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Abstract Non-alcoholic fatty liver disease 
(NAFLD) is prevalent in the aging society. Despite 
body weight reduction, the prevalence of NAFLD 
has been increasing with aging for unknown reasons. 
Here, we investigate the association of DNA methyla-
tion age acceleration, a hallmark of aging, with risk 
of NAFLD. Genome-wide DNA methylation profiles 
were measured in 95 participants who developed type 
2 diabetes during 4-year follow-up, and 356 randomly 
sampled participants from Shanghai Changfeng 

Study. DNA methylation age was calculated using the 
Horvath’s method, and liver fat content (LFC) was 
measured using a quantitative ultrasound method. 
Subjects with highest tertile of DNA methylation age 
acceleration (≥ 9.5  years) had significantly higher 
LFC (7.2% vs 3.1%, P = 0.008) but lower body fat 
percentage (29.7% vs 33.0%, P = 0.032) than those 
with lowest tertile of DNA methylation age accel-
eration (< 4.0  years). After adjustment for age, sex, 
alcohol drinking, cigarette smoking, BMI, waist cir-
cumference, and different type blood cell counts, the 
risk of NAFLD was still significantly increased in the 
highest tertile group (OR, 4.55; 95% CI, 1.06–19.61). 
Even in subjects with similar LFC at baseline, DNA 
methylation age acceleration was associated with 
higher increase in LFC (4.0 ± 10.7% vs 0.9 ± 9.5%, 
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P = 0.004) after a median of 4-year follow-up. Further 
analysis found that 6 CpGs of Horvath age predictors 
were associated with longitudinal changes in LFC 
after multivariate adjustment and located on genes 
that might lead to fat redistribution from peripheral 
adipose to liver. Combination of the key CpG meth-
ylation related to liver fat content with conventional 
risk factors improves the performance for NAFLD 
prediction.
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Abbreviations 
ALT  Alanine transaminase
ANOVA  One-way analysis of covariance
AST  Aspartate transaminase
AUROC  Area under the ROC curve
BMI  Body mass index
DBP  Diastolic blood pressure
FPG  Fasting plasma glucose
HDL  High-density lipoprotein
LDL  Low-density lipoprotein
LFC  Liver fat content
NAFLD  Non-alcoholic fatty liver disease
NASH  Non-alcoholic steatohepatitis
NPV  Negative predictive value
MAFLD  Metabolic associated fatty liver disease
OGTT   Oral glucose tolerance test
PPG  Post-load plasma glucose
PPV  Positive predictive value
ROI  Region of interest
SBP  Systolic blood pressure
TC  Total cholesterol
TG  Triglycerides

Introduction

Non-alcoholic fatty liver disease (NAFLD) is the 
leading cause of chronic liver disease that afflicts 
about 25% of the world’s population [1]. The his-
tologic spectrum of NAFLD ranges from simple 
steatosis to non-alcoholic steatohepatitis (NASH), 

liver fibrosis, and eventually cirrhosis or hepato-
cellular carcinoma, and approximately 20–30% 
of patients with NAFLD can progress to NASH, a 
more severe form of NAFLD with liver inflamma-
tion and cellular damage. It has been recognized 
that NAFLD is a heterogeneous liver disease caused 
by dynamic interactions between both genetic and 
environmental factors [2]. Although NAFLD is 
usually associated with obesity, diabetes, meta-
bolic syndrome, and cardiovascular disease [3], 
not all NAFLD patients are overweight or obese 
[4]. Susceptibility to NAFLD appears to accumu-
late with age. The prevalence of NAFLD continu-
ously rises from 30–39 to 70–79 years old, despite 
a trend of body weight reduction after the age of 
50 [5]. Almost half of octogenarians have NAFLD, 
but their prevalence of diabetes and metabolic syn-
drome is not higher than those without NAFLD [6]. 
The aged liver is characterized by progressive phys-
iological alterations [7], and one hallmark of aging 
at the hepatocyte level is alterations in DNA meth-
ylation [8]. DNA demethylation could cause liver 
steatosis, inflammation, and fibrosis in mice fed a 
methyl-deficient diet [9]. In humans, aged liver was 
featured of differential methylation including but 
not limited to the regions associated with the WNT 
pathway and epithelial-to-mesenchymal transition 
according to previous studies [10].

Recently, a predictor of biological age based on 
DNA methylation (“Horvath clock”) was established 
[11]. Different from chronological age, methylation 
age could be modified by the environmental factors. 
Obesity accelerates tissue aging measured by “Hor-
vath clock” [12], while lifestyle weight loss inter-
vention could reverse the methylation aging [13]. 
One recent study found that DNA methylation age 
acceleration was observed among the patients with 
NASH [14]. However, few studies have investigated 
the relationship and mechanism between DNA meth-
ylation age acceleration and incidence of NAFLD 
longitudinally.

In the current study, we determined DNA meth-
ylation age in a cohort of 95 participants with new-
onset type 2 diabetes during 4-year follow-up and a 
randomly sampled cohort of 356 participants from 
Shanghai Changfeng Study. We investigated the 
association between DNA methylation age accelera-
tion and risk of NAFLD in these two representative 
cohorts. The key CpG sites related to NAFLD were 
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identified, and their effects on gene regulation and 
lipid metabolism were further discussed.

Materials and methods

Study subjects

Our study analyzed two population cohorts from 
Shanghai Changfeng Study, a community-based 
prospective cohort study of chronic diseases among 
middle-aged and elderly residents from Shanghai 
Changfeng Community [15]. The inclusion criteria 
were age 45 years or older, and the exclusion criteria 
included refusal to participate in the study or refusal 
to sign an informed consent form. Initially, genome-
wide DNA methylation profiles were measured in 
the whole blood of 100 participants with new-onset 
type 2 diabetes at follow-up examination (Cohort 1) 
as described previously [16] and a randomly sampled 
representative cohort of 407 participants (Cohort 2), 
who were selected using SPSS software by a com-
puter. After excluding the participants with miss-
ing liver ultrasound examination, excessive alcohol 
consumption, or other known chronic liver diseases, 
95 participants from Cohort 1 and 356 participants 
from Cohort 2 were included for further analysis. The 
study was approved by the Research Ethics Commit-
tee of Zhongshan Hospital, Fudan University (Nos. 
2008–119 and B2013-132). Written informed consent 
was obtained from each participant.

