heterogeneity 
of egg production in molted animals. Indeed, noise 
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in egg production illustrated the same trend as in 
metabolomics (Fig. 6B). We also calculated the noise 

for the entire cohort as a function of age before mor-
tality started to affect reproduction (Fig. 6C). Indeed, 
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Fig. 5  A, B Cytokine expression indicates that molting slows 
down immunological aging. Cytokine levels for control (red) 
and molted hens (green) as a function of age. Each dot rep-
resents an element of the array: the annotations of individual 
elements [1–9] correspond to [IFNg, IL-6, IL-10, IL-12p40, 
IL-16, IL-21, Netrin, Pentraxin, Rantes]. The data correspond 
to time points t21, t27, and t33. The separation of the control 
and molted cohorts around time points t27 and t33 is employed 
to improve visual clarity. Each cytokine is an average over four 
animals, and data is normalized by the initial values at t21. 

The medians of all nine array elements for each age and group 
are depicted as black “x” symbols, indicating their normalized 
values relative to their baseline values at t21. At 27 and 33 
months of age, levels of molted hens are higher than control, 
indicating a younger immunological age. Panels A and B cor-
respond to two biological repeats of the experiment. * denotes 
p < 0.05 for control vs molted hens. Significance was calcu-
lated using a random permutation test (permuting the hens) 
and comparing the levels of the medians between control and 
molted groups of the same age
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molting resets the reproductive tract, and the molt 
cohort becomes less heterogeneous than at its base-
line value after the procedure for about 7 months 
(Fig. 6C, p = 0.0007, random permutation).

Taken together, reduced noise following the molt 
is indicative of reducing population variability, sug-
gesting induced rejuvenation by the procedure.

Discussion

This study presents the laying hen as a special model 
for reproduction and aging due to its exceptional lay-
ing efficiency. Utilizing this efficiency, we identified 
circulating biomarkers capable of accurately quanti-
fying reproduction of individuals. In particular, we 
found that population variability leads to a low pre-
dictive accuracy of individual biomarkers. Thus, in 
order to attain accurate prediction of individual hen’s 
performance, it was essential to build a machine-
learning-based model that integrates all available 
markers.

A notable success of the reproductive markers was 
capturing the correct range of efficiency in control 
and treated animals: efficiency of control hens ranged 
from zero to one, whereas efficiency following the 
molt ranged from 0.6 to one (Fig. 4).

One unique aspect of hens is their ability to reju-
venate their reproductive tract following a severe and 
acute caloric restriction protocol; a standard scheme 
used in agriculture to extend the profitable lifespan of 
the flock.

Here we used a variety of molecular, computa-
tional, and physiological assays to show that this pro-
cedure systemically slows down, even reverses, aging.

The process by which the biomarkers of metabolic 
aging and reproduction were initially selected and 
verified in a control cohort, and subsequently proved 
to be valid also on treated hens, is critical to identi-
fying markers that are robust and reliable for identi-
fying aging-related manipulations. Markers that are 
only tested on control, unperturbed animals, without 
validation against any intervention may be too spe-
cific and not suitable for generally distinguishing bio-
logical and chronological age.

Using control animals as a reference for identify-
ing the biomarkers also facilitated the identification 
of a subset of metabolic changes resulting from molt-
ing that are specifically associated with aging.

Fig. 6  A Noise vs. age of the metabolome (A) and egg production (B) 
for the 12 animals that were blood-sampled for metabolomics. Control 
animals (red) are also in a steady state at 23 months, which is still a 
transient period for molted animals (green). Metabolic noise is defined 
as the median of the set of CVs obtained from all metabolites for a 
specific group and specific age. * denotes p < 0.05. Significance was 
calculated using a random permutation test (permuting the hens). C 
Reproduction noise for the entire cohort. In the first 7 months after the 
molt control hens exhibit a monotonic increase with noise. However, 
molted hens show a slight negative slope. In this period, all hens in 
the study are still alive. Red and green lines indicate linear regression 
of the corresponding groups. *** denotes p < 0.001 for the difference 
between the slopes. Significance was calculated using a random paired 
permutation test (permuting values exclusively within each hen)
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In general, using a control group for determining the 
biomarkers and then comparing the behavior between 
controls and treated animals could be statistically 
flawed. Nevertheless, using FDR with a lower cutoff of 
0.1 and two experimental validations, in particular the 
correct prediction of temporal hierarchy in molted hens 
(Fig. 3B, D), suggests that in our work the comparison 
is sound and the biomarkers are group independent.

Because reproductive plasticity is not common 
in vertebrates, and because commercial hens were 
intensively selected for extreme production, we were 
concerned that our biomarkers would not be rel-
evant to aging in vertebrates. We, therefore, looked 
for features that appear both as aging and reproduc-
tive biomarkers, and were also consistent with molt-
ing slowing down aging and improving performance 
(Supplementary Table 1, Figs. 3F, 4F).

Of the common features, α-ketoglutarate (AKG, 
third marker from the top in Figs. 3F, 4F) stood out, as 
it has been linked to extending lifespan in model ani-
mals [9–12]. Pathway enrichment analysis (Metabo-
Analyst platform) found that all top hits of aging and 
laying markers are associated with AKG (Figs.  3E, 
4E). Finding a molecular marker at the nexus of aging 
and reproduction in hens, which is a key aging regu-
lator in vertebrates further supports the laying hen as 
a model animal for aging and reproduction.

Of the other biomarkers, triglycerides and cera-
mides are strongly associated with longevity path-
ways [25]. For example, a deficiency in the triglyc-
eride synthesis enzyme acyl-CoA:diacylglycerol 
acyltransferase 1 extended lifespan in mice, and 
inhibiting ceramides promoted longer lifespan in C. 
elegans and D. melanogaster. These data further sup-
port the relevance of hens as a valid vertebrate model. 
However, since the laying hen is not a genetic model 
animal, focusing on food supplements, such as AKG, 
appears as a practical approach to test the role of the 
promising candidates in promoting healthspan and 
reproduction.

Lastly, we presented metabolic noise, a unitless 
parameter that reflects the heterogeneity of the entire 
metabolome of a population, as a generic measure of 
aging. In control animals, metabolic noise increased 
with age, reflecting increased variability or entropy 
with time. However, molting reduced metabolic 
heterogeneity, suggesting a systemic rejuvenation. 
Metabolic noise, therefore, is a bona-fide marker of 
aging rather than reflecting temporal propagation of 

a system. Consistent with metabolic noise, molting 
reduced heterogeneity in reproduction, as expected 
by rejuvenating the reproductive tract. In this scheme, 
molting was used as a reference to test the robust-
ness and reliability of metabolic noise as an aging 
biomarker that can reveal anti-aging treatments in 
vertebrates.

Because noise of individual features is unitless 
and reflects the relative deviation from the population 
mean, multiple features that span orders of magnitude 
can be combined to calculate system-wide noise, e.g., 
metabolic noise, as a single and robust number, to 
estimate the rate of aging.

Therefore, one can generate a set of noises for all 
quantitative features related to the agiome, all features 
relevant to aging. Then, the median of this set can 
represent the rate of aging of a population and can be 
used as a quick proxy for successful aging treatments, 
shortening the timeline for developing aging drugs.
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