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Abstract  Chronic, low-level systemic inflamma-
tion associated with aging, or inflammaging, is a 
risk factor for several chronic diseases and mortality. 
Using data from the Health and Retirement Study, we 
generated a continuous latent variable for systemic 
inflammation from seven measured indicators of 
inflammation and examined associations with another 
biomarker of biological aging, DNA methylation 
age acceleration measured by epigenetic clocks, and 
4-year mortality (N = 3,113). We found that greater 
systemic inflammation was positively associated with 
DNA methylation age acceleration for 10 of the 13 
epigenetic clocks, after adjustment for sociodemo-
graphics and chronic disease risk factors. The latent 
variable for systemic inflammation was associated 
with 4-year mortality independent of DNA meth-
ylation age acceleration and was a better predictor 
of 4-year mortality than any of the epigenetic clocks 
examined, as well as mortality risk factors, including 
obesity and multimorbidity. Inflammaging and DNA 
methylation age acceleration may represent different 

biological processes contributing to mortality risk. 
Leveraging multiple measured inflammation markers 
to capture inflammaging is important for biology of 
aging research.
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Introduction

Inflammation is a key component of our immune sys-
tem. Acute inflammatory responses to infection or 
injury are integral for maintaining homeostasis [1]. 
However, increased basal inflammatory activity is 
linked with aging and often characterized by higher 
levels of observed inflammatory cytokines such as 
C-reactive protein (CRP), interleukin-6 (IL-6), tumor 
growth factor-β (TGF-β), tumor necrosis factor-α 
(TNF-α), and tumor necrosis factor-II (sTNFR-II) 
[2–7]. This chronic, low-level systemic inflammation 
associated with aging in the absence of infection or 
injury (or “inflammaging”) is thought to be maladap-
tive and a risk factor for morbidity and mortality [8]. 
Indicators of inflammaging, including elevations in 
cytokines IL-6, CRP, and TNF-a, are associated with 
all-cause mortality, as well as with a number of age-
related chronic diseases, including cardiovascular dis-
ease, diabetes mellitus, cancer, frailty, and sarcopenia 
[6, 9–14].
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Epigenetic clocks, most often estimated from 
immune cells in blood, are DNA methylation 
(DNAm) signatures of chronological age or aging 
phenotypes [15–19]. Epigenetic age acceleration 
(DNAmAA) is a hypothesized indicator of underlying 
differences between “biological” age and “chronolog-
ical” age. DNAmAA has been associated with age-
related health outcomes, chronic diseases, cognitive 
functioning, frailty, and mortality [9, 15, 19–24].

Though inflammaging and DNAmAA are both 
typically immune cell-derived markers of aging, 
few studies have examined their relationship with 
each other [25–27]. Furthermore, low-grade chronic 
inflammation characteristic of inflammaging is 
the result of complex immune system interactions, 
including cascades and feedback loops [28]. To date, 
studies have examined individual cytokines with 
DNAmAA, but none has characterized systemic 
inflammation from multiple biomarkers simultane-
ously. To address this gap, we first generated a meas-
ure of systemic inflammation using a latent variable 
factor analysis. We estimated the underlying con-
struct of systemic inflammation from seven observed 
inflammatory indicators. We then examined the asso-
ciation between the systemic inflammation latent 
variable and DNAmAA and assessed whether the 
systemic inflammation latent variable or DNAm age 
acceleration was a better predictor of 4-year mortal-
ity in a nationally representative sample of US adults 
over the age of 50.

Methods

Sample

The Health and Retirement Study (HRS) is a nation-
ally representative sample of Americans over the 
age of 50. The HRS was approved by the University 
of Michigan Health Sciences/Behavioral Sciences 
Institutional Review Board. A subsample of indi-
viduals who participated in the Health and Retire-
ment 2016 Venus Blood Study had DNA methyla-
tion assays completed (N = 4,104) [29]. Participants 
were excluded from the present analysis if they were 
not age eligible for HRS or had missing data on the 
outcomes or covariates resulting in a final sample of 
3,311.