Anthropometric and biochemical measurements

The past history of alcohol drinking, cigarette smok-
ing, chronic diseases, and medication use of each 
participant was collected in a face-to-face interview 
with a trained investigator using a standardized 
questionnaire. The questionnaire is modified from 
the questionnaire of the Rotterdam Study accord-
ing to the lifestyle and customs of people in Shang-
hai [15]. Height and weight were measured without 
shoes or outer clothing. Body mass index (BMI) was 
calculated as the weight in kilograms divided by the 
square of height in meters (kg/m2). Fat masses at the 
whole body, trunk, and limbs sites were measured by 

a single, trained technician using dual-energy X-ray 
absorptiometry (Lunar iDXA, GE Healthcare). Rest-
ing systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) were measured using an electronic 
blood pressure monitor (OMRON Model HEM-752 
FUZZY, Omron Co., Dalian, China). Blood samples 
were collected after a 12-h overnight fasting. Serum 
biochemical parameters, including serum alanine 
transaminase (ALT), aspartate transaminase (AST), 
fasting plasma glucose (FPG), oral glucose tolerance 
test (OGTT) 2-h post-load plasma glucose (PPG), 
total cholesterol (TC), triglycerides (TG), and high-
density lipoprotein (HDL) cholesterol, were measured 
using an automated bio-analyzer (HITACHI 7600, 
Tokyo, Japan). Low-density lipoprotein (LDL) cho-
lesterol was calculated using the Friedewald equation.

Ultrasound quantification of liver fat content (LFC)

Hepatic ultrasound examination was performed using 
a GE LOGIQ P5 ultrasound machine (GE Healthcare, 
Milwaukee, WI) with a 4-MHz abdominal probe. 
Since the degree of liver steatosis is positively corre-
lated with the echogenicity of liver in comparison to 
that of renal cortex and ultrasound beam attenuation 
under ultrasonography, we quantified the ultrasound 
hepatic/renal ratio and hepatic attenuation rate using 
a computer program and estimated LFC using these 
two parameters. As detailed in our previous work 
[17], ultrasound images of liver/right kidney sagit-
tal view and right liver lobe intercostal view were 
captured under the ultrasound machine and analyzed 
using a NIH image software (ImageJ 1.41o, National 
Institutes of Health, Bethesda, MD). To avoid the 
interference of intrahepatic blood vessels and bile 
ducts, representative regions of interest (ROI) in the 
liver anterior margin (depth 4–6 cm), liver posterior 
margin, and the liver parenchyma-right renal cortex at 
the same depth were selected at homogeneous areas, 
and the echo intensity within the ROIs was measured. 
We also measured the linear distance between the 
ROIs at the liver anterior margin and posterior mar-
gin. The ultrasound hepatic/renal ratio and hepatic 
attenuation rate were calculated using the following 
equations derived from the ultrasound exponential 
attenuation law as follows:

Ultrasound hepatic∕renal ratio = ultrasound echo intensity in the liver ROI∕ultrasound echo intensity in the renal cortex ROI
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where An and Af are the average ultrasound echo 
intensity in the liver near-field and far-field ROIs, 
respectively, ⊿d is the distance between the above 
two ROIs, and f represented the frequency of the 
ultrasound detector.

Both ultrasound hepatic/renal ratio and hepatic 
attenuation rate were standardized by the measured 
hepatic/renal ratio and hepatic attenuation rate of the 
tissue mimicking phantom under the same machine 
setting condition, and the LFC was then calculated as 
LFC (%) = 62.592 × standardized ultrasound hepatic/
renal ratio + 168.076 × standardized ultrasound hepatic 
attenuation rate − 27.863. The LFC determined by the 
quantitative ultrasound method had an excellent cor-
relation with that obtained by proton magnetic reso-
nance (r = 0.89, P < 0.001), and the LFC cutoff for 
fatty liver by the ultrasound quantitative method was 
9.15%, with a sensitivity of 95.1% and specificity of 
100%, according to our previous study [17].

Definitions

Fatty liver is identified when liver fat content by 
ultrasonography exceeded the cutoff value of 9.15% 
[17]. NAFLD is diagnosed with evidence of hepatic 
steatosis as determined by liver ultrasonography and 
exclusion of excessive alcohol consumption, or self-
reported history of other chronic liver diseases, medi-
cation use, or other reasons that may cause hepatic 
steatosis. Metabolic associated fatty liver disease 
(MAFLD) is defined as hepatic steatosis diagnosed by 
liver ultrasonography in the presence of at least one of 
the following three metabolic conditions: overweight/
obesity, type 2 diabetes, or at least two of the seven 
metabolic risk abnormalities as detailed previously 
[18]. Incidence of NAFLD/MAFLD was defined if 
NAFLD/MAFLD could not be diagnosed at baseline 
but confirmed during the follow-up. The criteria for 
metabolic syndrome were central obesity (waist cir-
cumference ≥ 90 cm for men and ≥ 80 cm for women) 
plus two or more of the following components: (1) 
TG levels ≥ 1.7  mmol/L or receiving drug treat-
ment for elevated triglycerides, (2) HDL cholesterol 
levels < 1.03  mmol/L in men or < 1.29  mmol/L in 
women or receiving drug treatment for reduced HDL 
cholesterol, (3) SBP/ DBP ≥ 130/85 mmHg or antihy-
pertensive drug treatment in a patient with a history 

Ultrasound hepatic attenuation rate =
(

lnAn − lnAf

)

∕(Δd × f )17
of hypertension, and (4) FPG ≥ 5.6 mmol/L, or drug 
treatment for elevated glucose, according to the Inter-
national Diabetes Federation criteria [19]. Hyper-
tension was defined as SBP/DBP ≥ 140/90  mmHg 
or antihypertensive drug treatment in a patient with 
a history of hypertension. Hypertriglyceridemia was 
defined as a TG ≥ 2.3  mmol/L or a previous history 
of hypertriglyceridemia or drug treatment for elevated 
triglycerides, and hypercholesterolemia was defined 
as a TC ≥ 5.2  mmol/L and/or LDL-C ≥ 3.4  mmol/L, 
or a previous diagnosis of hypercholesterolemia or 
taking cholesterol-lowering medications [20].

