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Abstract  Following prolonged cell division, mes-
enchymal stem cells enter replicative senescence, a 
state of permanent cell cycle arrest that constrains the 
use of this cell type in regenerative medicine appli-
cations and that in  vivo substantially contributes to 
organismal ageing. Multiple cellular processes such 
as telomere dysfunction, DNA damage and onco-
gene activation are implicated in promoting replica-
tive senescence, but whether mesenchymal stem cells 
enter different pre-senescent and senescent states has 
remained unclear. To address this knowledge gap, 
we subjected serially passaged human ESC-derived 
mesenchymal stem cells (esMSCs) to single cell pro-
filing and single cell RNA-sequencing during their 
progressive entry into replicative senescence. We 
found that esMSC transitioned through newly iden-
tified pre-senescent cell states before entering into 

three different senescent cell states. By deconstruct-
ing this heterogeneity and temporally ordering these 
pre-senescent and senescent esMSC subpopulations 
into developmental trajectories, we identified markers 
and predicted drivers of these cell states. Regulatory 
networks that capture connections between genes at 
each timepoint demonstrated a loss of connectivity, 
and specific genes altered their gene expression distri-
butions as cells entered senescence. Collectively, this 
data reconciles previous observations that identified 
different senescence programs within an individual 
cell type and should enable the design of novel seno-
therapeutic regimes that can overcome in vitro MSC 
expansion constraints or that can perhaps slow organ-
ismal ageing.
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Introduction

Cellular senescence is one of the main drivers of 
ageing and age-associated diseases [1]. This state of 
permanent cell cycle arrest can be induced by cell 
stressors like telomere attrition, oncogene activa-
tion and genotoxic or oxidative stress [2]. Senescent 
cells secrete a set of pro-inflammatory cytokines, 
chemokines, growth modulators, proteases and other 
soluble signalling factors that are collectively termed 
the senescence-associated secretory phenotype 
(SASP). The make-up of the SASP secretome can 
vary depending on the cell type and cellular context 
[3] and is the vehicle through which senescent cells 
promote inflammation and senescence in neighbour-
ing cells, which in turn contributes to advancing the 
ageing process and accelerating the onset of age-
related diseases [3].

Mesenchymal stem cells (MSCs) are a useful 
and pertinent cell model to study ageing because 
the degeneration of mesenchymal tissues [4] is a 
key component of the pathology of accelerated age-
ing syndromes such as progeria and Werner’s syn-
drome (WS) and the normal ageing process. The 
transplantation of healthy MSCs into a WS mouse 
model was shown to improve mean life span and 
bone density [5], underlining the importance of 
MSCs as a relevant cell type to study ageing and 
highlighting their potential in regenerative medicine 
applications. Because MSC are immunomodulatory 
and can be sourced from a range of tissues such as 
bone marrow or fat, they are an attractive cell type 
for cellular therapies [6]. However, to reach the rel-
evant cell numbers required for clinical trials, MSC 
typically need to be expanded in vitro for prolonged 
periods of time. Similar to what occurs in vivo, this 
extended cell division causes many MSCs to adopt 
a senescent phenotype [6, 7], and this occurs at even 
earlier passages when primary MSCs are sourced 
from donors of advanced age [8]. Significantly, 
senescent MSCs not only enter a state of permanent 
cell cycle arrest but also exhibit reduced immu-
nomodulatory properties and an increased propen-
sity to differentiate into fat cells at the expense of 
differentiation into bone or cartilage [9, 10], further 
limiting their clinical efficacy. Studies in mice and 
humans have predominantly implicated telomere 
shortening with the onset of senescence in MSCs, 
a process that is modulated through the p53 and 

p16/pRb tumour suppressor pathways as well as 
GATA4-regulated pathways [11], but increased oxi-
dative stress, mitochondrial defects, genotoxic dam-
age, altered regulation of autophagy and changes 
in chromatin organisation [12] have all been impli-
cated in promoting replicative senescence in MSCs.

Because MSCs are a heterogeneous population 
that consists of stem cells and progenitor compart-
ments, it has been particularly challenging to study 
replicative senescence in this cell type. Further-
more, the source of the MSCs [13–17], the stage 
of the cell differentiation process [15, 18, 19], 
cultivation times, medium composition and donor 
age [20-23] all differentially impact these subpopu-
lations. In addition, the markers that are typically 
used to identify MSCs may differ in abundance and 
distribution in these heterogeneous populations [7, 
24]. Moreover, while senescent MSCs are typically 
identified based on markers such as the expres-
sion of p16, p53, p21 and senescence-associated 
β-galactosidase (SA-β-gal) staining, previous stud-
ies and our data presented here indicate that these 
markers are not expressed homogeneously across 
senescent MSC subpopulations [25]. To minimize 
the confounding impact of these experimental fac-
tors, we opted in this study to generate MSCs from 
Schwann’s cell precursors that were derived from 
a single hESC line since the epigenome and tel-
omeres of hESCs are set to a foetal developmental 
stage in this cell type. Following prolonged in vitro 
culture of these esMSC, automated image analysis 
was used to quantify senescence marker expres-
sion, cell cycle progression, as well as cellular and 
nuclear morphology characteristics at a single cell 
level, revealing substantial heterogeneity and a 
lack of correlation between canonical senescence 
markers in esMSC cultures progressively entering 
senescence. Single cell RNA-sequencing (scRNA-
seq) provided novel insights into the reasons for 
this heterogeneity as it revealed that esMSC under-
going replicative senescence sequentially adopts a 
diversity of pre-senescent and senescent states and 
that a small proportion appears to have arrested in 
the G2M part of the cell cycle. This approach fur-
ther enabled the prediction of genes and molecular 
pathways that are potential drivers of the different 
pre-senescent and senescent states in human MSCs 
that could potentially be targets for novel senomor-
phic drugs.