Systemic inflammation

Venous blood was collected from participants by 
trained phlebotomists at home visits for the first time 
in 2016. Inflammatory cytokines, including high sen-
sitive C-reactive protein (CRP), interleukin-6 (IL-6), 
interleukin-10 (IL-10), interleukin-1 receptor antago-
nist (IL-1RA), insulin-like growth factor 1 (IGF-1), 
and tumor necrosis factor (sTNFR-1), were assayed 
from serum at the University of Minnesota Advanced 
Research and Diagnostic Laboratory as described 
previously [29]. Neutrophil-to-lymphocyte ratio was 
derived from flow cytometry data from cryopre-
served cells by dividing the percent of neutrophils 
by the percent of lymphocytes. A continuous latent 
variable representing overall systemic inflammation 
was created from the 6 log-transformed cytokine 
measurements, CRP (referent, loading factor fixed 
to 1), IL-6, IL-10, IL-1RA TNFR1, and IGF-1, and 
the neutrophil-to-lymphocyte ratio (RMSEA: 0.072, 
CFI: 0.936) using MPlus v8 (Muthén & Muthén, Los 
Angeles, CA). Standardized loading factors, error 
terms, and standard errors are provided in Fig. 1. Par-
ticipant estimates for the systemic inflammation latent 
variable were exported from MPlus and merged with 
HRS data for analyses.

DNA methylation measurement and calculation of 
epigenetic age

DNA methylation was measured from assays using 
the Infinium Methylation EPIC BeadChip. Assays 
were completed at the University of Minnesota as 
described previously [16]. Briefly, samples were 
randomized across plates by key demographic vari-
ables (i.e., age, cohort, sex, education, and race/eth-
nicity) with 39 pairs of blinded duplicates. Analysis 
of duplicate samples showed a correlation > 0.97 
for all CpG sites. The Minfi package in R software, 
a suite of computational tools used to support pre-
processing and quality control of Infinium Methyla-
tion EPIC BeadChip DNAm data [30], was used for 
HRS DNAm data preprocessing and quality control. 
Sex mismatched samples and any controls (cell lines, 
blinded duplicates) were dropped. Minfi flagged 3.4% 
of the methylation assay probes (n = 29,431 out of 
866,091) for suboptimal performance (i.e., methyl-
ated + unmethylated DNA signal at a given position 
not different than the background signal level from a 
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negative control) using a detection P-value threshold 
of 0.01. Minfi flagged 58 samples using a 5% cutoff 
for detection P-value failed samples, and these sam-
ples were removed from the final dataset. High-qual-
ity methylation data is available for 97.9% of the sam-
ples (n = 4,018).

Thirteen epigenetic clocks were calculated by HRS 
staff and made publicly available [16]. Details on the 
training dataset and which characteristic or phenotype 
(e.g., age and mortality) each epigenetic clock was 
trained on are available in HRS documentation [31]. 
Epigenetic age acceleration for each clock was gener-
ated by regressing age at 2016 on the epigenetic age 
and obtaining the residual. Epigenetic clock residuals 
were standardized with a mean of 0 and a standard 
deviation of 1 for cross-clock comparisons. Standard-
ized residuals for each clock represent DNAmAA and 
were used in the present study.

Covariates

Covariates included age at the 2016 study measured 
in years, sex assigned at birth (male or female), race/
ethnicity (non-Hispanic White, non-Hispanic Black, 
or Hispanic), educational attainment (high school or 
less, some college, or more), marital status (married 
or not married), cytomegalovirus (CMV) seroposi-
tivity, multimorbidity, current smoking status (yes or 
no), obese (yes or no), heavy drinker (yes or no), and 
cell type proportions of the sample.

CMV seropositivity was categorized as positive 
or negative from IgG levels measured by the Roche 
e411 immunoassay analyzer (Roche Diagnostics 
Corporation, Indianapolis, IN). Reactive samples 
were categorized as positive, and borderline and 
non-reactive samples were categorized as negative. 
The sum of positive responses to whether a doctor 