Blood DNA extraction and quality control

The blood samples were processed for cell lysis to 
release the genomic DNA. Blood cell DNA extraction 
was performed using the Qiagen DNeasy Blood and 
Tissue Kit, which was carried out in strict accordance 
with the standard protocol provided by the kit manu-
facturer. The concentration and purity of the purified 
DNA samples were determined using Qubit 3.0 Fluo-
rometer and NanoDrop One spectrophotometer. To 
analyze DNA methylation, bisulfite conversion of the 
purified genomic DNA was performed. The bisulfite 
treatment converts unmethylated cytosines to uracils 
while preserving methylated cytosines. The conver-
sion reaction was carried out according to the man-
ufacturer’s instructions. Throughout the extraction 
process, quality control measures were implemented, 
including monitoring sample handling, record-
ing any deviations from the protocol, and assessing 
DNA quality through gel electrophoresis. To reduce 
variables in any type of experiment, we include both 
positive and negative controls in the experimental 
design. Positive controls are available as Internal 
Positive Control (IPC), which is spiked into samples 
before qPCR assay to confirm the absence of target 
sequence, inhibition, or a reaction cycling error. Neg-
ative controls are extracted at the same time as sam-
ples and are used to check the presence of possible 
contamination during the extraction steps.

Blood DNA methylation analysis

Genome-wide DNA methylation profiles were 
obtained using the Illumina Infinium MethylationE-
PIC BeadChips following the manufacturer guide 
and protocol for Infinium MethylationEPIC array. 
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Samples were randomized for each slide, plate, and 
the position on plate, based on covariates includ-
ing age, sex, and BMI, to remove any potential bias 
on DNA methylation measurement from technically 
induced variation or confounding. Five hundred 
nanogram of genomic DNA from each blood sam-
ple was bisulfite converted using the EZ DNA Meth-
ylation Kit. DNA-BeadChip hybridization and single 
base extension were performed using a Freedom EVO 
robot. BeadChips were subsequently imaged using 
the iScan Microarray Scanner (Illumina), and Illu-
mina.idat files were then processed with an R pack-
age named ChAMP [21]. Probes on chromosome X 
and Y and SNP-related probes were removed. The 
SNP list comes from a published paper [22]. Beta 
values were calculated corresponding to the ratio of 
the methylated signal over the sum signal, and P val-
ues were derived by comparing the sum signal to that 
of the background distribution. Betas with P values 
above than 0.01 were set to NA. Probes with less than 
3 beads in at least 5% of samples per probe were fil-
tered out. After quality control, beta values were nor-
malized using a method named Beta Mixture Quan-
tile (BMIQ) [23]. Batch effects were then corrected 
using an R package named ComBat [24]. The derived 
beta values were used for further analysis.

Epigenome-wide association analysis and pathway 
analysis

A linear regression model was fitted to capture the 
correlation between genome-wide DNA methylation 
and the change of liver fat content, accomplished with 
the R package limma [25]. We conducted the associa-
tion analysis to discover CpG positions significantly 
related to liver fat content (i.e., differentially meth-
ylated positions). We annotated the detected CpGs 
to protein-coding genes and CpG islands using an 
R package named IlluminaHumanMethylationE-
PICanno.ilm10b4.hg19 [26]. Then, we checked the 
enrichment of those genes in Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways [27].

Calculation of cell proportion in blood

Since heterogeneity in the composition of blood 
leukocyte cell types can confound the relationships 
between DNA methylation and phenotypes, we esti-
mated the cell type abundance from methylation data 

using an R package named EpiDISH [28]. The per-
centages of seven different cell types (CD4 T cells, 
CD8 T cells, NK cells, B cells, monocytes, and neu-
trophil) were calculated by mapping the beta values 
of CpGs to the reference values according to the data-
base provided by EpiDISH.

Determination of DNA methylation age

DNA methylation age was calculated using the online 
age calculator (https:// dnama ge. genet ics. ucla. edu/) 
developed by Horvath [11]. Normalized DNA meth-
ylation data were used as input for the algorithm, and 
additional normalization and imputation were per-
formed by the age calculator for missing beta values. 
The list of predictive CpGs provided by Horvath was 
trained based on DNA methylation of 450 K Chips. 
In our case, the DNA methylation was obtained using 
MethylationEPIC BeadChips (i.e., 850 K); therefore, 
we only used the overlapped CpGs between 450 and 
850 K as predictors.

Statistical analysis

All statistical analyses were performed using R soft-
ware version 3.6.2 and SPSS software version 15.0. 
The continuous parameters with normal distribution 
are presented as the means ± SD, and skewed param-
eters are presented as the median with the interquar-
tile range (25–75%) given in parentheses. All skewed 
parameters were normalized using rank-based inverse 
normal transformation before analysis. The continu-
ous data with normal distribution were compared 
using the Student’s t-tests or one-way analysis of 
covariance (ANOVA) and the categorical variables 
using the chi-square test. The quantitative correla-
tions of DNA methylation age acceleration and its 
composite CpGs with the longitudinal changes of 
liver fat content were analyzed using Spearman corre-
lation analysis. Multivariate linear and logistic regres-
sion analyses were used to investigate the associations 
of DNA methylation age acceleration with longitudi-
nal change of liver fat content and the risk of NAFLD 
after adjustment for chronological age, sex, alcohol 
drinking, cigarette smoking, BMI, waist circumfer-
ence, and different type blood cell counts at baseline. 
Components of metabolic syndrome, including FPG, 
SBP, TG, and HDL cholesterol, were further adjusted 

https://dnamage.genetics.ucla.edu/
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in the multivariate linear regression model relating 
the DNA methylation age acceleration to the change 
of liver fat content.

Multivariate logistic regression models including 
the conventional metabolic risk factors, key Horvath 
CpGs related to risk of NAFLD, and their combination 
were used to build scores for incident NAFLD. Vari-
ables entered the regression models were finally assessed 
by backward stepwise regression analysis to obtain the 
optimal NAFLD prediction scores. The receiver operat-
ing characteristic curve analyses were then performed to 
describe the diagnostic performance of the above NAFLD 
prediction scores for incidence of NAFLD after 4-year 
follow-up. Internal cross-validation was performed to val-
idate the NAFLD prediction scores using a tenfold cross-
validation technique that was repeated 200 times with R 
program. The areas under the ROC curve (AUROCs) 
were compared using the DeLong’s test. The low and 
high cutoff points were determined to predict incident 
NAFLD with sensitivity (probability that the score is 
positive for participants who will develop NAFLD) of at 
least 90% and with specificity (probability that the score 
is negative for participants who will not develop NAFLD) 
of at least 90% for all four prediction scores. All statistical 
analyses were two-sided, and P < 0.05 was considered sta-
tistically significant unless otherwise stated.

