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Abstract The concept of biological age has emerged 
as a measurement that reflects physiological and func-
tional decline with ageing. Here we aimed to develop 
a deep neural network (DNN) model that predicts bio-
logical age from optical coherence tomography (OCT). 
A total of 84,753 high-quality OCT images from 
53,159 individuals in the UK Biobank were included, 
among which 12,631 3D-OCT images from 8,541 
participants without any reported medical conditions 

at baseline were used to develop an age prediction 
model. For the remaining 44,618 participants, OCT 
age gap, the difference between the OCT-predicted age 
and chronological age, was calculated for each partici-
pant. Cox regression models assessed the association 
between OCT age gap and mortality. The DNN model 
predicted age with a mean absolute error of 3.27 years 
and showed a strong correlation of 0.85 with chrono-
logical age. After a median follow-up of 11.0  years 
(IQR 10.9–11.1  years), 2,429 deaths (5.44%) were 
recorded. For each 5-year increase in OCT age gap, 
there was an 8% increased mortality risk (hazard ratio 
[HR] = 1.08, CI:1.02–1.13, P = 0.004). Compared 
with an OCT age gap within ± 4 years, OCT age gap 

Ruiye Chen and Shiran Zhang contributed equally.

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11357- 023- 00920-4.

R. Chen · G. Borchert · M. He (*) · Z. Zhu (*) 
Centre for Eye Research Australia; Ophthalmology, 
University of Melbourne, Melbourne, Australia
e-mail: mingguang.he@unimelb.edu.au

Z. Zhu 
e-mail: lisa.zhu@unimelb.edu.au

R. Chen · M. He · Z. Zhu 
Ophthalmology, Department of Surgery, University 
of Melbourne, Melbourne, Australia

S. Zhang · W. Wang · M. He · Z. Zhu 
State Key Laboratory of Ophthalmology, Zhongshan 
Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 
China

G. Peng · W. Meng 
Guangzhou Vision Tech Medical Technology Co., Ltd, 
GuangZhou, China

Z. Yu 
Central Clinical School, Monash University, Melbourne, 
Australia

H. Liao 
Epigenetics and Neural Plasticity Laboratory, Florey 
Institute of Neuroscience and Mental Health, University 
of Melbourne, Melbourne, Australia

Z. Ge 
Faculty of IT, Monash University, Melbourne, Australia

Z. Ge 
Monash Medical AI, Monash University, Melbourne, 
Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-023-00920-4&domain=pdf
http://orcid.org/0000-0002-9897-1192
https://doi.org/10.1007/s11357-023-00920-4
https://doi.org/10.1007/s11357-023-00920-4


1704 GeroScience (2024) 46:1703–1711

1 3
Vol:. (1234567890)

less than minus 4  years was associated with a 16% 
decreased mortality risk (HR = 0.84, CI: 0.75–0.94, 
P = 0.002) and OCT age gap more than 4 years showed 
an 18% increased risk of death incidence (HR = 1.18, 
CI: 1.02–1.37, P = 0.026). OCT imaging could serve 
as an ageing biomarker to predict biological age with 
high accuracy and the OCT age gap, defined as the 
difference between the OCT-predicted age and chron-
ological age, can be used as a marker of the risk of 
mortality.

Keywords Optical coherence tomography · Deep 
neural network · Age gap · Mortality

Introduction

Chronological age refers to the number of years a 
person has been alive. It is a major risk factor for 
frailty, age-related morbidity and mortality [1]. 
However, there is considerable variability in health 
outcomes among individuals with the same chron-
ological age, suggesting a heterogeneous rate of 
ageing [2]. Based on this, the concept of biologi-
cal age has emerged as a measurement that reflects 
physiological and functional decline with ageing 
[3, 4]. Accurate quantification of biological age is 
crucial for risk stratification of individuals with 
accelerated ageing and exploring anti-ageing inter-
ventions, reducing the burden on public health. 
Several biomarkers have been proposed, among 
which retinal age derived from retinal images ena-
bles a non-invasive, quick and easy way of quanti-
fying biological age [5]. Retinal age gap, the dif-
ference between retinal and chronological age has 
been verified to be strong predictive markers for 
all-cause mortality and age-related morbidities, 
such as cardiovascular diseases, neurodegenerative 
diseases, and kidney failure. [6–10]