Fig. 1   Standardized load-
ing factors (coefficient from 
equation linking inflam-
matory measure to latent 
variable) and error terms 
(residual from equation) for 
measured indicators of the 
latent construct of systemic 
inflammation (CRP was 
referent, RMSEA: 0.072, 
CFI: 0.936). *Statisti-
cally significant < 0.001. 
Cytokines were log trans-
formed. LV, latent variable; 
CPR, C-reactive protein; 
IL, interleukin; TNFR, 
tumor necrosis factor; IGF, 
insulin growth factor; N-L, 
neutrophil-to-lymphocyte
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has ever to the respondent that they have ever had 
a condition was generated from eight morbidities: 
high blood pressure, diabetes, cancer, lung dis-
ease, heart disease, stroke, psychiatric problems, 
and arthritis. Multimorbidity was defined as having 
2 or more of the 8 conditions. Heavy drinking was 
defined as having 3 or more drinks on the days that 
a participant drank in the last 3  months. Cell pro-
portions of the sample were estimated using flow 
cytometry data available from the HRS.

Statistical analyses

To ensure population-level representation, HRS 
epigenetic sample weights were used in analyses 
to account for differential selection probabilities by 
race/ethnicity and birth cohort and to correct for 
differential non-response. Weighted means and fre-
quencies of the sample were calculated. Weighted 
linear regression was used to estimate the associa-
tion of systemic inflammation with each epigenetic 
clock age acceleration adjusting for age, sex, race/
ethnicity, marital status, current smoking, and cell 
proportions of the sample (model 1). Model 2 addi-
tionally adjusted for CMV positivity, multimorbid-
ity, heavy drinking, and obesity. The R2 for each 
model was reported.

A subset of commonly investigated epigenetic 
clocks, HorvathAA, HannumAA, LevineAA, Grim-
AgeAA, ZhangAA, and the Methylation Pace of 
Aging (MPOA; DunedinPoAm38), were used in 
subsequent analyses. Weighted logistic regres-
sion was used to estimate the association between 
systemic inflammation latent variable and 4-year 
mortality alone and adjusting for each DNAmAA 
clock. Mortality models controlled for age, gender, 
race/ethnicity, marital status, current smoking sta-
tus, CMV positivity, multimorbidity, heavy drink-
ing, obesity, and cell proportions of the sample. 
Area under the receiver operating characteristic 
(AUROC) estimates for key covariates, DNAmAA 
measures, and systemic inflammation latent variable 
were generated from the 4-year mortality models. 
All analyses were conducted in SAS v. 9.4 (SAS 
Institute, Inc., Cary, NC) using PROC SURVEY 
procedures and HRS epigenetic sample weights in 
accordance with HRS data documentation [31].

Results

Table  1 contains the descriptive statistics for the 
sample. The study sample had an average age of 
68.37  years and was 53.76% female and major-
ity non-Hispanic White (80.70%). A majority of the 
sample had a high school education or less (62.99%), 
58.75% were married, 11.14% were current smokers, 
and 10.07% reported heavy drinking. Less than half 
of the sample was classified as obese (43.96%), and 
only 20.23% reported 2 or more chronic conditions, 
while 62.29% were CMV positive. Of the 3,113 par-
ticipants, 378 died between 2016 and 2020.

Correlations between the inflammation latent 
variable and DNAmAA measures are reported in 
Supplementary Table  1. Standardized associations 
between systemic inflammation latent variable and 
each DNAmAA clock are provided in Table  2. Sta-
tistically significant positive associations were found 
for HannumAA, LevineAA, SkinBloodAA, LinAA, 
Vidal-BraloAA, GrimAgeAA, ZhangAA, and MPOA 
in models adjusted for age, gender, race/ethnicity, 

Table 1   Study participant characteristics (N = 3,311)