Results

Baseline characteristics

We analyzed two cohorts from a Chinese community-
based population. Cohort 1 enrolled participants with 

normal plasma glucose at baseline but new-onset of 
type 2 diabetes at follow-up examination. Cohort 2 
was a randomly sampled representative cohort from 
a community population. The chronological ages 
were highly correlated with the DNA methylation 
ages in both cohorts (r = 0.79, P < 0.001 and r = 0.81, 
P < 0.001, respectively), as shown in Fig.  1A. DNA 
methylation age was greater than chronological age 
in 86 (90.5%) participants from Cohort 1 and 163 
(45.8%) participants from Cohort 2 (Fig.  1B). The 
participants from Cohort 1 had an average chronologi-
cal age of 61.5 ± 8.4 years and an average DNA meth-
ylation age of 67.7 ± 8.0  years, and they had an age 
acceleration of 6.2 ± 5.1 years on average (P < 0.001) 
(Table  1). In comparison, the average chronological 
and DNA methylation age of participants from the 
randomly sampled Cohort 2 were 61.2 ± 7.3 years and 
60.8 ± 6.3  years, respectively (Table  2). The preva-
lence of NAFLD, metabolic syndrome, hypertension, 
hypertriglyceridemia, and hypercholesterolemia was 
31.6%, 28.9%, 30.5%, 18.9%, and 47.4% in Cohort 
1 and 36.2%, 28.0%, 27.5%, 21.1%, and 47.4% in 
Cohort 2. All participants enrolled in Cohort 1 had 
no diabetes at baseline and developed type 2 diabe-
tes during 4-year follow-up, while the baseline preva-
lence of type 2 diabetes in Cohort 2 was 18.0%.

DNA methylation age acceleration is associated with 
the risk of NAFLD

We divided the participants from Cohort 1 into three 
groups according to the tertiles of DNA methyla-
tion age acceleration: tertile 1, < 4.0  years; tertile 2, 
4.0–9.5 years; and tertile 3, ≥ 9.5 years. As shown in 

Fig. 1  Chronological ages 
and DNA methylation ages 
in both cohorts. A Correla-
tion between chronological 
ages and DNA methyla-
tion ages. B Proportion of 
participants with DNA 
methylation age accelera-
tion in both cohorts
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Table  1, the baseline levels of BMI, waist circum-
ference, blood pressure, plasma glucose, serum tri-
glycerides, cholesterol, and liver enzymes had no 
significant difference among the participants with dif-
ferent degrees of age acceleration, except for a slightly 
lower BMI level in the third tertile and higher waist 
circumference in the second tertile group. Intrigu-
ingly, despite similar glucose and lipid metabolic 
parameters, the participants with highest tertile of 
DNA methylation age acceleration (≥ 9.5  years) had 
significantly higher liver fat content (7.2% vs 3.1%, 
P = 0.008) and lower body fat percentage (29.7% vs 
33.0%, P = 0.032) than those with first tertile of age 
acceleration (< 4.0 years) (Fig. 2A, B). Moreover, the 
whole-body fat masses as well as fat masses at the 

trunk and arms sites also had a trend of reduction in 
participants with highest tertile of DNA methylation 
age acceleration (Fig.  2C–E). There was no differ-
ence in fat masses at the legs among the participants 
with different degrees of DNA methylation age accel-
eration (Fig. 2F). After gradual adjustment for chrono-
logical age, sex, alcohol drinking, cigarette smoking, 
BMI, waist circumference, and different type blood 
cell counts at baseline, participants with age accelera-
tion ≥ 9.5  years still had significantly higher risk of 
NAFLD (OR, 4.55; 95% CI, 1.06–19.61) and MAFLD 
(OR, 5.57; 95% CI, 1.03–30.01) but not other meta-
bolic diseases (metabolic syndrome, hypertension, 
hypertriglyceridemia, and hypercholesterolemia), as 
shown in Table 3.

Table 1  Metabolic characteristics of the participants divided by degrees of DNA methylation age acceleration from Cohort 1 
(n = 95)

The continuous parameters with normal distribution were presented as the means ± SD, and skewed parameters were presented as the 
median with the interquartile range (25–75%) given in parentheses
BMI body mass index, OGTT  oral glucose tolerance test, ALT alanine transaminase, AST aspartate transaminase, NAFLD non-alco-
holic fatty liver disease
a P < 0.05 compared with participants with age acceleration < 4 years

Total DNA methylation age acceleration P value

First tertile (< 4.0 years) Second tertile 
(4.0–9.5 years)

Third tertile (≥ 9.5 years)

No. of participants 95 33 32 30
Male, n (%) 50 (52.6%) 12 (36.4%) 21 (65.6%) 17 (56.7%) 0.098
Cigarette smoking, n (%) 16 (16.8%) 4 (12.1%) 6 (18.8%) 6 (20.0%) 0.401
Alcohol drinking, n (%) 9 (9.5%) 1 (3.0%) 3 (9.4%) 5 (16.7%) 0.067
Chronological age, years 61.5 ± 8.4 63.4 ± 9.3 62.4 ± 8.8 58.6 ± 6.1 0.053
DNA methylation age, years 67.7 ± 8.0 64.4 ± 8.2 68.9 ± 8.5a 70.1 ± 6.1a 0.011
BMI, kg/m2 24.1 ± 2.4 24.1 ± 2.2 24.6 ± 2.5 23.7 ± 2.6a 0.349
Waist circumference, cm 84.0 ± 7.7 83.4 ± 7.5 86.0 ± 7.4a 82.6 ± 7.9 0.173
Systolic blood pressure, mmHg 134.1 ± 16.2 132.4 ± 13.0 134.6 ± 17.8 135.5 ± 18.0 0.738
Diastolic blood pressure, mmHg 78.2 ± 8.9 76.5 ± 9.5 79.1 ± 8.9 78.9 ± 8.4 0.433
Fasting plasma glucose, mmol/L 5.1 ± 0.5 5.0 ± 0.5 5.2 ± 0.5 5.0 ± 0.4 0.111
OGTT 2-h plasma glucose, mmol/L 6.2 ± 1.1 6.2 ± 1.1 6.0 ± 1.3 6.3 ± 1.1 0.654
HbA1c, % 5.6 ± 0.3 5.6 ± 0.3 5.6 ± 0.3 5.5 ± 0.3 0.464
Triglycerides, mmol/L 1.5 (1.1–2.0) 1.7 (1.1–2.0) 1.5 (1.2–1.9) 1.4 (1.1–2.2) 0.732
Cholesterol, mmol/L 5.2 ± 0.9 5.4 ± 0.7 4.9 ± 1.0 5.1 ± 0.9 0.070
HDL cholesterol, mmol/L 1.4 ± 0.3 1.4 ± 0.3 1.4 ± 0.4 1.3 ± 0.3 0.385
LDL cholesterol, mmol/L 3.0 ± 0.8 3.2 ± 0.6 2.8 ± 0.9 3.0 ± 0.8 0.075
ALT, U/L 16 (13–23) 15 (12–21) 19 (13–25) 16 (13–22) 0.118
AST, U/L 21 (18–24) 22 (20–25) 21 (19–23) 19 (17–22) 0.145
Liver fat content, % 4.7 (1.8–11.6) 3.1 (0.4–9.0) 4.9 (2.6–13.1) 7.2 (3.4–13.1)a 0.019
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DNA methylation age acceleration is correlated with 
longitudinal changes of LFC