1001GeroScience (2024) 46:999–1015	

1 3
Vol.: (0123456789)

Materials and methods

esMSC differentiation and culture

The hESC line Genea022 [26] was maintained 
under feeder-free conditions on extracellular 
matrix (ECM, Sigma)-coated plates with mTeSR™ 
Plus (Stemcell Technologies). hESC was passaged 
using EDTA at 70–80% confluence approximately 
every 5  days. For Schwann’s ell precursor (SCP) 
differentiation, hESCs were plated as single cells 
at a density of 90,000 cells/cm2. The next day, the 
culture medium was switched to SCP differen-
tiation medium: DMEM/F12 supplemented with 
1X B-27 without vitamin A, 1X GlutaMax, 1X 
NEAAs, 1X PenStrep, 100 µM β-mercaptoethanol, 
10 µg/mL holo-transferrin, 10 ng/mL heregulin B, 
3  µM CHIR, 10  µM SB431542, 50  µg/mL ascor-
bic acid, and 8 ng/mL bFGF. Cells were passaged 
every 4–5  days with Accutase and maintained in 
differentiation medium for 21  days. SCPs were 
next FACS purified with MCAM-antibodies and 
cultured for 3  weeks in DMEM with low glucose 
(1 g/L) supplemented with 10% FBS and 1X Pen-
Strep to foster differentiation into esMSCs. At this 
timepoint (T0), esMSC’s identity and purity were 
confirmed via IHC and flowcytometric analysis 
of MSC marker expression (CD105 + , CD73 + , 
CD90 + , CD34 − , CD14 − and CD19 −) using a 
human MSC analysis kit (BD Biosciences, cata-
logue 562245) according to manufacturer guide-
lines and aligning with previously described 
international standards [27]. Subsequently, esM-
SCs were passaged using TrypLE at 80% conflu-
ence approximately every 5  days and plated in 
tissue-culture-treated flasks. The time between 
passages increased with increasing senescence 
levels. For the proliferation experiment, MSC 
differentiation replicates 1, 2 and 3 frozen at the 
different timepoints T0, T1 and T2 were revived 
and left to recover overnight. The next day, cells 
were detached, counted and plated in quintupli-
cate in 96-multiwell plates (PerkinElmer) at a 
confluence of 5000 cells/well. The following day, 
cells were incubated with BrdU at a final concen-
tration of 20  µg/mL for 24  h. At the end of the 
incubation period, cells were washed twice with 
PBS and fixed with 4% PFA for 10  min at room 
temperature.

Senescence‑associated β‑galactosidase assay 
(SA‑β‑gal)

esMSCs were washed in PBS, fixed for 10  min in 
4% PFA, and incubated at 37  °C (in the absence of 
carbon dioxide) with fresh SA-β-gal stain solution 
(pH 6.0): potassium ferricyanide 5  mM, potassium 
ferrocyanide 5  mM, sodium dihydrogen phosphate 
0.4 M, sodium hydrogen phosphate 92 mM, sodium 
chloride 150 mM, magnesium dichloride 2 mM and 
1  mg  mL−1 of 5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside. Staining was evident in 2–4 h and 
maximal in 12–16 h.

Western blotting

esMSCs were lysed with RIPA buffer containing pro-
tease and phosphatase inhibitors, and samples were 
prepared at 30 µg of protein with DTT (100 mM) and 
1X Laemmli SDS loading dye. Lysates were resolved 
using denaturing TGS (Tris/glycine/SDS) buffer-
based polyacrylamide gel electrophoresis (SDS-
PAGE) followed by wet transfer (Tris/glycine/metha-
nol) to nitrocellulose membranes. Primary antibodies 
Sox10 (rabbit, Cell Signalling Technologies [CST] 
#89356, 1:1000), p21 (rabbit, CST #2947, 1:1000) 
and B-actin (mouse, CST # 3700, 1:5000) were incu-
bated at 4 °C overnight and HRP-conjugated second-
ary antibodies for 1  h at room temperature. Cross-
reactivity was detected using Clarity ECL (Bio-Rad), 
and captured images were analysed using Image Lab 
4.1 (Bio-Rad, USA) software.

Immunochemistry

esMSCs were plated on ECM-coated 96-well imag-
ing plates (Costar) and allowed to adhere overnight. 
Cells were washed once with PBS prior to 10  min 
of fixation with cold 4% paraformaldehyde. Cells 
were permeabilised with Triton-X100 at 0.1% and 
blocked with 3% BSA for 1  h. Primary antibod-
ies (anti-p21 (Cell Signalling, 2946S, 1:400), anti-
BrdU (Abcam, AB6326-100UG, 1:400) and anti-p16 
(Abcam, AB108349-100UL, 1:400)) were incubated 
overnight at 4 °C. Following three PBS washes, sec-
ondary antibodies (anti-mouse IgG 488, Invitrogen, 
A11029, 1:400; anti-rat IgG 647, Abcam, AB150167-
500UG, 1:400 or anti-rabbit IgG 568, Invitrogen, 
A10042, 1:400) were incubated for 45  min at room 
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temperature. Nuclei were counterstained with 
Hoechst 33342 (Invitrogen, H3570, 2  µg/mL) or 
4′,6-diamidino-2-phenylindole (Thermo Scientific, 
62248, 1 μg/mL) prior to imaging.

Fluorescence images were acquired using an 
Operetta CLS high-content analysis system with a 
10 × objective. All the images were analysed using 
the same pipeline for experimental and biological 
replicates with CellProfiler software. The individual 
cells were identified using the nuclear Hoechst coun-
terstain. Hoechst fluorescence intensity was used to 
quantify genomic DNA content (‘nuclear intensity’). 
Other nuclear characteristics like size and circular-
ity were also analysed. All the immunofluorescence 
signals within the nuclei were considered for analy-
sis along with the extra-nuclear signal of the SA-β-gal 
activity that was detected in the 647 nm channel.

Analysis for molecular marker intensities from single 
cell imaging

We used the interquartile range (IQR) to identify 
and remove outliers in the intensity data. A data 
point was identified as an outlier if it was above the 
75th or below the 25th percentile by a factor of 1.5 
times the IQR. The data was scaled by dividing each 
intensity value by the maximum intensity for each 
marker across timepoints. Wilcoxon’s ranked test 
(P-value < 0.05) was used to measure the difference 
between marker intensities.

DNA damage and telomere dysfunction induced 
focus (TIF) analysis

esMSCs were grown on Alcian blue coated coverslips 
for 24 h. The following day, the coverslips were rinsed 
in PBS and then fixed for 10 min in freshly prepared 
4% paraformaldehyde. Cell permeabilization was per-
formed for 10 min using KCM buffer (120 mM KCl, 
20  mM NaCl, 10  mM Tris–HCL pH 7.5, 0.1% Tri-
ton X-100). Coverslips were blocked with antibody-
dilution buffer (20  mM Tris–HCl pH 7.5, 2% (w/v) 
BSA, 0.2% (v/v) fish gelatin, 150  mM NaCl, 0.1% 
(v/v) Triton X-100 and 0.1% (w/v) sodium azide) for 
1 h at room temperature followed by incubation with 
a ɣH2AX antibody (05–636 Sigma-Aldrich, anti-
phospho-histone H2A.X (Ser139) antibody, clone 
JBW301) overnight at 4 °C. The next day, 3 × 10 min 
PBS washes were performed; coverslips were 