Characteristic N %

Age (mean, SE) 68.37 0.189
Gender Male 1,398 46.24

Female 1,913 53.76
Race/ethnicity Non-Hispanic White 2,289 80.7

Non-Hispanic Black 556 10.26
Hispanic 466 9.04

Education HS or less 2,294 62.99
 > HS 1,017 37.01

Marital status No 1,423 41.25
Yes 1,888 58.75

Current smoker No 2,946 88.86
Yes 365 11.14

Heavy drinker No 3,009 89.93
Yes 302 10.07

Obese No 1,821 56.04
Yes 1,490 43.96

Multimorbidity 0 or 1 2,531 79.77
2 +  780 20.23

CMV positivity No 1,017 37.71
Yes 2,294 62.29

4-year mortality No 2,933 90.06
Yes 378 9.94
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marital status, current smoking, and sample cell pro-
portions. After additional adjustment for CMV posi-
tivity, multimorbidity, heavy drinking, and obesity, 
systemic inflammation was no longer statistically sig-
nificantly associated with HorvathAA. YangAA and 
BrocklandtAA were inversely associated with sys-
temic inflammation in both models. The highest R2 
was observed for GrimAgeAA, YangAA, ZhangAA, 
MPOA, HannumAA, and LevineAA, respectively. 
Model 2 was re-run with log CRP as the independ-
ent variable (Supplementary Table 2) to compare to 
results from the systemic latent variable models. The 
systemic inflammation latent variable effect sizes 
were larger than log CRP effect sizes, and R2 esti-
mates were equivalent or larger with the latent vari-
able as the independent variable.

Table 3 shows adjusted odds ratios (ORs) and 95% 
confidence intervals (95% CIs) for the association 
between (1) systemic inflammation latent variable 
and 4-year mortality and (2) DNAmAA for 6 of the 
clocks and 4-year mortality for comparison. A one 
standard deviation increase in systemic inflamma-
tion was associated with 2.778 higher odds of 4-year 
mortality adjusting for covariates. For comparison, 
a one standard deviation increase in log CRP was 
associated with 1.42 higher odds of 4-year mortal-
ity (95% CI: 1.22, 1.64; data not shown). Figure  2 
shows the association between systemic inflammation 
latent variable and 4-year mortality adjusted for age, 
sex, race/ethnicity, education, marital status, multi-
morbidity, heavy drinking, obesity, smoking status, 

CMV positivity, and cell composition of the sample 
and additionally adjusted for GrimAgeAA, YangAA, 
ZhangAA, MPOA, HannumAA, and LevineAA indi-
vidually. After additionally adjusting for DNAmAA, 
the association between systemic inflammation latent 
variable and 4-year mortality was attenuated but 
remained statistically significant, and AUROC esti-
mates (range 0.820–0.828) were slightly higher than 
the AUROC for the systemic inflammation latent 
variable model only (AUROC = 0.819). HannumAA, 
LevineAA, GrimAgeAA, ZhangAA, and MPOA 
were all associated with 4-year mortality adjusting 

Table 2   Associations 
between systemic 
inflammation latent variable 
and DNA methylation age 
acceleration measures in 
the Health and Retirement 
Study (N = 3,311)

Model 1: adjusted for age, 
gender, race/ethnicity, 
married, current smoking, 
and cell proportions
Model 2: model 1 
covariates and CMV 
positivity, multimorbidity, 
heavy drink, and obesity
Bold: statistically 
significant at alpha = 0.05

Model 1 Model 2

DNAmAA Standardized beta P-value R2 Standardized beta P-value R2

Horvath 0.10664 0.0101 0.02692 0.06768 0.1265 0.03130
Hannum 0.32452  < 0.0001 0.1394 0.32142  < 0.0001 0.14170
Levine 0.46613  < 0.0001 0.08807 0.46825  < 0.0001 0.09295
SkinBlood 0.15824  < 0.0001 0.02883 0.13787 0.0015 0.03173
Lin 0.2378  < 0.0001 0.03432 0.21768  < 0.0001 0.03568
Weidner 0.03865 0.3478 0.03142 0.03699 0.3984 0.03445
Vidal-Bralo 0.39044  < 0.0001 0.08783 0.38551  < 0.0001 0.09217
GrimAge 0.57485  < 0.0001 0.44150 0.55477  < 0.0001 0.45240
Yang  − 0.2940  < 0.0001 0.36370  − 0.3148  < 0.0001 0.39970
Zhang 0.55258  < 0.0001 0.34820 0.56209  < 0.0001 0.35520
Brocklandt  − 0.2263  < 0.0001 0.06544  − 0.2358  < 0.0001 0.06938
Garagnani 0.02738 0.5023 0.03176 0.01716 0.7002 0.03583
MPOA 0.63514  < 0.0001 0.29140 0.62973  < 0.0001 0.29680