The randomly sampled cohort (Cohort 2) consisted of 
163 participants with DNA methylation age accelera-
tion and 193 without DNA methylation age accelera-
tion. Compared with the participants without DNA 
methylation age acceleration, participants with DNA 
methylation age acceleration had higher proportion 
of cigarette smoking (20.3% vs 12.4%, P = 0.043) 
and alcohol drinking (23.3% vs 8.8%, P < 0.001). 
As shown in Table 2, although the participants with 
DNA methylation age acceleration were younger in 
chronological age, their DNA methylation ages were 
similar to those without DNA methylation age accel-
eration at baseline. Most of metabolic parameters 

had no significant difference between the two groups, 
except for a higher body weight, DBP, and serum TG 
level in the age acceleration group. The LFC had no 
difference at baseline examination (5.6% vs 6.5%, 
P = 0.814). However, after a median of 4-year follow-
up, the participants with age acceleration at baseline 
had significantly higher increase in LFC (4.0 ± 10.7 
vs 0.9 ± 9.5%, P = 0.004), serum ALT (1.4 ± 11.5 
vs − 2.9 ± 12.9U/L, P = 0.001), and AST (0.9 ± 9.9 
vs − 2.5 ± 9.2U/L, P = 0.001) levels (Fig.  3A–C). In 
comparison, the change in BMI, serum TG and TC, 
SBP, FPG, and PPG had no difference between the 
participants with and without DNA methylation age 
acceleration (Fig. 3D–I). Quantitatively, DNA methyl-
ation age acceleration years at baseline were also pos-
itively correlated with longitudinal changes in LFC 

Table 2  Baseline characteristics of the participants with and without DNA methylation age acceleration from Cohort 2 (n = 356)

The continuous parameters with normal distribution were presented as the means ± SD, and skewed parameters were presented as the 
median with the interquartile range (25–75%) given in parentheses
DNAm DNA methylation, BMI body mass index, OGTT  oral glucose tolerance test, ALT alanine transaminase, AST aspartate 
transaminase

Total Non-DNAm age 
acceleration

DNAm age acceleration P value

No. of participants 356 193 163
Male, n (%) 149 (41.9%) 77 (39.9%) 72 (44.2%) 0.415
Cigarette smoking, n (%) 57 (16.0%) 24 (12.4%) 33 (20.3%) 0.043
Alcohol drinking, n (%) 55 (15.4%) 17 (8.8%) 38 (23.3%)  < 0.001
Chronological age, years 61.2 ± 7.3 64.3 ± 6.8 57.5 ± 6.0  < 0.001
DNA methylation age, years 60.8 ± 6.3 60.6 ± 6.4 60.9 ± 6.3 0.666
BMI, kg/m2 23.9 ± 3.0 23.7 ± 3.0 24.1 ± 3.0 0.239
Height, cm 162.1 ± 7.9 161.5 ± 7.9 162.9 ± 7.8 0.078
Weight, kg 62.8 ± 9.8 61.8 ± 9.5 64.0 ± 10.0 0.038
Waist circumference, cm 83.1 ± 8.7 82.8 ± 8.3 83.3 ± 9.2 0.600
Systolic blood pressure, mmHg 130.7 ± 18.0 131.2 ± 17.8 130.0 ± 18.2 0.520
Diastolic blood pressure, mmHg 74.8 ± 10.3 73.4 ± 10.0 76.4 ± 10.5 0.007
Fasting plasma glucose, mmol/L 5.5 ± 1.3 5.5 ± 1.5 5.3 ± 1.1 0.169
OGTT 2-h plasma glucose, mmol/L 7.5 ± 2.9 7.6 ± 2.8 7.3 ± 3.1 0.263
HbA1c, % 5.8 ± 0.9 5.9 ± 1.1 5.7 ± 0.7 0.056
Triglycerides, mmol/L 1.4 (1.1–2.2) 1.6 ± 0.8 1.9 ± 1.3 0.009
Cholesterol, mmol/L 5.1 ± 0.9 5.1 ± 0.8 5.2 ± 0.9 0.089
HDL cholesterol, mmol/L 1.5 ± 0.4 1.5 ± 0.4 1.4 ± 0.4 0.213
LDL cholesterol, mmol/L 2.9 ± 0.8 2.8 ± 0.7 3.0 ± 0.8 0.097
ALT, U/L 16 (12–23) 16 (12–23) 16 (13–23) 0.723
AST, U/L 20 (18–24) 21 (18–25) 20 (17–23) 0.145
Liver fat content, % 5.7 (2.2–12.9) 5.6 (2.5–12.2) 6.5 (1.8–13.1) 0.814
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(r = 0.137, P = 0.009), ALT (r = 0.141, P = 0.008), 
and AST (r = 0.164, P = 0.002) after 4-year follow-up 
(Fig. 3J–L). Even after gradual adjustment for chron-
ological age, sex, alcohol drinking, cigarette smok-
ing, baseline BMI, waist circumference, FPG, SBP, 
TG, HDL-c, and different type blood cell counts, 
DNA methylation age acceleration still had a positive 
correlation with longitudinal changes in LFC (stand-
ardized β = 0.103, P = 0.041) and ALT (standardized 
β = 0.122, P = 0.007) and a trend of correlation with 
AST (standardized β = 0.085, P = 0.052) (Table 4).

