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Abstract The degenerative processes that occur 
during aging increase the risk of disease and impaired 
health. Meanwhile, interventions that target aging to 
promote healthy longevity are gaining interest, both 
academically and in the public. While nutritional and 
physical interventions exist, efficacy is often difficult 
to determine. It is therefore imperative that an aging 
score measuring the biological aging process is avail-
able to the wider public. However, simple, interpret, 
and accessible biological aging scores are lacking. 
Here, we developed PhysiAge, a physiological aging 
score based on five accessible parameters that have 
influence on or reflect the aging process: (1) average 

daily step count, (2) blood glucose, (3) systolic blood 
pressure, (4) sex, and (5) age. Here, we found that 
compared to calendar age alone, PhysiAge better pre-
dicts mortality, as well as established muscle aging 
markers such as decrease in  NAD+ levels, increase in 
oxidative stress, and decline in physical functioning. 
In order to demonstrate the usefulness of PhysiAge in 
identifying relevant factors associated with deceler-
ated aging, we calculated PhysiAges for a cohort of 
aged individuals and obtained mass spectrometry-
based blood plasma metabolomic profiles for each 
individual. Here, we identified a metabolic signature 
of decelerated aging, which included components of 
the TCA cycle, including malate, citrate, and isoci-
trate. Higher abundance of these metabolites was 
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associated with decelerated aging, in line with sup-
plementation studies in model organisms. PhysiAge 
represents an accessible way for people to track and 
intervene in their aging trajectories, and identifies a 
metabolic signature of decelerated aging in human 
blood plasma, which can be further studied for its 
causal involvement in human aging.

Keywords Healthy longevity · Metabolomics · 
Physiological aging · PhysiAge · Aging clock · 
TCA cycle · Malate · Citrate · Isocitrate · Aging 
interventions

Introduction

The degenerative processes that occur during aging 
increase the risk of disease and impaired health. 
Meanwhile, interventions that target aging to pro-
mote healthy longevity are gaining repute and inter-
est, academically and in public and private sectors 
[1, 2]. While nutritional and physical interventions 
exist, their efficacy is often difficult to determine. 
Accommodating this, a wide variety of aging scores 
and aging clocks exist, including DNA methylation-
based, transcriptomics-based, proteomics-based, and 
metabolomics-based molecular aging clocks [3–6]. 
While these “omics” clocks are plentiful and allow 
the determination of a biological, rather than chrono-
logical age, they suffer from limited accessibility to 
the general public. Other clocks that are not based 
on molecular biology tools, such as those based on 
blood biochemistry markers [7] or movement pat-
terns from wearable devices [8] are more amenable 
to public adoption. Nonetheless, arguably most of 
these forms of clocks suffer from a lack of interpret-
ability. Namely, most of the current aging clocks do 
not easily offer insights for how an individual could 
make changes to their lives to alter the clock’s aging 
predictions.

Since aging clocks can reveal which individu-
als are biologically younger, aging clocks can also 
be used to identify factors associated with deceler-
ated aging, with the potential for these factors to 
be causally involved. For example, our previous 
work, building a machine-learning based aging 
clock using accelerometer-based movement pat-
terns, identified nutritional components associated 
with decelerated aging [8]. These included fiber, 

magnesium, and vitamin E, as well as the alpha-
blocker drug doxazosin, which indeed increased 
healthspan and lifespan in the nematode Caeno-
rhabditis elegans [8]. Furthermore, a number of 
other factors associated with decelerated aging may 
have causal involvement. For example, higher diet 
quality has been related to decelerated aging using 
epigenetic clocks [9], and diets such as the Medi-
terranean diet are associated with reduced mortality 
rates and longer telomere lengths [10]. Likewise, 
mood stabilizers detected in the blood of patients 
with bipolar disorders have been related to deceler-
ated aging using an epigenetic clock [11], and this 
class of drugs (including lithium carbonate, sodium 
valproate, and carbamazepine) can extend lifespan 
and/or healthspan in model organisms [12–14]. 
Taken together, these studies suggest that factors 
associated with decelerated aging can represent 
more than just associations and hold promise for 
causal involvement and treatments.