incubated with a fluorophore-conjugated secondary 
antibody for 1  h at room temperature, followed by 
three more PBS washes. Next, coverslips were fixed 
again with 4% PFA for 15 min at room temperature. 
Cells were then dehydrated with an ice-cold ethanol 
series of 70%, 80% and 90% and dried and incubated 
with a TAMRA–OO-(CCC​TAA​)3 telomeric PNA 
probe (Panagene) prepared at 0.3  μg/mL in PNA 
hybridization solution (70% deionized formamide, 
0.25% (v/v) NEN blocking reagent (PerkinElmer), 
10 mM Tris–HCl, pH 7.5, 4 mM Na2HPO4, 0.5 mM 
citric acid and 1.25 mM MgCl2) for 10 min at 80 °C. 
Hybridization was then allowed to occur overnight at 
room temperature in a humidified chamber. The fol-
lowing day, coverslips were washed for 5 min each in 
50% deionized formamide in 2X SSC, 2X SSC and 
2X SSC + 0.1% Tween 20, at 43  °C. Finally, cells 
were counterstained with DAPI and mounted in Pro-
Long™ gold antifade reagent. Microscopy images 
were acquired on a Zeiss Axio Imager microscope 
with appropriate filter sets. Images were analysed for 
telomere intensity, ɣH2AX foci and telomeres colo-
calising with ɣH2AX using CellProfiler v2.1.1 [28].

Library preparation and scRNA‑sequencing

Cells were harvested with TrypLE, and dead cells 
were stained with propidium iodide (PI). Live cell 
FACS was used to collect a healthy population of 
single cells for single cell RNA-sequencing. FACS-
sorted single cell suspensions were spun down, and 
a cell count was performed to determine post-sort 
viability and cell concentration (concentration range 
7.40E + 05 − 2.34E + 06, viability 85–94%). Sin-
gle cell suspensions were partitioned and barcoded 
using the 10X Genomics Chromium Controller (10X 
Genomics) and the Single Cell 3′ Library and Gel 
Bead Kit (V2; 10X Genomics; PN-120237). The cells 
were loaded onto the Chromium Single Cell Chip A 
(10X Genomics; PN-120236) to target 10,000 cells. 
GEM generation and barcoding, cDNA amplifica-
tion and library construction were performed accord-
ing to the 10X Genomics Chromium User Guide. 
Reactions were performed in a C1000 touch thermal 
cycler with a Deep Well Reaction Module (Bio-
Rad). Eleven cDNA amplification cycles were per-
formed, and half of the cDNA was used as input for 
library construction. A total of 10–13 SI-PCR cycles 
was used depending on amount of input cDNA. The 
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resulting single cell transcriptome libraries con-
tained unique sample indices for each sample. The 
libraries were quantified on the Agilent Bioanalyzer 
2100 using the High Sensitivity DNA Kit (Agilent, 
5067–4626). Libraries were pooled in equimolar 
ratios, and the pool was quantified by qPCR using 
the KAPA Library Quantification Kit—Illumina/
Universal (KAPA Biosystems, KK4824) in combina-
tion with the Life Technologies ViiA 7 real time PCR 
instrument. After the initial sequencing run, libraries 
were re-pooled according to estimated captured cells 
as determined using the Cell Ranger software (10X 
Genomics). Denatured libraries were loaded onto an 
Illumina NextSeq-500 and sequenced using a 150-
cycle High-Output Kit as follows: 26  bp (Read1), 
8 bp (i7 index) and 98 bp (Read2). Read1 supplies the 
cell barcode and UMI, i7 the sample index and Read2 
the 3′ sequence of the transcript. In total, 5 sequenc-
ing runs were performed.

scRNA‑seq data analysis

Pre‑processing and quality control

Our experimental design consisted of three time-
points with three biological replicates performed for 
each timepoint, resulting in nine separate samples, 
collectively consisting of 119,454 total sequenced 
cells with an average of 13,273 cells per sample. 
The unfiltered unique molecular identifier (UMI) 
count matrix from the nine libraries (three repli-
cates for each of the three timepoints) was generated 
using Cell Ranger (v3.0.2). Reads were mapped to 
human GRCh38 genome, and an average of 92% 
reads was mapped to the transcriptome. True cells 
were identified, and droplets filtered out through 
DropletUtils R package. Briefly, this method com-
putes the upper quantile of the top expected bar-
codes and orders them based on the library size. 
Any barcode containing more molecules than the 

10% of the upper quantile was considered a cell and 
retained for further analysis. Genes with less than 
10% expression across all cells were also filtered 
out. The scRNA-seq dataset consisted of 22,609 
mean reads, 2527 median genes and 9831 median 
UMI counts per cell (Table S1).

Normalisation and integration

Seurat’s [29] integration and SCTransform pipeline 
were used to integrate the samples from the three 
replicates, and the count matrix was normalised 
using the default parameters. Following correction 
for batch effect with Seurat’s integration method 
and normalisation via a regularised negative bino-
mial regression model [29], 86,771 good-quality 
cells were retained for the subsequent analysis. 
After the elimination of genes with extremely low 
expression (as defined as UMI counts in less than 
10% of all cells), 6908 genes were retained (out of a 
total of 32,838 genes) (Table 1). The data was SCT 
normalised using 3000 highly variable features.

Dimensionality reduction and subgroup identification

Principal component analysis (PCA) was performed 
in the Seurat package. The first 20 PCs were kept 
based on the eigenvalues and passed into UMAP for 
two-dimensional visualisation using default param-
eters. To identity the number of clusters that best 
describes the heterogeneity in the single cell popu-
lation, clustering at 1.2, 0.8, 0.6, 0.5, 0.4 and 0.2 
resolution was applied. The result was evaluated 
and visualised using the clustree software package 
(v0.2.0). Clusters resulting from the 0.5 resolution 
were selected as the identity classes for cluster-spe-
cific marker identification.

Table 1   Count matrix 
dimension before and after 
pre-processing and filtering

Count matrix Timepoint (samples) Replicate (samples)

T0 T1 T2 R1 R2 R3

Original
32,838 features × 101,945 samples

31,065 31,065 44,693 43,356 27,200 31,389

Filtered
6908 features × 86,771 samples

27,735 18,389 40,647 33,202 23,975 29,594
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Cell cycle assignment and differential expression 
analysis

Cell cycle assignment was performed according to 
[30], as a part of the Seurat package. To identify the 
differentially expressed (DE) genes specific to each 
timepoint and cluster, Wilcoxon’s rank sum test was 
used. Genes with average expression fold-change 
of less than − 0.25 or greater than 0.25 (with a Bon-
ferroni’s adjusted P-value < 0.001) were selected 
for downstream functional annotation analysis and 
trajectory inference. Pathway over-representation 
analysis for each gene set was performed using clus-
terProfiler [31] against KEGG, Hallmark and GO 
Biological Process signatures. Statistical significance 
was defined for gene set terms with FDR corrected 
P-value < 0.05. Gene families were identified using 
the MSigDB database [32] and SASP atlas [33].