DNA methylation age acceleration may contribute 
to liver steatosis by mobilizing fat storage from the 
peripheral adipose tissue and accumulating them in 
the liver

We conducted epigenome-wide association analy-
sis using all the DNA methylation data to globally 
detect differentially methylated positions. As a result, 
44 related CpGs were identified at the P threshold 
of P < 1 ×  10−4 (Fig. 4 and Supplementary table S1), 
although none of the CpGs was significant after 

Fig. 2  Relationship of DNA methylation age acceleration with 
liver fat content and whole-body and regional body fat masses. 
The comparison of A liver fat content, B body fat percentage, 

and C–F total, trunk, arms, and legs fat masses among the par-
ticipants with tertiles of DNA methylation age acceleration
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Bonferroni correction. The enrichment analysis shows 
that the genes where the detected CpGs are located 
are enriched in wnt signaling pathway (KEGG: 
hsa04310; P = 8.76 ×  10−3) and p53 signaling path-
way (KEGG: hsa04115; P = 5.96 ×  10−4), both of 
which have a close relationship with aging [29, 30], 
leading to a point that the correlation between DNA 
methylation and liver fat content is associated with 
aging.

Based on this understanding, we further focused 
on the exploration of associations between aging-
related CpGs and liver fat content. We collected 
353 CpGs defined as “aging clock” reported by 
Horvath et  al. The associations between Hor-
vath CpGs and the change of LFC were listed in 

Table S2. Among all Horvath CpGs sites, a total of 
10 CpG (cg01353448, cg01485645, cg01560871, 
cg03103192, cg03947362, cg08090772, cg14038452, 
cg20305610, cg16241714, cg24450312) sites were 
positively associated with longitudinal changes 
in LFC, while 5 CpG (cg08251036, cg18139769, 
cg22432269, cg23092072, and cg25070637) sites 
were inversely associated with longitudinal changes 
in LFC. The genes regulated by the above 15 CpGs 
and their metabolic functions were listed in Table S3. 
Most of the significant sites were located in the pro-
moter regions and CpG islands of their related genes 
(Figure S2), which indicated that the methylation of 
these CpG sites might down-regulate expression of 
their related functional genes. After adjustment for 

Table 3  Association of DNA methylation age acceleration and risk of NAFLD and metabolic diseases in Cohort 1 (n = 95)

Chronological age, sex, alcohol drinking, cigarette smoking, BMI, waist circumference, and different type blood cell counts at base-
line were adjusted in the multivariable regression model
DNAm DNA methylation

DNAm age accelera-
tion < 4.0 years (N = 33)

DNAm age acceleration 
4.0–9.5 years (N = 32)

DNAm age accelera-
tion ≥ 9.5 years (N = 30)

P for trend

NAFLD
  No. of cases, n (%) 7 (21.2%) 9 (28.1%) 13 (43.3%)
  BMI-adjusted OR (95% CI) 1 (reference) 1.22 (0.36–4.11) 3.92 (1.16–13.28) 0.029
  Multivariate-adjusted OR (95% CI) 1 (reference) 1.07 (0.27–4.22) 4.55 (1.06–19.61) 0.042

MAFLD
  No. of cases, n (%) 6 (18.2%) 9 (28.1%) 11 (36.7%)
  BMI-adjusted OR (95% CI) 1 (reference) 1.42 (0.39–5.17) 3.50 (0.95–12.93) 0.060
  Multivariate-adjusted OR (95% CI) 1 (reference) 1.55 (0.34–7.03) 5.57 (1.03–30.10) 0.045

Metabolic syndrome
  No. of cases, n (%) 11 (33.3%) 9 (28.1%) 5 (16.7%)
  BMI-adjusted OR (95% CI) 1 (reference) 0.59 (0.18–1.89) 0.39 (0.10–1.43) 0.146
  Multivariate-adjusted OR (95% CI) 1 (reference) 0.68 (0.14–3.36) 0.72 (0.11–4.76) 0.672

Hypertension
  No. of cases, n (%) 10 (30.3%) 9 (28.1%) 10 (33.3%)
  BMI-adjusted OR (95% CI) 1 (reference) 0.81 (0.27–2.42) 1.25 (0.42–3.71) 0.708
  Multivariate-adjusted OR (95% CI) 1 (reference) 0.92 (0.26–3.30) 1.25 (0.33–4.71) 0.741

Hypertriglyceridemia
  No. of cases, n (%) 7 (21.2%) 4 (12.5%) 7 (23.3%)
  BMI-adjusted OR (95% CI) 1 (reference) 0.45 (0.11–1.80) 1.23 (0.36–4.16) 0.779
  Multivariate-adjusted OR (95% CI) 1 (reference) 0.27 (0.05–1.58) 1.10 (0.20–6.01) 0.791

Hypercholesterolemia
  No. of cases, n (%) 21 (63.6%) 10 (31.3%) 14 (46.7%)
  BMI-adjusted OR (95% CI) 1 (reference) 0.25 (0.09–0.72) 0.51 (0.18–1.39) 0.163
  Multivariate-adjusted OR (95% CI) 1 (reference) 0.22 (0.06–0.75) 0.46 (0.13–1.55) 0.208
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chronological age, sex, alcohol drinking, cigarette 
smoking, BMI, and different type blood cell counts 
at baseline, the association between the methylation 
levels of cg03947362, cg08090772, cg16241714, 
cg20305610, cg24450312, and cg18139769 and 
the risk of incident NAFLD remained signifi-
cant (all P < 0.05), and a trend of inverse corre-
lation was found between cg08251036 methyla-
tion and NAFLD (P = 0.055) (Fig.  5). As shown in 
Fig.  5 and Table  S3, the cg03947362, cg08090772, 
cg16241714, cg20305610, and cg24450312 were 

strongly hypomethylated (0–12.9%) initially, and 
they were slightly methylated with the acceleration 
of DNA methylation age. Functionally, the increased 
methylation level of cg03947362 could disrupt the 
mitochondrial function and lead to liver glycogen and 
lipid storage through down-regulating the expression 
of C2of69 gene [31], and the increased methylation of 
cg08090772 and cg16241714 inhibited the adipogen-
esis through down-regulating expression of ADHFE1 
and CEBPD genes [32, 33], thus leading to excessive 
release of fatty acids from adipose tissue. At the same 