Recent advances in imaging technology, par-
ticularly optical coherence tomography (OCT), are 
widely applied to visualize the retina [11–13]. Com-
pared with two-dimensional fundus images mainly 
focusing on the vessels, OCT uses light to capture 
2D and 3D images up to a resolution of a micrometer 
(μm), enabling better visualization of subtle changes 
related to ageing [14]. Furthermore, OCT provides 
visualization of not only the vasculature but also the 
neural tissue [13]. Emerging evidence has suggested 

that OCT imaging provides insight into ageing. Spe-
cifically, structural parameters such as the peripapil-
lary retinal nerve fiber layer (RNFL) thickness and 
macula thickness were negatively associated with age 
[15, 16]. Vascular parameters such as choriocapil-
laris diameters tended to decrease with age [14, 17]. 
Therefore, we hypothesized that OCT images could 
provide a more comprehensive fingerprints for age 
prediction compared to fundus photographs.

Previously, two studies investigated age predic-
tion based on OCT imaging. Shigueoka et al. imple-
mented a deep learning (DL) model using B-scans 
from 278 participants and the predicted age was 
strongly correlated with chronological age with mean 
absolute error (MAE) of 5.82 years. [18] Another DL 
model trained on 3134 participants aged from 20 to 
91 years achieved an average MAE of 5.78 years. [19] 
To the best of our knowledge, few studies have inves-
tigated whether OCT images could be used to predict 
biological age. In this study, we aimed to develop a 
biological age estimation model based on OCT scans 
in a healthy population and explore the predictive 
value of the OCT age gap, defined as the difference 
between OCT-predicted and chronological age, for 
all-cause mortality.

Methods

Study population

The UK Biobank is a large-scale, population-based 
cohort with more than 500, 000 participants between 
40 to 69 years old and recruited from 2006 to 2010. 
All participants were asked to complete baseline 
assessment, which included healthcare question-
naires from digital screens and comprehensive physi-
cal examinations. Sampling of blood, urine and saliva 
were also completed at baseline. Health events during 
the follow-up period were collected through data link-
age to hospitals and death registers. A detailed study 
protocol has been previously described. [20]

This study was reviewed and approved by the 
National Information Governance Board for Health 
and Social Care and the NHS North West Multicenter 
Research Ethics Committee (11/NW/0382) and the 
UK Biobank consortium (application no. 94372). The 
study was conducted according to the Declaration of 
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Helsinki, with informed consent obtained from all 
participants.

Spectral-domain optical coherence tomography 
imaging protocol

Ophthalmic examinations were conducted between 
2009 and 2010 and included physical measurements 
(visual acuity, autorefraction and intraocular pres-
sure) and ocular imaging (retinal fundus and OCT). 
The OCT images were collected under mesopic con-
ditions without pupillary dilation using the Topcon 
3D OCT 1000 Mk2 (Topcon Corp., Tokyo, Japan). 
This was achieved using a 3D macular volume scan 
of 6  mm × 6  mm pattern with 512 A-scans by 128 
B-scans. A very small galvanometer was used and 
each image was acquired over a duration of 3.7 s. A 
total of 68,525 participants took OCT images in the 
UK Biobank study.

Eligible criteria for OCT images

There were 84,753 OCT images of a high-quality 
from 53,159 individuals. The quality control pro-
cesses used have been thoroughly described in previ-
ous studies [21, 22]. In brief, version 1.6.1.1 of the 
Topcon Advanced Boundary Segmentation (TABS) 
algorithm has been used to generate several segmen-
tation indicators to identify poor scan quality or seg-
mentation failures [23]. These indicators included 
image quality score, an inner limiting membrane indi-
cator, a validity count, and motion indicators [21]. 
The OCT imaging quality was scaled from 0 to 100, 
with a higher score indicating a better image quality. 
Images were excluded if an image quality scored less 
than 45 (the maximum score was 44), poor centration 
certainty, or poor segmentation certainty (defined as 
the poorest 20% of images based on each of the seg-
mentation indicators).