Functional enrichment analysis

The functional interaction networks were constructed 
by integrating protein–protein interaction (PPI) net-
work and Spearman’s correlation of gene pairs at 
each timepoint. Genes/proteins were extracted from 
the built-in reference PPI network in R package 
SCENT(v1.0.2) [34] (that is obtained by integrating 
various interaction databases in Pathway Commons 
[35]), and edges were represented by Spearman’s 
correlation computed from the expression of genes 
at each timepoint. Edges with high correlation (i.e., 
ρ >|0.5|) were retained for further analysis. Network 
modules (densely connected regions) were identified 
using the MCODE app [36] in Cytoscape (v3.8.2). 
The same workflow was applied for cluster-specific 
network analysis. The power-law degree distribution 
was computed in Cytoscape. The regulatory interac-
tions between gene pairs were obtained from Reac-
tomeFIViz app in Cystoscape which is connected to 
the reactome pathway database [37]. Pathway over-
representation analysis for each module was per-
formed through MSigDB [32] against GO Biological 
Processes, the KEGG pathway database and Hall-
mark gene sets.

Pseudotime analysis and trajectory inference

Slingshot R package (v1.6.0) [38] was used to con-
struct the pseudotime trajectory and scShapes R 

package (v1.0.0) [39] to identify the differentially dis-
tributed genes.

Results

esMSCs undergo replicative senescence in culture

Replicate cultures of esMSCs were cultured for three 
timepoints corresponding to 0, 26 and 63  days. At 
each timepoint, we used high-resolution imaging 
to characterise cellular features of senescence at the 
level of individual cells. Cells from these same time-
points were also profiled using scRNA-sequencing to 
characterise different states of replicative senescence.

The systematic analysis of senescence in primary 
adipose or bone marrow-derived human mesenchymal 
stem cells (MSC) has been difficult because of vari-
ability in donor age, genetic make-up, tissue source 
and culture medium. To minimize these confounding 
factors, we examined replicative senescence in MSC 
derived from the healthy control pluripotent stem cell 
line GENEA 22, since ageing-associated epigenome 
changes and telomere length exhibit a foetal develop-
mental make-up in this cell type. To generate defined 
populations of esMSC, we first subjected this hESC 
line to a differentiation protocol that generates cra-
nial Schwann’s cell precursors (SCPs) that express 
SOX10 and MCAM (3 independent differentiations). 
Culturing MCAM-sorted SCPs from each replicate in 
FCS-containing MSC culture medium for a 3-week 
period fostered their homogeneous transition into 
cranial esMSC (Fig. 1a). At this timepoint (which we 
designated timepoint zero T0), esMSCs exhibited the 
spindle-like morphology and surface marker expres-
sion profile of primary MSCs (CD105 + , CD73 + , 
CD90 + , CD34 − , CD14 − and CD19 − ; Figs. 1b and 
S1). To study replicative senescence in these esM-
SCs, we cultured newly generated esMSC (T0) for 
26 (T1) and 63 (T2) days (Fig.  1a, b). We observed 
that over this time period, the cell shape of the esMSC 
became increasingly irregular and larger (Fig.  1b) 
until at day 63 (T2, passage 12 for replicates 2 and 3) 
most cells had adopted the large and flattened appear-
ance characteristic of senescent MSCs (Fig.  1b). 
In agreement with this notion, the esMSC cultures 
exhibited increasing proportions of cells that showed 
senescence-associated β-gal enzyme activity (SA-β-
gal) over time (T0: 1.8%, T1: 19.5% and T2: 78.9%) 
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(Figs. 1e and S2). This progressive increase in SA-β-
gal expressing esMSC was accompanied by a decrease 
in telomere length over time (Fig. 1d and Figs. S2 and 
S3) and a concomitant decrease in BrdU incorpora-
tion, indicating a progressively lower proliferation 
rate of these cells over time in culture (Fig. S2). Auto-
mated image analysis of > 15,000 cells from replicate 
MSC cultures at each timepoint revealed a progressive 
temporal increase and shifts in population distribution 

of the canonical senescence markers SA-β-gal, p16 
and p21 (Figs.  1b and S2). In agreement with this 
data, western blot analysis of protein lysates from the 
esMSC cultures revealed a robust increase in the CDK 
(cell cycle) inhibitor p21 (CDKN1A) with increased 
passage number and confirmed the absence of the 
Schwann cell precursor marker SOX10 (Fig.  1c). 
SenezRed, another marker related to senescence, did 
not change significantly across timepoints (Fig.  S4), 

Fig. 1   Establishing the human embryonic stem cell (hESC) 
derived mesenchymal stem cell (esMSC) line to study senes-
cence. a Schwann’s cell precursors (SCPs) were transdifferen-
tiated into MSCs. Young esMSCs were cultured until popula-
tion doubling. Days 23, 49 and 86 post MSC medium exposure 
were selected as T0, T1 and T2 respectively. Cells from each 
of the three technical replicates at each timepoint were har-
vested for scRNA-sequencing. b Fluorescence analysis of 
senescence-associated markers at different timepoints. The fol-
lowing parameters were analysed per individual nuclei: immu-
nofluorescence of p21 and p16, BrdU incorporation, SA-β-
galactosidase activity and DAPI on MSCs cultured for different 
times named T0, T1 and T2 (23, 46 and 86  days, respec-

tively). The intensities correspond to the total intensity quan-
tified within nuclei, except for SA-β-galactosidase for which 
the intensity was recorded from an expansion of the nuclei, 
a proxy for cytoplasmic intensity. Scale bar, 100  μm. On the 
right side of the figure, a distribution plot profile is shown for 
each marker analysed. c Western blot analysis to confirm the 
conversion of SCPs to MSCs by quantifying the abundance of 
MSC- (p21) and SCP- (SOX10) specific markers. d Quantita-
tive estimation of telomere length shows a gradual decrease in 
telomere length as cells enter senescence. e Summary of SA-b-
Gal analysis along with example images and quantification. In 
T2, ~ 80% of the cells stained positive for this marker, indicat-
ing that most of the cells in T2 are indeed senescent
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which aligns with a previous study that found evi-
dence of telomere erosion but no mitochondrial 
changes in long-term cultured primary human bone 
marrow MSCs [40]. The number of γH2AX stained 
cells and telomere damage induced foci (TIF), both 
hallmarks of senescence [41], indicated that esMSCs 
accumulate DNA damage in the form of double strand 
breaks over time in culture, although the changes in 
numbers of TIF were not statistically significant (one-
way ANOVA, P-value > 0.01) (Fig. S3). Importantly, 
the expression of MSC marker expression did not sig-
nificantly change between T0, T1 or T2, and esMSCs 
from each timepoint continued to meet the standard 
requirements for MSC characterisation and conformed 
to the Rohart test gene signature of MSC identity 
(Fig. S5) [39].