Fig. 3  Relationship between DNA methylation age accelera-
tion and longitudinal changes of liver fat content and related 
metabolic parameters. Comparison of the longitudinal changes 
in the levels of A liver fat content (LFC), B alanine transami-
nase (ALT), C aspartate transaminase (AST), D BMI, E tri-

glycerides, F cholesterol, G systolic blood pressure, H fasting 
plasma glucose (FPG), and I post-load plasma glucose (PPG) 
between the participants with and without DNA methylation 
age acceleration. Linear correlations of DNA methylation age 
acceleration with changes in J LFC, K serum ALT, and L AST
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time, the excessive fatty acids were further utilized 
for synthesis of triglycerides in the liver by up-regu-
lating the expression of PEG10 and MGAT5 through 
aging-related demethylation in the moderately or 
highly methylated CpG sites, namely, cg18139769 
and cg08251036 [34, 35]. Moreover, the methyla-
tion of cg20305610 and cg24450312 was also asso-
ciated with increased risk of incident NAFLD, and 
their related PDLIM5 and RASSF5 genes have been 
reported to correlate with obesity, type 2 diabetes, 
and hypertension previously [36, 37]. Taken together, 

we found that several key Horvath CpGs defined as 
age predictors were associated with the risk of inci-
dent NAFLD, and their methylation levels could reg-
ulate the expression of genes that inhibited peripheral 
adipogenesis and lead to liver steatosis by mobilizing 
lipids from the adipose tissue and accumulating them 
in the liver, which was consistent with reduced body 
fat percentage and increased LFC observed in par-
ticipants with highest tertile of DNA methylation age 
acceleration as shown in Fig. 2.

Table 4  DNA methylation age acceleration and longitudinal changes in liver fat content and liver enzymes in Cohort 2 (n = 356)

Model 1: unadjusted
Model 2: adjusted for chronological age, sex, alcohol drinking, and cigarette smoking
Model 3: adjusted for covariates in Model 2 plus the baseline level of investigated parameter (LFC, ALT, or AST)
Model 4: adjusted for covariates in Model 3 plus BMI, waist circumference, FPG, SBP, TG, and HDL-c at baseline
Model 5: adjusted for covariates in Model 4 plus different type blood cell counts

DNA methylation 
age acceleration

Change in LFC Change in ALT Change in AST

Beta (Std) Std β P value Beta (Std) Std β P value Beta (Std) Std β P value

Model 1 0.24 (0.12) 0.137 0.009 0.39 (0.15) 0.141 0.008 0.32 (0.12) 0.164 0.002
Model 2 0.24 (0.12) 0.109 0.043 0.43 (0.16) 0.154 0.005 0.32 (0.12) 0.160 0.003
Model 3 0.27 (0.12) 0.117 0.025 0.39 (0.14) 0.145 0.001 0.20 (0.11) 0.105 0.019
Model 4 0.21 (0.11) 0.091 0.064 0.36 (0.14) 0.114 0.009 0.17 (0.11) 0.070 0.126
Model 5 0.24 (0.12) 0.103 0.041 0.34 (0.13) 0.122 0.007 0.18 (0.10) 0.085 0.052

Fig. 4  The Manhattan plot of the epigenome-wide association analysis. The CpGs that passed the threshold of P < 1 ×  10−4 are 
marked red
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Performance of DNA methylation age acceleration 
and related CpGs for prediction of NAFLD incidence

Prediction models for NAFLD were then established 

based on conventional clinical parameters (“NAFLD 
Clin Score”), CpGs related to LFC (“NAFLD Methyla-
tion Score”), and their combinations by applying back-
ward multivariate regression analyses, as follows:

NAFLD Clin Score = 0.13 × BMI + 0.42 × TG − 0.42 × FPG − 1.26 × cigarette smoking(yes = 1, no = 0)

− 0.99 × alcohol drinking(yes = 1, no = 0) − 2.49

NAFLD Methyl Score = 8.92 × cg01560871 + 105.46 × cg08090772 + 40.98 × cg16241714 − 22.12 × cg18139769

+ 79.91 × cg20305610 − 77.52 × cg23092072 − 49.94 × cg25070637 + 2.89

NAFLD ClinMethyl Score = 0.50 × TG − 0.48 × FPG − 2.35 × cigarette smoking(yes = 1, no = 0) + 11.14 × cg01560871

+ 128.21 × cg08090772 − 27.16 × cg18139769

+ 87.87 × cg20305610 − 98.31 × cg23092072 + 4.76

Fig. 5  Six key Horvath CpGs of DNA methylation age predic-
tors were associated with the risk of NAFLD. The odds ratio 
and 95% CI for risk of NAFLD per SD methylation level of 

each CpG site were estimated. The expression of genes regu-
lated by the methylation of the CpG sites was also provided
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As shown in Fig.  6A, B, the DNA methylation 
age acceleration and the Horvath CpGs (“NAFLD 
Methyl Score”) could independently predict the inci-
dence of NAFLD with AUROCs of 0.65 (0.58–0.72) 
and 0.77 (0.70–0.83), respectively. The AUROC of 
“NAFLD Clin Score” for prediction of NAFLD was 
0.70 (0.64–0.77), and addition of DNA methylation 
age acceleration or related CpGs (“NAFLD Clin-
Methyl Score”) further improves the performance to 
predict NAFLD with AUROCs of 0.76 (0.70–0.81) 
(P = 0.039 vs “NAFLD Clin Score”) and 0.81 
(0.76–0.87) (P < 0.001 vs “NAFLD Clin Score”), 
respectively. The cross-validation AUROCs of the 
“NAFLD Clin Score,” “NAFLD Clin Score” plus 
age acceleration, and “NAFLD ClinMethyl Score” 
were 0.69 (0.46–0.91), 0.74 (0.53–0.93), and 0.77 
(0.58–0.96), respectively. Diagnostic performance 
of different NAFLD prediction models in terms of 
sensitivity and specificity and positive (PPV) and 
negative (NPV) predictive values under low and high 
cutoffs was listed in Table  S4. The cutoffs for 90% 
sensitivity and 90% specificity was − 1.74 and − 0.63 
for “NAFLD Clin Score” and − 1.60 and − 0.33 for 
“NAFLD ClinMethyl Score,” respectively. NPV was 
high (89.7–94.6%) in all four NAFLD prediction 

models, and “NAFLD ClinMethyl Score” could 
effectively exclude more participants with probabil-
ity to develop NAFLD after 4-year follow-up than 
“NAFLD Clin Score” (48.1% vs 27.8%) by using the 
dual cutoff approach, leaving fewer participants in the 
gray zone between the two cutoffs (33.0% vs 56.4%).