Deep neural network model for age prediction

To build the age prediction model, the OCT images of 
both eyes where available were used. Consistent with 
previous studies,[6, 24] a total of 12,631 3D-OCT 
images of 8,541 healthy participants without reported 
medical conditions at baseline were used to develop 
the age prediction model. For training and validation, 
7,687 (90%) individuals were randomly selected and 

five-fold cross-validation was used for internal valida-
tion. We constructed the ResNet-3D network based 
on the ResNet model developed by a previous study 
[25]. ResNet is a deep convolutional neural network 
used for image classification tasks. In this study, the 
ResNet-3D algorithm was designed based on the 
ResNet model and used 18 layers for image train-
ing. The input shapes included the clip length, image 
height, image width, and number of channels, which 
were defined as 128, 256, 256, and 1, respectively. 
The number of outputs at the final linear layer were 
set to one, and the regularizer factor was set to the 
default value of 1e-4. To improve the performance 
of the neural network, we used stochastic gradient 
descent (SGD) with momentum that equaled to 0.9. 
The selection of candidate DL models was based on 
the mean absolute error (MAE) in the validation set. 
For testing, the remaining 854 (10%) participants 
were used. The MAE and correlation between pre-
dicted retinal age and chronological age were then 
calculated to assess the performance of the model.

OCT age gap definition

For the remaining 44,618 participants, OCT-pre-
dicted age was generated for each participant. Images 
of the right eye (if available) were used to calculate 
OCT-predicted age, and if the right eye images were 
not available, then the left eye images were used. The 
difference between the OCT-predicted age and chron-
ological age was defined as OCT age gap.

Mortality ascertainment

Mortality data was accessed through the data linkage 
to hospitals and the national mortality registry. The 
follow-up period was the time from image acquisition 
to death, lost to follow-up, or the last follow-up date 
 (28th April 2021), whichever came earliest.

Covariates

Similarly with our previous study [5], potential 
confounding factors associated with mortality were 
adjusted for and included age (continuous, years), 
gender (male or female), race (white or non-white), 
townsend deprivation indices (continuous), educa-
tion (college/university degree or others), smoking 
status (current/former or never), physical activity 
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level (above moderate/vigorous/walking recom-
mendation or not), general health status (excellent/
good or fair/poor) and comorbidities. Comorbidities 
included obesity, diabetes mellitus, hypertension, 
history of heart diseases and history of stroke. Obe-
sity was defined as body mass index (BMI) > 30 kg/
m2, calculated as body weight in kilograms divided 
by height in meters squared. Diabetes mellitus was 
classified with any self-reported records, hospital 
diagnosis, use of anti-diabetic drugs or insulin, or 
serum glycosylated haemoglobin level of > 6.5%. 
Hypertension was defined as self-reported or hos-
pital diagnosis or use of antihypertensive drugs 
records, or an average systolic blood pressure 
of  > 130 mmHg or an average diastolic blood pres-
sure of  > 80 mmHg. History of heart diseases were 
determined as self-reported history of angina or 
heart attack.

Statistical analyses

Continuous and categorical values were described 
as means and standard deviations (SDs) or numbers 
and percentages, respectively. For mortality analy-
sis, cox proportional hazards regression models 
were used to estimate mortality risk for each 5-year 
increase in the OCT age gap. We further subdivided 
participants into three groups based on OCT age 
gaps compared to MAE, consistent with a previ-
ous study [26]. This will identify participants with 
an OCT-predicted age that deviates more than the 
MAE from the chronological age. We set the OCT 
age gap within the MAE ranges as the reference 
group to investigate associations OCT age with 
mortality risk. The results were adjusted for base-
line age, sex, ethnicity, and townsend deprivation 
indices (model I); additional educational level, obe-
sity, smoking status, physical activity level, diabe-
tes mellitus, hypertension, history of heart diseases, 
and history of stroke (model II) in the Cox models. 
All variables met the proportional hazards assump-
tions. We also added age-square into the Cox mod-
els as sensitivity analysis.

A two-sided p value of < 0.05 indicated statistical 
significance. Analyses were performed using R (ver-
sion 3.3.0, R Foundation for Statistical Computing, 
www.R- proje ct. org, Vienna, Austria) and Stata (ver-
sion 13, StataCorp, Texas, USA).