esMSCs undergoing replicative senescence display 
variable senescence marker expression profiles 
at a single cell level

Our automated image analysis platform provided an 
opportunity to quantify senescence markers at the 

single cell level, and we next investigated how consist-
ent canonical markers of senescence (SA-β-gal, p21, 
p16 and loss of BrdU incorporation) co-occurred at the 
single cell level. This revealed that, as expected, BrdU 
incorporation was inversely correlated with increased 
SA-β-gal and p16 expression for the vast majority of 
cells over the entire time course (Figs. 2 and S6a–b). 
However, p21 expression already increased in many 
esMSC at the intermediate T1 timepoint in the absence 
of increases in these senescence markers. Interrogation 
at the single cell level also revealed the emergence of 
two cell subpopulations with differing DNA content 
that were both positive for SA-β-gal activity and p16 
expression, and displayed low BrdU incorporation, 
suggesting either senescence of esMSC in the G2M 
phase and/or aneuploidy of senescent cells.

Collectively, these data indicated that while canon-
ical senescence markers demonstrably shift at a pop-
ulation level, there is a considerable heterogeneity 
between these markers at a single cell level, sugges-
tive of the presence of multiple senescence programs 
and/or perhaps different or transitional senescent cell 
populations within the cultures at different timepoints.

Fig. 2   Correlation plot of nuclear p16 and p21, DNA content, SA-β-galactosidase activity and BrdU across T0, T1 and T2. Each dot 
represents a single cell (n > 2400)
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Single cell RNA‑sequencing reveals the identity and 
temporal relationships of pre‑senescent and senescent 
cell states in human esMSC cultures undergoing 
replicative senescence

To gain further insight into the intercellular heteroge-
neity of esMSC undergoing replicative senescence, 
we next performed single cell RNA-sequencing of 
replicate cultures harvested at T0 (freshly gener-
ated eMSC), T1 (cultured for 26 days) and T2 (cul-
tured for 72  days), capturing transcriptomic profiles 
for 86,771 high-quality cells. UMAP comparisons 
revealed excellent overlap of the three biological rep-
licates (each consisting of pooled triplicate samples) 
(Fig. S7). Furthermore, cells from each timepoint pre-
dominantly clustered together, suggesting a largely 
synchronous transition of cells into distinct transcrip-
tional states as the esMSC underwent replicative 
senescence (Fig. S8). Clustering revealed that cells at 
T0 predominantly consist of clusters 2, 3 and 6. T1 
cells consist predominantly of cluster 0 cells, cluster 
5 cells and a minor cluster 7, while T2 cells mainly 
consist of clusters 1 and 4 and subsets of cluster 0 and 
cluster 3 cells (Fig. 3).

To examine the contribution of cell cycle effects 
to this differential clustering, well-annotated genes 

were used to assign cell cycle phases to each clus-
ter, revealing that cells in T0 were predominantly in 
G1-, S- and G2M-phases, whereas cells in T1 mainly 
consisted of G1-phase cells with a minor propor-
tion of cells in S-phase. Cells from T2 were repre-
sented by G1-phase cells, which was consistent with 
the reduced BrdU incorporation into esMSCs at this 
timepoint but also contained G2M-phase cells that 
mapped to cluster 3 (Figs. S7a–b and S8).

To predict the transitions that occur between cell 
clusters, we next used pseudotime trajectory mapping 
of the scRNA-seq data. This analysis revealed that 
esMSC clusters 2 and 6 from T0 transition to cluster 
5 and then into cluster 0 cells at T1 via a small group 
of transitional cells (cluster 7). Cluster 0 cells are next 
predicted to transition into cluster 4 which next splits 
into two different cell states, either cluster 1 or a sub-
set of cluster 3 cells (Fig. 4).

The trajectory map revealed transitional cell states 
of esMSC undergoing replicative senescence that 
have not been previously identified. To gain insight 
into the molecular and cellular processes underlying 
esMSC replicative senescence, we examined what 
pathways and gene sets were enriched in each of the 
cell clusters and identified markers for these. Clus-
ter 6, the start of the esMSC senescence trajectory, 

Fig. 3   The overall representation of the esMSC population at 
different timepoints. a UMAP of esMSC colour coded by clus-
ters, split by timepoint. b Proportion of cells in each cluster 
with respect to timepoints. Clusters 2 and 6 are mainly com-

prised of T0 cells, whereas the majority of cells in clusters 
1 and 4 are from T2 (senescent) cells. Clusters 0 and 5 com-
prised of mixture of T0, T1 and T2 cells
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is distinctly enriched for pathways associated with 
insulin-like growth factor (IGF) receptor signalling 
IGFBP2 and IGFBP4 that regulate cell metabolism, 
development and growth (Fig.  S9a). Cluster 2 cells 
showed a significant enrichment for pathways asso-
ciated with regulation of cell shape and epithelial 
to mesenchymal transition (EMT) (Tables  S2 and 
S3). Cluster 5, the next subpopulation in the tempo-
ral analysis, which consists of 41% cells belonging 
to T1 and 52% to T2, was enriched for genes related 
to extracellular matrix organisation, antigen process-
ing and presentation of MHC Class 1 (Table  S2, 
Fig.  S9a). We hypothesize that cells in this cluster 
may be involved in changing the immune-modu-
latory properties of esMSCs. These cluster 5 cells 
are next predicted to transition into cluster 0 that is 
enriched for apoptosis and p53 pathway genes and 
consists of 52% T0 and 44% T2 cells. Cluster 0 cells 
displayed high expression of NUPR1  (Table  2), a 
gene that is activated under oxidative stress or ER 
stress conditions and is a key regulator of ferrop-
tosis (Fig.  S9b). Cluster 0 cells also highly express 
TRIB3, an inhibitor of cell proliferation (Fig.  S9b) 
that becomes upregulated in response to several 
forms of cellular stress [54] including oxidative ER 
stress and hypoxic stress (pathways that are also 
significantly enriched in cluster 5). Of note, cluster 
0 cells also strongly express ZFAS1, a long non-
coding RNA (lncRNA) that promotes adipogenic vs 

osteogenic differentiation in MSCs, a feature associ-
ated with ageing MSCs [40].

