Skip to main content
Log in

Salidroside promotes healthy longevity by interfering with HSP90 activity

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is a risk factor for human health and quality of life. Screening and development of novel supplements and medications to combat aging and delay the incidence of age-related diseases are of great significance. In this study, salidroside (SA), a primary natural small molecule from Rhodiola rosea, was investigated regarding its effects on life and healthspan and the underlying molecular mechanism(s) of anti-aging and antioxidation. Our results showed that SA effectively prolonged lifespan and exhibited anti-aging and antioxidative properties. Computer-assisted methods, label-free interaction analysis, and in vitro assays showed that SA directly bound heat shock protein 90 (HSP90). Furthermore, SA significantly inhibited the ATPase activity of HSP90, affecting the interaction between HSP90 and its interacting proteins and the expression of downstream genes to regulate lifespan and the oxidative stress response. Our findings provided new insights into the pharmacological properties of SA across multiple species and its potential as an anti-aging drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the main text or the Supplementary Materials. Additional data related to this article may be requested from the authors.

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–78.

    Article  CAS  PubMed  Google Scholar 

  2. Schmauck-Medina T, Molière A, Lautrup S, Zhang J, Chlopicki S, Madsen HB, Cao S, Soendenbroe C, Mansell E, Vestergaard MB, et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging. 2022;14(16):6829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14.

    Article  CAS  PubMed  Google Scholar 

  5. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Felix AA, Williams EG, Jha P, Lo Sasso G, Huzard D, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–88.

    Article  CAS  PubMed  Google Scholar 

  6. Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30(11):1412–37.

    Article  CAS  PubMed  Google Scholar 

  7. Zhuang W, Yue L, Dang X, Chen F, Gong Y, Lin X, Luo Y. Rosenroot (Rhodiola): Potential applications in aging-related diseases. Aging Dis. 2019;10(1):134–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen C, Song J, Chen M, Li Z, Tong X, Hu H, Xiang Z, Lu C, Dai F. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology. 2016;17(2):373–81.

    Article  PubMed  Google Scholar 

  9. Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology. 2009;10(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  10. Dimpfel W, Schombert L, Panossian AG. Assessing the quality and potential efficacy of commercial extracts of Rhodiola rosea L. by analyzing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Front Pharmacol. 2018;9:425.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  12. Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol. 2020;867:172797.

    Article  CAS  PubMed  Google Scholar 

  13. Mao GX, Xu XG, Wang SY, Li HF, Zhang J, Zhang ZS, Su HL, Chen SS, Xing WM, Wang YZ, et al. Salidroside delays cellular senescence by stimulating mitochondrial biogenesis partly through a miR-22/SIRT-1 pathway. Oxid Med Cell Longev. 2019;2019:5276096.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jin H, Pei L, Shu X, Yang X, Yan T, Wu Y, Wei N, Yan H, Wang S, Yao C, et al. Therapeutic intervention of learning and memory decays by salidroside stimulation of neurogenesis in aging. Mol Neurobiol. 2016;53(2):851–66.

    Article  CAS  PubMed  Google Scholar 

  15. Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Dev Ther. 2018;12:1479–89.

    Article  CAS  Google Scholar 

  16. Lomenick B, Jung G, Wohlschlegel JA, Huang J. Target identification using drug affinity responsive target stability (DARTS). Curr Protoc Chem Biol. 2011;3(4):163–80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010;24(5):417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, et al. Loss of epigenetic information as a cause of mammalian aging. Cell. 2023;186(2):305-326 e327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83(4):255–66.

    Article  CAS  PubMed  Google Scholar 

  23. Aherne W, Maloney A, Prodromou C, Rowlands MG, Hardcastle A, Boxall K, Clarke P, Walton MI, Pearl L, Workman P. Assays for HSP90 and inhibitors. Methods Mol Med. 2003;85:149–61.

    CAS  PubMed  Google Scholar 

  24. Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BSJ, Matts RL. Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod. 2011;74(5):1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su L, Li H, Huang C, Zhao T, Zhang Y, Ba X, Li Z, Zhang Y, Huang B, Lu J, et al. Muscle-specific histone H3K36 dimethyltransferase SET-18 shortens lifespan of Caenorhabditis elegans by repressing daf-16a expression. Cell Rep. 2018;22(10):2716–29.

    Article  CAS  PubMed  Google Scholar 

  26. Bottino C, Peserico A, Simone C, Caretti G. SMYD3: an oncogenic driver targeting epigenetic regulation and signaling pathways. Cancers (Basel). 2020;12(1):142.