Results

OCT age accurately predicted chronological age

The performance of the age prediction model in the 
testing dataset is illustrated in Fig.  1. The OCT age 
predicted by the DNN model significantly corre-
lated with chronological age (r = 0.85). This model 
achieved a MAE of 3.27  years over the chronologi-
cal age in the testing dataset. The MAEs of the OCT 
age prediction model in subjects aged < 55  years 
and > 55 years were 3.01 and 4.43, respectively.

OCT age gap

Table  1 describes the baseline characteristics of 
study participants for mortality risk analysis. Among 
the 44,618 participants, 46.5% were male and 
90.4% were white ethnicity with mean (SD) ages of 
57.4 ± 7.94 years.

As the MAE of the OCT age prediction accu-
racy was 3.27  years, the cut-off value of age gap 
was set at 4  years to minimize the impacts from 
technical errors in age prediction. We divided the 
participants into three groups of patients who had 
an OCT age > 4  years smaller than the chrono-
logical age (> 4  years younger), OCT age within 
a range of 4  years from their chronological age 
(within ± 4  years), and OCT age > 4  years greater 
than the chronological age (> 4  years older). As 
shown in Table 1, the participants in > 4 years older 
OCT age groups were younger, and more likely to 

Fig. 1  Performance of the Deep neural network model in rela-
tively healthy participants without any reported diseases

http://www.R-project.org
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be female, non-white ethnicity, lower deprivation 
index, better education level, non-smokers, lower 
physical activity level, obese, without a history of 
diabetes, hypertension, heart diseases and stroke 
(all P < 0.001).

OCT age gap and mortality

After a median follow-up of 11.0  years 
(IQR:10.9–11.1  years), 2,429 deaths (5.44%) were 
recorded. After adjusting for age, sex, ethnicity and 

Table 1  Baseline characteristics of study participants for mortality risk analysis stratified by OCT age groups

SD standard deviation; Bold indicates P < 0.05

Baseline Characteristics Overall OCT age gap P value

 ± 4 years  > 4 years younger  > 4 years older

N 44,618 21,314 12,847 10,457 -
Death, N (%) 2,429 1,484(5.53) 640(6.48) 305(3.87)  < 0.001
Age, mean (SD), years 57.4(7.94) 57.4 (7.97) 61.0 (6.39) 52.9 (7.31)  < 0.001
Gender, N (%)

  Female 23,888 (53.5) 11,636 (54.6) 6,235 (48.5) 6,017 (57.5)  < 0.001
  Male 20,730 (46.5) 9,678 (45.4) 6,612 (51.5) 4,440 (42.5)

Ethnicity, N (%)
  White 40,342 (90.4) 19,365 (90.9) 11,805 (91.9) 9,172 (87.7)  < 0.001
  Others 4,276(9.58) 1,949 (9.14) 1,042 (8.11) 1,285 (12.3)
  Deprivation index, mean (SD) -1.02(2.99) -1.02 (2.97) -1.27 (2.91) -0.72 (3.10)  < 0.001

Education level, N (%)
  College/university 15,226 (34.1) 7,242 (34.0) 3,853 (30.0) 4,131 (39.5)  < 0.001
  Others 29,392 (65.9) 14,072 (66.0) 8,994 (70.0) 6,326 (60.5)

Smoking status, N (%)
  Never 23,972 (54.1) 11,401 (53.8) 6,736 (52.8) 5,835 (56.1)  < 0.001
  Former/current 20,375 (45.9) 9,789 (46.2) 6,023 (47.2) 4,563 (43.9)

Drinking status, N (%)
  Never 2,099 (4.72) 996 (4.69) 627 (4.90) 476 (4.57) 0.485
  Former/current 42,349 (95.3) 20,239 (95.3) 12,175 (95.1) 9,935 (95.4)

Meeting PA recommendation, N (%)
  No 6,514 (17.9) 3,102 (17.9) 1742 (16.7) 1670 (19.5)  < 0.001
  Yes 29,805 (82.1) 14,224 (82.1) 8,678 (83.3) 6,903 (80.5)