Cluster 0 cells are predicted to next transition 
into cluster 4 which is enriched for oncogenes or 
tumour suppressor genes (23.48%), suggesting 
these correspond to cells undergoing oncogene-
associated senescence (Fig. S10, Table S3). Stand-
out upregulated genes include G0-G1 switch gene 
2 (G0S2) (Fig.  S9b) a tumour suppressor gene 
associated with human dermal fibroblasts senes-
cence, haematopoietic stem cell quiescence, adipo-
cyte differentiation and cell-cycle withdrawal [6]. 
Another notable gene in cluster 4 is transcription 
elongation factor A protein-like 7 (TCEAL7), a 
gene known to regulate human telomerase reverse 
transcriptase (hTERT) expression and telomerase 
activity by inhibiting the c-Myc pro-oncogene in 
cells that have activated the alternative lengthen-
ing of telomeres (ALT) mechanism. This is signifi-
cant as more than 70% of mesenchymal tumours 
use the ALT pathway to maintain telomere length 
and bypass replicative senescence [7, 8]. Cluster 4 
cells are predicted to either transition into cluster 
1 cells that have enrichment for TGF-β signalling 
and markers for this cluster include pro-inflam-
matory SASP genes such as growth differentiation 
factor 15 (GDF15) [9], THBS1 [10], CCL2, CD70, 
CDKN1A, DCBLD2, EREG, HIF1A and MMP14 
(Fig.  S10, Table  S3) or into a subset of cluster 3 

Fig. 4   Trajectory inference analysis. The UMAP is colour 
coded based on a cluster and b timepoints. The trajectory starts 
at cluster 6 and ends at two different senescence states: onco-

gene-related senesce and T2-G2M cells (cells that were perma-
nently arrested in G2M)



1009GeroScience (2024) 46:999–1015	

1 3
Vol.: (0123456789)

cells. This subset of T2 cluster 3 cells is enriched 
for SASP factors (MMP1, SERPINE2 and MMP2) 
as compared to the cluster 3 T0 subpopulation 
(Fig. 5a and Table S4) and displays strong expres-
sion of CCND1, a well-established regulator of 
CDK kinases throughout the cell cycle, and a pro-
tein that specifically interacts and regulates CDK4/
CDK6 that are required for cell cycle G1/S transi-
tion [19]. Compared to the rest of T2 cells in the 
dataset (Fig.  5b, Fig.  S12 and Table  S4), T2 sub-
cluster 3 displays increased expression of BIRC5, 
an antiapoptotic gene linked to G2M cell cycle 
phase [20]. The fact that this cluster also uniquely 
over-expresses TPX2, a gene that promotes chro-
mosomal instability [21, 22], further reinforces 
the notion that T2 subcluster 3 cells represent 
putatively oncogenic esMSC that exhibit aneu-
ploidy. Given that this cluster also highly expresses 
CCNB1 (Fig.  S11), a gene that has been impli-
cated in p53-mediated permanent cell cycle arrest 

during senescence [41], makes it highly likely that 
these cells represent the SA-β-galhigh, p16high and 
BrdUlow cells with increased DNA content that we 
identified in our single cell profiling.

While the interpretation of these clusters 
largely rests on existing pathways and the current 
functional knowledge that links them back to cel-
lular senescence, a major outcome of this study is 
also the identification of the cluster states, the tra-
jectories that connect them and the marker genes 
that define them. To characterise each cluster, we 
also highlight the significant marker genes (top 
3 based on fold change, see Fig.  S9b), the top 3 
Gene Ontology Biological Processes (Fig.  S9a) 
and the top 3 cell surface receptors [42] that were 
marker genes for each cluster (Fig.  S9c). It is 
likely that these cell surface receptors may serve 
as a useful resource for future studies that look to 
identify or validate these clusters in other cellular 
systems.

Fig. 5   Differential expression analysis of T2-G2M cells (cells 
that were permanently arrested in G2M, in blue) with a prolif-
erative esMSC subtype-3 (other cells in cluster 3) and b other 

senescent cells (other T2 cells). Top panel: UMAP highlight 
cells in the comparison. Bottom panel: significant DE genes 
(LogFC × >|0.25|, Bonferroni’s adjusted P - value < 0.001)
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Collectively, these data indicated that healthy 
proliferating esMSCs undergoing replicative senes-
cence sequentially transition into cells experienc-
ing metabolic and oxidative stress, then into a 
pre-senescent state characterised by ER-stress and 
p53 regulated senescence, before transitioning into 
cells experiencing oncogene-induced senescence 
that split either into deep senescent cells with 
strong SASP secretions or into aneuploid cells that 
have been permanently arrested in G2M.

Gene regulatory networks are progressively less 
connected as esMSCs undergo replicative senescence

Network models were constructed for each timepoint 
using co-expression of gene–gene pairs where pairs 
were retained for an existing protein–protein interac-
tion network (using SCENT, see Methods) with high 
correlation (using Spearman’s |ρ|> 0.5). Subnetworks 
were identified using MCODE (see Methods). For all 
timepoints, the number of positively correlated edges 

Table 2   Top 5 timepoint and cluster-specific markers

Group No. of cells No. of markers (up/down) Top 5

T0 27,735 (32%) 317 (187/130) KRT18, IGFBP2, SHISA2, MEST, 
IGFBP4

T1 18,389 (21%) 126 (77/49) ACTA2, CRYAB, GDF15, LUM, BGN
T2 40,647 (46%) 240 (83/157) CCND1, SERPINE2, MMP1, MMP2, 

NEAT1
Early stage of time course (prolifera-

tive)
Cluster 2 13,822 (16%) 199 (105/94) KRT18, IGFBP2, FHL1, MAP3K7CL, 

NREP
Cluster 3 11,345 (13%) 360 (267/93) HIST1H4C, UBE2S, PTTG1, H2AFZ, 

PCLAF
Cluster 6 5229 (6%) 263 (125/138) IGFBP2, IGFBP4, IGFBP3, SHISA2, 

CDH6
Late stage of time course (pre-senes-

cence & senescence)
Cluster 0 22,087 (25%) 106 (31/75) NUPR1, BGN, TRIB3, EIF3E, ZFAS1
Cluster 1 19,851 (23%) 200 (60/140) IGFBP5, MT2A, CCND1, SFRP1, 

NEAT1
Cluster 4 7595 (8%) 149 (43/106) S100A6, G0S2, PCSK1N, CYP1B1, 

GNG11
Cluster 5 6683 (7%) 659 (491/168) POSTN, HSPA5, UBC, HSP90AA1, 

ACTA2
Cluster 7 159 (< 1%) 940 (137/778) MALAT1, NEAT1, S100A11, H3F3B, 

UBA52

Table 3   PPI network 
comparison during 
senescence

* Nodes are extracted from 
the reference PPI network 
via SCENT packages, and 
edges represent Spearman’s 
ρ >|0.5|. Subnetworks are 
identified with MCODE 
app in Cytoscape

Subnetwork Nodes Edges

T0 T1 T2

Positive Negative Positive Negative Positive Negative

1 31 105 0 450 0 94 0
2 18 28 15 10 4 5 0
3 29 29 7 41 0 26 4
4 8 19 0 0 0 0 0
5 8 3 0 4 0 9 5
6 12 6 2 8 2 5 4
7 5 7 0 1 0 0 0
8 3 2 0 2 0 1 0
Total 114 198 24 515 7 140 13
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was significantly higher than the number of nega-
tively correlated edges, and the T1 network had the 
largest number of positively correlated edges com-
pared to the T0 and T2 networks (Table 3).