  27. Castro JP, Fernando R, Reeg S, Meinl W, Almeida H, Grune T. Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: a novel gain-of-function mechanism. Redox Biol. 2019;21:101108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle (Georgetown, Tex). 2018;17(9):1048–55.

    Article  CAS  PubMed  Google Scholar 

  29. Profumo E, Buttari B, Tinaburri L, D’Arcangelo D, Sorice M, Capozzi A, Garofalo T, Facchiano A, Businaro R, Kumar P, et al. Oxidative stress induces HSP90 upregulation on the surface of primary human endothelial cells: role of the antioxidant 7,8-dihydroxy-4-methylcoumarin in preventing HSP90 exposure to the immune system. Oxid Med Cell Longev. 2018;2018:2373167.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madrigal-Matute J, Fernandez-Garcia CE, Gomez-Guerrero C, Lopez-Franco O, Munoz-Garcia B, Egido J, Blanco-Colio LM, Martin-Ventura JL. HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovasc Res. 2012;95(1):116–23.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Li Y, Jiang W, Li Y, Zhou L, Song B, Liu X. Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-kappaB/p65 activation. Oxid Med Cell Longev. 2016;2016:3507290.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baek SH, Kim JY, Choi JH, Park EM, Han MY, Kim CH, Ahn YS, Park YM. Reduced glutathione oxidation ratio and 8 ohdG accumulation by mild ischemic pretreatment. Brain Res. 2000;856(1–2):28–36.

    Article  CAS  PubMed  Google Scholar 

  33. Austad SN, Fischer KE. Sex differences in lifespan. Cell Metab. 2016;23(6):1022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18(10):1413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, Wu J, Wei X, Qu Q, Yu Y, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature. 2022;603(7899):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, Wang J, Nie L, Tong L, Shen A, et al. Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. Clin Cancer Res. 2017;23(20):6267–78.

    Article  CAS  PubMed  Google Scholar 

  37. Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother. 2020;129:110458.

  38. Li X, Erden O, Li L, Ye Q, Wilson A, Du W. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid Redox Signal. 2014;20(12):1853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Kasim V, Xie YD, Huang C, Sisjayawan J, Dwi Ariyanti A, Yan XS, Wu XY, Liu CP, Yang L, et al. Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci Rep. 2017;7:43935.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ding XJ, Zhang ZY, Jin J, Han JX, Wang Y, Yang K, Yang YY, Wang HQ, Dai XT, Yao C, et al. Salidroside can target both P4HB-mediated inflammation and melanogenesis of the skin. Theranostics. 2020;10(24):11110–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoare M, Narita M. The power behind the throne: senescence and the hallmarks of cancer. Ann Rev Cancer Biol. 2018;2(1):175–94.

    Article  Google Scholar 

  42. Janssens GE, Lin XX, Millan-Ariño L, Kavšek A, Sen I, Seinstra RI, Stroustrup N, Nollen EAA, Riedel CG. Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging. Cell Rep. 2019;27(2):467-480.e466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–40.

    Article  CAS  PubMed  Google Scholar 

  45. Hu X, Lin S, Yu D, Qiu S, Zhang X, Mei R. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol. 2010;26(6):499–507.

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Wang L, You QD, Xu XL. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem. 2020;63(5):1798–822.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC) to F. D. (No. 31830094) and to J. S. (No. 32272939), Fundamental Research Funds for the central Universities to L. Z. (SWU120011), National Natural Science Foundation of China to L. Z. (No. 32000810), and No. U20A2058 from NSFC to X. T. Additional support was provided by Funds of China Agriculture Research System of MOF and MARA CARS-18-ZJ0102 from the Ministry of Agriculture and Rural Affairs of the People’s Republic of China to F. D.

Author information

Authors and Affiliations

Authors

Contributions

F. D. conceived the study. F. D., J. Z., Z. L., J. S., and X. T. designed the experimental plan. J. Z., L. Z., J. S., W. G., and Y. L. performed experiments. T. D. assisted silkworm rearing and feeding experiment. X. C., Z. L., D. T., and T. M. analyzed the data and prepared figures. F. D., J. Z., Z. L., J. S., V. B., and L. J. R. wrote the manuscript. All authors discussed the results at all stages of the manuscript preparation.

Corresponding author

Correspondence to Fangyin Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 149 KB)

Supplementary file2 (PDF 1112 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Z., Song, J. et al. Salidroside promotes healthy longevity by interfering with HSP90 activity. GeroScience 46, 1641–1655 (2024). https://doi.org/10.1007/s11357-023-00921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00921-3

Keywords

Navigation