Obesity, N (%)
  No 32,974 (74.3) 15,769 (74.3) 9,641 (75.5) 7,564 (72.7)  < 0.001
  Yes 11,413 (25.7) 5,444 (25.7) 3,133 (24.5) 2,836 (27.3)

History of diabetes, N (%)
  No 41,456 (92.9) 19,857 (93.2) 11,822 (92.0) 9,777 (93.5)  < 0.001
  Yes 3,162 (7.09) 1,457 (6.84) 1,025 (7.98) 680 (6.50)

History of hypertension, N (%)
  No 10,658 (23.9) 5,013 (23.5) 2,585 (20.1) 3,060 (29.3)  < 0.001
  Yes 33,960 (76.1) 16,301 (76.5) 10,262 (79.9) 7,397 (70.7)

History of heart diseases, N (%)
  No 42,674 (95.6) 20,416 (95.8) 12,089 (94.1) 10,169 (97.3)  < 0.001
  Yes 1,944 (4.36) 898 (4.21) 758 (5.90) 288 (2.75)

History of stroke, N (%)
  No 43,928 (98.4) 20,992 (98.5) 12,607 (98.1) 10,329 (98.8)  < 0.001
  Yes 690 (1.55) 322 (1.51) 240 (1.87) 128 (1.22)
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deprivation, for each 5-year increase in OCT age gap, 
there was an 8% increased mortality risk (hazard ratio 
[HR] = 1.08, 95% confidence interval [CI]: 1.03–1.12, 
P = 0.001; Table 2). This was also significant in fully 
adjusted model (HR = 1.08, CI:1.02–1.13, P = 0.004).

Compared with groups of OCT age gap 
within ± 4 years, OCT age gap less than minus 4 years 
was associated with a 16% decreased mortality risk 
(HR = 0.84, CI: 0.75–0.94, P = 0.002) while OCT 
age gap more than 4 years showed an 18% increased 
risk of death incidence (HR = 1.18, CI: 1.02–1.37, 
P = 0.026). Similar results were observed with subdi-
vided groups based on a cut-off value of 3.27  years 
(Supplementary Table  1). Fully adjusted survival 
curves for mortality risk by three OCT age groups are 
illustrated in Fig. 2. We further added age squared in 
the confounders of Cox regression model and similar 
associations between OCT age gaps and mortality 
were noted (Supplementary table 2). Subgroup analy-
sis of different age groups are outlined in Supplemen-
tary Table 3.

Discussion

In this study, we developed an OCT-based ageing bio-
marker using a DNN algorithm in a healthy population. 
The OCT age gap (the difference between OCT-pre-
dicted and chronological age) less than minus 4  years 
were associated with a lower risk of mortality while OCT 
age gaps of more than 4 years indicated an increased risk 
of mortality. These findings suggested that the OCT age 
gap, deviation from normal ageing, could predict mortal-
ity risk during a follow up of 11 years.

The OCT age achieved an excellent performance 
in biological age prediction compared with previously 
well-established ageing biomarkers where a smaller 
MAE indicates a higher accuracy. The OCT age 
achieved a MAE of 3.27  years which outperformed 
retinal age of 3.5  years, [6] epigenetic clock of 
3.3–5.2 years, [27, 28] brain age of 4.3–7.3 years, [24, 
29] transcriptome age of 6.2–7.8 years, [30, 31] and 
blood profiles-based age of 5.5–5.9 [32, 33]. Moreo-
ver, the OCT age derived from retinal OCT imaging 
is non-invasive and quick while previous markers are 
more invasive, costly and/or time consuming.