Discussion

NAFLD is a prevalent chronic disease and great 
health threat in the aging society. Our current study 
indicated that DNA methylation aging was an impor-
tant risk factor for incident NAFLD in middle-aged 
and elderly population. Further analysis revealed 
that 6 CpGs of Horvath age predictors were associ-
ated with longitudinal changes in LFC, most of which 
were located on genes related to lipid metabolism that 
release fatty acids from peripheral adipose tissue by 
inhibiting adipogenesis and accumulate lipids in the 
liver by promoting hepatic lipogenesis and inhibiting 
lipid β-oxidation. Clinically, DNA methylation age 
acceleration and related Horvath CpGs could improve 
the accuracy to predict the incidence of NAFLD 
based on conventional risk factors.

Fig. 6  Diagnostic performance of the DNA methylation 
age acceleration and its key Horvath CpGs for prediction of 
NAFLD incidence. The receiver operating characteristic curve 
analyses were performed to describe the diagnostic perfor-

mance of A the DNA methylation age acceleration and B the 
Horvath CpGs, conventional risk factors, and their combina-
tion for incidence of NAFLD



GeroScience 

1 3
Vol.: (0123456789)

DNA methylation age (“Horvath clock”) was first 
developed in 2013. Using 8000 samples from 82 
Illumina DNA methylation array datasets, a predic-
tor composed of 353 CpG sites was established to 
estimate methylation age of 51 tissues and cell types 
[11]. Previous studies indicated that DNA methyla-
tion age was independently associated with increased 
risk of metabolic syndrome [38], and this association 
seemed to be specific to worsening of lipid metabo-
lism [39]. In our current study, we further found that 
DNA methylation age acceleration was cross-section-
ally associated with higher risk of fatty liver disease. 
Even in the participants with similar baseline liver fat 
content, subjects with DNA methylation age accel-
eration also had higher risk of incident NAFLD than 
those without DNA methylation age acceleration after 
a median of 4-year follow-up, despite similar changes 
in BMI, blood pressure, plasma glucose and serum 
triglycerides, and cholesterol levels. Thus, hepatic 
lipid metabolism might be extremely vulnerable dur-
ing the epigenetic aging process. Consistent with our 
findings, Horvath et al. found that adiposity increased 
DNA methylation age in a tissue-specific manner, and 
age acceleration played an extremely important role 
in liver-related comorbidities [12].

Our study indicated that DNA methylation data 
and clinical data were additive in the prediction of 
incident NAFLD. Usually, DNA methylation in the 
promoter regions and CpG islands down-regulates 
the expression of their related functional genes. Most 
of the Horvath CpGs of the NAFLD prediction score 
were located in the promoter regions and CpG islands 
and regulated the expression of genes in relation to 
liver and adipose lipid metabolism, which could not 
be completely explained by the clinical parameters.

However, it is also noticeable that no association 
was found between DNA methylation age accel-
eration in liver tissue and NAFLD Activity Score or 
liver steatosis grades in some studies previously [12], 
which seemed to be inconsistent with our results. In 
our current study, several key Horvath CpGs related 
to NAFLD (cg08090772, cg16241714, cg23092072, 
cg25070637) were functionally associated with 
peripheral adipogenesis and release of circulat-
ing fatty acids (Fig. 5 and Table S3). Therefore, our 
result supported that DNA methylation age accelera-
tion promoted liver steatosis mainly through mecha-
nisms relating to the interaction between the liver 
and peripheral adipose, and as such, peripheral blood 

DNA methylation could better reflect the metabolic 
status of peripheral adipose tissue and predict the risk 
of incident NAFLD, compared with the liver tissue 
DNA methylation. Consistent with our study, another 
study also reported that peripheral DNA methylation 
age acceleration could reflect the severity of liver 
fibrosis in patients with NASH [14].

In the current study, the participants with DNA 
methylation age acceleration were featured with an 
increase in liver fat content and a reduction in body fat 
percentage. The opposite changes in liver and periph-
eral adipose fat indicated an altered body fat distribu-
tion in the participants with DNA methylation age 
acceleration. It has been reported that with increasing 
age, fat distribution gradually shifts from subcutane-
ous to visceral areas [40], and the age-related reduc-
tion in capacity of subcutaneous fat to store lipids is 
a crucial mechanism leading to the NAFLD in the 
elderly population [41]. In the elderly people, the 
number of preadipocytes decreased remarkably [42], 
and the imbalance between lipolysis and lipogenesis 
in adipose tissue increased liver exposure to free fatty 
acids and lipotoxicity [43, 44]. Taken together, DNA 
methylation age acceleration promoted the develop-
ment of NAFLD probably through altering the distri-
bution between liver and peripheral adipose tissue.

The aged liver is characterized by an impairment 
of metabolic pathways involving hepatic lipid metab-
olism [45]. Senescent hepatocytes have increased 
lipid droplet accumulation [46], which was consist-
ent with the increased NAFLD incidence observed 
in the elderly population. Compared with chronologi-
cal age, the DNA methylation age (“Horvath age”) 
could better reflect the whole-body functional status 
metabolically. More importantly, the combination of 
DNA methylation age acceleration with conventional 
metabolic parameters could remarkably improve the 
performance to predict the risk of incident NAFLD. 
However, regarding the cost and reproducibility of 
the DNA methylation examination, it is important 
to establish whether the use of NAFLD ClinMethyl 
Score is cost-effective. Therefore, the current study 
is still preliminary to show the potential to use DNA 
methylation age for prediction of NAFLD.

Limitations of the current study should be consid-
ered when interpreting the results. First, the histologi-
cal information for liver steatosis, inflammation, and 
fibrosis was not available, and the LFC was quantified 
using a quantitative ultrasound method that was not as 
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accurate as liver biopsy or proton magnetic resonance 
spectroscopy (1H-MRS) [17]. Second, the NAFLD 
prediction score was derived and internally validated 
using tenfold cross-validation in Chinese middle-aged 
and elderly adults; further studies were still required 
to expand the conclusion to participants from differ-
ent ethnicities and age groups.

Conclusion

DNA methylation age acceleration was a novel epi-
genetic risk factor for NAFLD and could predict the 
incidence of NAFLD independent of all conventional 
metabolic risk factors. Functionally, NAFLD-related 
CpGs of DNA methylation age predictors were likely 
to regulate the release of fatty acids from periph-
eral adipose tissue by inhibiting adipogenesis and 
the accumulation of lipids in the liver by promoting 
hepatic lipogenesis and inhibiting lipid β-oxidation. 
Combination of DNA methylation age acceleration 
and related Horvath CpGs with conventional meta-
bolic risk factors could improve the accuracy in pre-
dicting the incidence of NAFLD in middle-aged and 
elderly population.
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