Two subnetworks, modules 4 and 7, showed strik-
ing changes in the number of edges in the transition 
from T0 to T2 where edges with positive correlation 
were observed at T0, and this correlation was sub-
sequently lost at T1 and T2. These genes are mainly 
associated with cell division and the regulation of 
cell cycle transition (CDC20, TPX2, CENPF, UBE2, 
PPTG1, BIRC5 and CKS1B). Overall, T2 has the 
lowest number of total positive edges as compared 
to T0 and T1, and the lowest number of edges in the 
majority of the modules (i.e., 1, 2, 3, 4, 6, 7 and 8) 
(Tables  3 and S5, Fig.  S13). Collectively, this data 
indicated that gene regulatory networks are progres-
sively less connected as esMSCs undergo replicative 
senescence.

Cluster‑specific regulatory networks show a 
decreased degree of connectivity as esMSCs 
transition into senescence.

To further examine transcriptional regulation changes 
across the pseudotime trajectory, we next constructed 
cluster-specific co-expression networks. The nodes 
in the networks represent cluster-specific marker 
genes, and the edges reflect the Spearman correlation 
between the expression profiles of two genes. Follow-
ing retention of edges with the highest correlations 

(i.e., ρ >|0.5|), we found that the final networks exhib-
ited a power-law degree distribution with a few hub 
genes (Tables  4 and S7). These networks are scale-
free, which means the connectivity of the network is 
dominated by a small number of hub genes which are 
the most highly connected in the network and sur-
rounded by a larger group of weakly connected genes. 
Highly connected genes in clusters 6 and 2 (T0) 
(Fig. S13) are associated with cell proliferation (e.g., 
IGFBP5, TPM1, CNN1 and HBEGF). The Cluster 
5-based network had the highest number of nodes and 
edges and was composed of 11 modules. Mitochon-
drial genes were represented among the top 10 highly 
connected nodes for the cluster 5 subnetworks, and 
these genes were involved in oxidative phosphoryla-
tion and the ATP metabolic process (MT-ATP6, MT-
CO2, MT-CO1, MT-ND4, MT-ND3 and MT-CYB). 
These observations are consistent with our previous 
trajectory inference, indicating that oxidative stress 
initiates a DNA damage response that leads to activa-
tion of p53 and p16 (CDKN2A) pathways that in turn 
initiate and sustain cell cycle arrest [43]. The latter 
also supports our hypothesis that cluster 5 cells are 
experiencing metabolic stress.

Cells in cluster 0 express genes involved in regulat-
ing the recovery from metabolic stress such as TIMP1 
and GDF15 (top 10 most highly connected genes in 
cluster 0). TIMP1 is an inhibitor of matrix metallo-
proteinases (MMPs) and has anti-apoptotic functions 
[44]. Expression of MMPs is associated with the pro-
duction of reactive oxygen species (ROS) that drive 

Table 4   Characteristics of cluster-specific co-expression networks

Cluster No. of nodes No. of edges No. of 
mod-
ules

Top 10 highly connected genes

6 115 776 4 TKT, UGCG, SLC25A5, AKAP12, EEF1A1, C12orf75, NPM1, HNRNPA1, 
HBEGF, IGFBP5

2 84 546 3 ARPC2, CNN1, PRKCDBP, TPM1, EEF1A1, HMGCS1, IGFBP2, MAP2K2, 
SELENOW, COL3A1

5 396 11932 11 MT-ATP6, VCAN, MT-CO2, MT-CO1, GSTP1, MT-ND4, MT-ND3, FBN1, 
COL1A1, MT-CYB

0 22 48 1 TIMP1, COL1A1, RPL21, C6orf48, NPC2, VCAN, TKT, RPS3A, ZFAS1, GDF15
1 42 178 4 DCBLD2, S100A16, FTH1, SFRP1, HMGA1, THBS1, CCND1, IGFBP5, MT2A, 

HMGA2
4 25 92 2 S100A13, HLA-A, KCNMA1, CD63, PCSK1N, RPS27, B2M, HLA-B, HMGA1, 

FTL
3 260 3552 6 KNSTRN, CENPF, CCNB1, CKS2, ARL6IP1, TPX2, KPNA2, CKS1B, CDC20, 

BIRC5
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the emergence of senescence and age-associated dis-
ease [45]. GDF15 is involved in the stress response 
program of cells following cellular injury, and its 
increased gene expression is associated with age-
associated states such as tissue hypoxia, inflamma-
tion and oxidative stress [46]. Another gene of inter-
est from the top 10 highly connected genes in cluster 
1 (the senescence state, T2) is SFRP1, a gene that is 
commonly over-expressed in senescent cells exposed 
to DNA damage or oxidative stress [47].

Analysis of the cluster 4 co-expression network in 
the senescent esMSCs indicates that S100A13 is the 
gene with the highest number of interactions. This 
is significant because a previous study showed that 
overexpression of S100A13 increased NF-κB activ-
ity and induced multiple SASP genes, resulting in the 
emergence of cellular senescence [48].

Replicative senescence of esMSCs displays dynamic 
changes in distributions of gene expression in long 
non‑coding RNAs and genes involved in DNA 
damage response and apoptosis

Capturing gene expression at the single cell level can 
provide information that goes beyond confirming 
whether a gene is differentially expressed but instead 
the opportunity to model any changes in the distri-
bution of a gene’s expression profile. This type of 
distribution-centric analysis has demonstrated value 
for overcoming some of the challenges of modelling 
scRNA-seq data [39] like excess zeros and hetero-
geneous data. We investigated which genes changed 
their distribution between all timepoints where the 
selected options for distributions were one of the fol-
lowing, Poisson (P), zero-inflated Poisson (ZIP), neg-
ative binomial (NB) and zero-inflated negative bino-
mial (ZINB). Generalised linear models were used to 
represent each of the four distributions and adjusted 
for variation due to biological replicates. Follow-
ing the analysis framework of [39], out of the 3563 
genes that pass the Kolmogorov–Smirnov (KS) good-
ness of fit test, 585 genes (16.4%) changed distribu-
tion in at least two timepoints (Tables 5, 6 and S6). 
Among these, 117 genes (20%) switched distributions 
at all three timepoints, that is, from T0 to T1 and 
from T1 to T2. These 117 genes were significantly 
enriched for pathways in the response to DNA dam-
age stimuli and non-coding RNA processing path-
ways (Table  S2). These data are in accordance with 

previous studies that showed lncRNAs targeting p21/
p53 and pRB/p16 pathways [49] are involved in tel-
omere length attrition [50], consistent with our data 
showing the shortening of telomere length in senes-
cent esMSCs (Fig. S3).