To the best of our knowledge, our study is the first 
to develop a biological age based on OCT images 
and the first to directly correlate OCT age gap, dif-
ference between OCT age and chronological age, 

Table 2  OCT age gap was associated with mortality risk using Cox proportional hazards regression model

HR hazard ratio, CI confidence interval
Model I adjusted for age, sex, ethnicity and townsend
Model II adjusted for covariates in Model I + educational level, obesity, smoking status, physical activity level, diabetes mellitus, 
hypertension, history of heart diseases, and history of stroke

Model I Model II

OCT age gap N HR (95% CI) P value HR (95% CI) P value

OCT age gap per five years 44,618 1.08 (1.03–1.12) 0.001 1.08 (1.02–1.13) 0.004
OCT age group

   > 4 years younger 12,847 0.86 (0.78–0.94) 0.001 0.84 (0.75–0.94) 0.002
   ± 4 years 21,314 1[reference] ‑ 1[reference] ‑
   > 4 years older 10,457 1.21 (1.06–1.37) 0.004 1.18 (1.02–1.37) 0.026

Fig. 2  Adjusted survival curves for mortality risk by three 
OCT age groups. These survival curves adjusted for age, sex, 
ethnicity and townsend, educational level, obesity, smoking 
status, physical activity level, diabetes mellitus, hypertension, 
history of heart diseases, and history of stroke. Participants 
with an OCT age gap less than minus 4  years demonstrated 
a higher survival rate while OCT age gap more than 4  years 
demonstrated a poorer survival rate
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with mortality risk. Compared to the recently devel-
oped retinal age from fundus images, OCT age 
achieved an accurate performance of age prediction 
by capturing 3D cross-sectional, neuroanatomical 
and vascular changes in the retina at a high resolu-
tion. Furthermore, our study provided a proposed 
approach to define cut-off value of accelerated age-
ing around the mean absolute error (MAE) while it 
remained unknown how much retinal age deviated 
from normal ageing considered as accelerated ageing. 
A well-defined cut-off value determined the thresh-
old between accelerated and normal ageing, allow-
ing healthcare professionals to interpret test results 
effectively.

Our study showed that an OCT-predicted age 
higher than chronological age was associated with 
an increased mortality risk, and conversely, an OCT 
age lower than the chronological age a reduced mor-
tality risk. Emerging evidence is growing to support 
that OCT parameters have been associated with age-
related diseases. For example, the retinal nerve fiber 
layer (RNFL) thinning was significantly associated 
with age-related diseases including glaucoma, [34] 
Parkinson’s disease [35], and Alzheimer’s disease 
[36]. Retinal macular thickness was strongly associ-
ated with systemic hypertension and cardiovascular 
diseases. [37–39]

Although the biological mechanisms underly-
ing the OCT ageing association have been not fully 
established, several hypotheses have been proposed. 
It has been suggested that ageing could induce oxida-
tive stress, chronic inflammation, DNA damage,[40] 
leading to retinal ganglion cell and axonal loss [41, 
42], presented as RNFL thinning captured by OCT 
[43, 44]. Moreover, major blood vessels thinning with 
ageing is another possible explanation for the asso-
ciation between OCT age and mortality risk [45, 46]. 
Preliminary evidence suggests that oxidative stress 
and endothelial dysfunction may underlie the adverse 
effects of ageing on the retinal vascular system [45, 
47]. Further research is needed to elucidate the aging 
process.

Our findings have several important clinical impli-
cations. This study revealed information from the 
OCT images could be summarized as a single age 
index with a clear interpretation of biological age. 
This indicates that OCT age may provide a promis-
ing tool for personalized ageing quantification and 

tailored-risk stratification. Generally, individual aber-
rations from normal ageing would help individuals 
to be aware of their ageing status and take personal-
ized health action and intervention. With OCT now 
becoming increasingly accessible in hospital and 
community settings, early detection of accelerated 
ageing and personalized intervention will have a sig-
nificant positive impact on public health, particularly 
in the context of an aging global population. [48]

Strength and limitations

To the best of our knowledge, this was the first study 
to investigate OCT age gap prediction of mortality 
risk. The strengths of the current study included its 
large sample size, multicenter study design, stand-
ardized protocols in acquiring OCT images, exten-
sive adjustments for covariates and long follow-up. 
Despite this, some limitations should be acknowl-
edged. The study population was from the UK and 
participants were mostly Caucasian, young, and 
healthy, which may limit the external generalizability 
[49]. Due to the observational study design, we could 
not infer causation.

Conclusion

We developed an accurate ageing biomarker from 
OCT images using DNN models. The OCT age gap, 
defined as the difference between OCT-predicted age 
and chronological age was associated with future 
mortality risk. This suggests that the OCT age gap 
can be used as a biomarker of mortality.
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