Table 3   Independent associations between systemic inflam-
mation latent variable (LV), DNA methylation age accelera-
tion, and 4-year mortality in the Health and Retirement Study 
(N = 3,311)

Adjusted for age, gender, race/ethnicity, education, marital 
status, multimorbidity, heavy drinking, obesity status, current 
smoking, CMV positivity, and cell composition of the sample 
(DNAmAA only)

Variable 4-year 
mortality 
OR

95% CI Model AUROC

Inflammation LV 2.778 1.982 3.893 0.819
HorvathAA 1.101 0.938 1.294 0.816
HannumAA 1.327 1.159 1.521 0.804
LevineAA 1.437 1.260 1.639 0.809
GrimAgeAA 1.837 1.568 2.153 0.816
MPOA 1.488 1.280 1.731 0.809
ZhangAA 2.053 1.689 2.495 0.821
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for covariates (Table  3). Including systemic inflam-
mation in the model attenuated 4-year mortality OR 
estimates for DNAmAA measures (Supplementary 
Table 3). HorvathAA was not associated with 4-year 
mortality in this sample. Individual factor AUROC 
estimates for 4-year mortality were calculated for age 
(0.74), systemic inflammation (0.68), multimorbidity 
(0.62), CMV positivity (0.53), and several DNAmAA 
measures: GrimAgeAA (0.66), ZhangAA (0.66), 
MPOA (0.63), LevineAA (0.62), HannumAA (0.58), 
and HorvathAA (0.53) (Supplementary Table 4).

Discussion

Inflammaging and DNAmAA are two indicators 
of aging processes. In this study, we examined the 
association between systemic inflammation and 13 
measures of DNAmAA and whether systemic inflam-
mation or DNAmAA was more predictive of 4-year 
mortality in a nationally representative study of adults 
over age 50. We found that greater systemic inflam-
mation was positively associated with DNAmAA for 
10 of the 13 epigenetic clocks, after adjustment for 
sociodemographics and chronic disease risk factors, 
demonstrating remarkable consistency across “first”- 
and “second”-generation clocks. Prior research shows 
that epigenetic age acceleration was associated with 
individual measures of inflammation. Elevated lev-
els of specific inflammatory cytokines and other 

inflammation-related molecules, including IL-6, CRP, 
TNF-a, IP-10, sTNFR2, IL-18, IL-18BP, and leptin, 
have been shown to be correlated with accelerated 
epigenetic aging [15, 25–27]. A recent study of 22 
plasma-based inflammatory markers and four clocks 
(PhenoAge, GrimAge, DunedinPoAm, and Zhang) 
found associations between higher CRP and IL-6 
and DNAmAA, but other indicators of inflammation 
were inconsistent [9]. The present study builds on 
this work by constructing a latent variable for sys-
temic inflammation from multiple indicators instead 
of considering each inflammatory marker individu-
ally. Individual inflammatory marker measurements 
are indicators of a dynamic system, including com-
plicated cascades and feedback loops; by using these 
individual measurements collectively, we were able 
to estimate the unmeasured, underlying construct of 
systemic inflammation to use in aging research. The 
systemic inflammation latent variable was associ-
ated with multiple epigenetic clocks in the HRS and 
exhibited larger estimated effect sizes and explained 
more variance than individual cytokines. The sys-
temic latent variable was also a better predictor of 
4-year mortality than any characteristic or clock other 
than chronological age.

We observed higher R2 values for inflammation 
with clocks that were trained on mortality, mitotic 
division, or biomarkers of aging, including Grim-
AgeAA, YangAA, ZhangAA, and MPOA, than for 
clocks trained on chronological age or phenotypic 

Fig. 2   Overall associa-
tion between the systemic 
inflammation latent vari-
able and 4-year mortality 
adjusted for age, sex, race/
ethnicity, education, marital 
status, multimorbidity, 
heavy drinking, obesity, 
smoking status, CMV 
positivity, and cell com-
position of the sample and 
then adjusted for DNAm 
age acceleration measures 
individually in the Health 
and Retirement Study 
(N = 3,113)
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aging. MPOA used 18 biomarkers, including BMI, 
leukocyte telomere length, CRP, and white blood cell 
count, all of which either are inflammatory markers 
or associated with systemic inflammation [19]. Simi-
larly, chronic inflammation is well known to be a risk 
factor for mortality [8]. In mouse models, inflamma-
tion was found to lead to abnormal methylation of 
polycomb target genes, which were used to develop 
the YangAA mitotic clock [32]. Thus, systemic 
inflammation is likely either an interdependent or co-
occurring process with the factors these clocks were 
trained on, resulting in the inflammation latent vari-
able explaining a higher proportion of the variance 
for these clocks.