The link between genes that change their expres-
sion distribution shape and their role as non-coding 
RNAs like microRNAs and lncRNAs may represent 
a functional contribution towards senescence and age-
ing. Recently, the role that microRNAs play in regu-
lating the stability of mRNAs after transcription has 
been shown to be associated with ageing [51]. Moreo-
ver, the expression of splicing factors has been linked 
to increasing age, and one study points to information 
from the expression levels of mRNA processing as a 
stronger indicator of age compared to transcriptional 
noise and the chronological age of the individual [52]. 
Analysis of distributional shapes of gene expression 

Table 5   Set of genes belonging to the same family of distri-
butions. Total of 3563 genes passed the Kolmogorov–Smirnov 
test

T0 T1 T2

Poison 1568 (44%) 1742 (48.89%) 1556 (43.67%)
NB 1833 (51.44%) 1647 (46.22%) 1881 (52.79%)
ZIP 135 (3.78%) 150 (4.2%) 106 (2.97%)
ZINB 26 (0.72%) 23 (0.64%) 19 (0.53)

Table 6   Differentially distributed genes across timepoints

Count T0 T1 T2

Changing in all three 
timepoints

Total = 117

14 Poison NB ZIP
22 Poison ZIP NB
1 Poison ZINB NB
22 NB Poison ZIP
14 NB ZIP Poison
2 NB ZINB ZIP
27 ZIP Poison NB
15 ZIP NB Poison

Changing in two time-
points

Total: 468

138 Poison NB Poison
30 Poison ZIP Poison
212 NB Poison NB
69 NB ZIP NB
15 NB ZINB NB
1 ZIP Poison ZIP
3 ZINB NB ZINB
Total 585
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from scRNA-seq may represent a way to link subtle 
changes in these kinds of genes with the increasing 
prevalence of senescent cells in T0 to T2.

Discussion

Replicative senescence is brought about by critically 
shortened telomeres that initiate DNA damage response 
pathways that result in permanent cell cycle arrest. Rep-
licative senescence is an inter-cellularly heterogeneous 
and asynchronous process not only because telomere 
length and shortening rates can vary within a popula-
tion of cells but also because inter-cellular variations 
in mitochondrial ROS production, metabolism, non-
telomeric DNA damage levels, proteostasis and onco-
genes can all modulate the type and severity of the 
telomere shortening induced DNA damage response. 
Furthermore, pro-inflammatory molecules of the SASP 
pathway that are released by cells entering replicative 
senescence induce secondary senescence in neighbour-
ing cells. It is therefore not surprising that imposition 
of telomere shortening (e.g., by knocking out telomer-
ase), oxidative stress, enforced oncogene expression, 
ER-stress, metabolic processes and production of SASP 
factors have all been reported to occur during replica-
tive senescence and accelerate the process. Since to date 
replicative senescence has been mainly studied at the 
bulk-population level, it has remained largely unclear 
whether these processes co-occur within cells undergo-
ing replicative senescence or are present in subpopula-
tions of cells that temporally transition into each other. 
In this study, we therefore examined gene expression 
and senescence markers at the single cell level in human 
ES-cell-derived mesenchymal stromal cells (esMSC) 
that progressively transition into replicative senescence. 
Our data reveal that healthy proliferative esMSCs 
sequentially transition into cells that show gene expres-
sion signatures of cells experiencing metabolic and oxi-
dative stress, then into a pre-senescent state character-
ised by genes involved in ER stress and p53-regulated 
senescence, before transitioning into cells experienc-
ing oncogene-induced senescence. This population 
next splits into either deep senescent cells with strong 
SASP secretions or into cells with SASP and oncogene 
signatures that are predominantly arrested in G2M. 
We hypothesize that this senescent G2M population 
[41, 53] has acquired p53 mutations that retain nuclear 
CyclinB, as previously observed by others. These data 

also explain why we and others observe poor correla-
tions between senescence markers such as p21, p16 and 
SA-β-gal and loss of BrdU incorporation at a single cell 
level, even though these markers significantly change at 
a population level. More importantly, our data for the 
first time temporally orders transcriptionally distinct 
pre-senescent and senescent subpopulations in a logi-
cal order that provides insights into the chronological 
progression of the replicative senescence program. Our 
data further show that this stepwise progressive transi-
tion into replicative senescence of esMSC is accompa-
nied by a loss of gene regulatory network control, as 
was previously observed in cultured fibroblasts. As our 
data indicate that multiple pre-senescent and senescent 
states can co-occur within a senescent cell population, it 
is clear that senolytics that target specific pathways can 
only be partially efficacious in eliminating senescent 
cells. In addition to examining gene expression levels 
in individual cells, we also investigated changes in gene 
expression distribution, revealing that a subset of genes 
show conspicuous changes in gene expression distribu-
tion as cells enter senescence. We speculate that this is 
likely a function of altered miRNA and lncRNA expres-
sion, changes in alternative splicing of these transcripts, 
or changes in transcriptional bursting rates. While our 
experimental approach of studying replicative senes-
cence in esMSC was designed to minimize potential 
confounding factors such as origin, chronological age 
and genetic background, we cannot exclude the possibil-
ity that selective clonal expansion during MSC genera-
tion or subsequent subculture contributes to some extent 
to the observed transcriptionally distinct pre-senescent 
and senescent cell clusters, nor can we exclude the 
possibility that differences in droplet capture efficien-
cies between senescent cells are a source of variability. 
Spatial transcriptomic analysis combined with lineage 
tracing of bar-coded replicative senescent cultures that 
leverage the data and cluster marker resources provided 
in this study should clarify these issues going forward. 
Despite these limitations, our data already enable the 
prediction of cell surface proteins that mark pre-senes-
cent and different senescent subpopulations and provide 
a deeper understanding of the chronologically ordered 
molecular processes that govern the transition from one 
subpopulation into the next. Going forward, these data 
may enable the design of novel senomorphics that can 
overcome current in  vitro cell expansion constraints 
that limit clinical trials with MSCs or that can promote 
healthy ageing outcomes in vivo.
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