While both systemic inflammation and DNAmAA 
measures were associated with 4-year mortality inde-
pendently and after mutual adjustment, systemic 
inflammation was a better predictor of mortality in 
HRS than any of the epigenetic clocks, as well as 
other factors commonly associated with mortality, 
including multimorbidity, CMV positivity, and obe-
sity. Only chronological age was a better predictor 
of 4-year mortality than systemic inflammation. This 
suggests that systemic inflammation and DNAmAA 
are related, but potentially representing different pro-
cesses contributing to mortality. This finding is con-
sistent with Cribb et  al., who found that epigenetic 
aging and inflammaging were strongly and indepen-
dently associated with mortality in a study of aging 
Australians [9]. Systemic inflammation may be a 
result of aging pathways involving cellular senes-
cence, changes in adaptive immunity, or dysregula-
tion of cellular processes [8] and for this study was 
estimated from biomarker measurement from venous 
blood, whereas the epigenetic clocks are DNAm 
signatures associated with age, mortality, and age-
related phenotypes identified in other aging studies. 
It is possible that systemic inflammation was a bet-
ter predictor of 4-year mortality than epigenetic age 
acceleration in this study because it was estimated 
directly from HRS participant biomarkers. Future 
work should confirm this finding in other repre-
sentative studies of aging both with the USA and 
internationally.

This work has many strengths. This study was con-
ducted in a large cohort representative of US adults 
over age 50 years. The HRS has wealth of information 
on participant sociodemographics, health behaviors, 
and biomarkers which were included as covariates, 

limiting unobserved confounding of associations. 
The inflammation latent variable was estimated from 
multiple indicators of inflammation, allowing for a 
more complete measurement of systemic inflamma-
tion than evaluating inflammatory markers individu-
ally. Sex differences in epigenetic age and immune 
function have been observed [16, 33, 34]. Explora-
tory analyses examining the association between 
systemic inflammation and DNAmAA stratified by 
sex were conducted but did not provide evidence of 
effect measure modification. This study also has limi-
tations. The association between inflammation and 
DNAmAA was cross-sectional, limiting inference 
on the directionality of the relationship. However, 
the prediction of 4-year mortality by chronic inflam-
mation and DNAmAA was a longitudinal analysis, 
providing insight into the relative utility of two bio-
markers of mortality. The epigenetic clocks used in 
this study were trained in different study populations, 
different tissue types, and on numerous outcomes 
including chronological age, mortality, phenotypic 
aging, and age-related biomarkers. For example, Phe-
noAge was created using data from the InCHIANTI 
Study, which was a cohort of adults age 65 and older 
living in the Chianti geographic area of Tuscany, Italy 
[15]. The differences in study population character-
istics between HRS and the InCHIANTI study could 
lead to measurement error in the estimation of Pheno-
AgeAA in HRS participants. However, the systemic 
inflammation-DNAmAA association was robust and 
observed for multiple clocks, lending support that this 
relationship is consistent across populations and body 
systems.

Conclusion

We created a latent variable for systemic inflammation 
that correlated with other markers of biological aging and 
was a better predictor of 4-year mortality than all epige-
netic age acceleration measures and participant charac-
teristics except chronological age. We found that higher 
systemic inflammation was consistently associated with 
DNAm age acceleration across numerous epigenetic 
clocks in a US representative cohort of aging adults. Our 
results suggest that systemic inflammation and DNAm 
age acceleration were both risk factors for mortality, but 
that they may represent different biological processes con-
tributing to mortality risk. Future work should replicate 
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these findings in other US representative and international 
aging cohorts and examine longitudinal associations 
between systemic inflammation and DNAmAA to under-
stand the directionality of the association.
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