Metabolism plays a key role in aging [15], and 
identifying metabolites that associate with deceler-
ated aging represents one of the lowest hanging fruits 
for developing aging interventions that can be made 
widely available to the general public. Although not 
as potent as drugs, metabolites offer the possibility 
to be administered as supplements, not requiring the 
same lengthy approval necessary for drug treatments. 
Therefore, applying aging clocks to aged individuals, 
and assessing the metabolomes of these individuals, 
offers an unprecedented opportunity to find factors 
for future follow-up in human trials. Altogether, it is 
of high relevance to identify metabolic factors that 
potentially serve as prophylactic treatments for the 
general population to promote and maintain health 
during aging, in addition to developing accessible and 
interpretable biological aging clocks.

To address these multiple critical elements 
remaining in the field of gerontology, specifically 
(1) creation of accessible aging clocks and (2) iden-
tification of metabolites associated with deceler-
ated aging, we developed a simple and interpretable 
aging clock, termed PhysiAge, and applied this to 
aged individuals for which we attained blood plasma 
metabolomics data. PhysiAge is built on easy-access 
data—including average steps-per-day, blood-glu-
cose levels, blood pressure, sex, and age—and pro-
vides insights to its user, demonstrating how altered 
activity (e.g., influencing step count) or diet (e.g., 
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indirectly influencing blood glucose) can influence 
the rate of physiological aging. We further evaluated 
our physiological aging score in a small cohort well 
characterized in terms of its physiological health 
levels [16]. Finally, we performed metabolomics on 
blood plasma from these same individuals to identify 
circulating factors associated with decelerated aging, 
which is assessed comparing an individual’s Phy-
siAge to their chronological age. We found a metabo-
lomics signature for decelerated aging that included 
an increase in TCA cycle constituents, several of 
which have been linked to healthspan improvements 
in simple model organisms. These metabolites hence 
constitute strong candidates to be further studied for 
their causal involvement in human aging.

Results

A strategy for physiological age estimation

In order to identify potential physiological markers 
that change with age and which could be used in a 
physiological aging score, we turned to the NHANES 
database, a publicly available resource that contains 
demographic data, blood biochemistry markers, sur-
veys, mortality records, and more, for a wide range of 
different ages of individuals (up to age 84, whereby 
those older are hard coded as 85 +). We specifically 
focused on the 2005–2006 study years, which were 
unique in that participants wore activity trackers that 
quantified their step-count throughout the day for a 
period of up to 7 days. In an initial exploration of the 
data, we selected eight parameters for visualization 
which have all been described to change with age or 
health, including body mass index (BMI) [17], blood 
glucose [18], resting heart rate (RHR) [19], systolic 
and diastolic blood pressure [20], and average steps 
per day [21], since we considered these as relatively 
easy for individuals to track themselves (Fig.  1A). 
Upon visual inspection, we noted that some of these 
parameters possessed dynamic relationships to age, 
such as diastolic blood pressure, while others had 
milder associations, such as with BMI, and some pos-
sessed strong and near-linear relations, such as sys-
tolic blood pressure (Fig. 1A).

To form the most relevant physiological aging 
score reflecting an individual’s biological aging 
rate, we next calculated for each individual their 

“phenotypic age” based on the work of Levine 
and colleagues [7], which determines an aging 
score using nine blood markers that change with 
age; albumin (Albu), creatinine (Crea), blood glu-
cose (Gluc), C-reactive protein (CRP), lymphocyte 
percent (Lymp), mean cell volume (MCV), red 
cell distribution width (RCDW), alkaline phos-
phatase (Alka), and white blood cell count (WBCs) 
(Fig.  1B) in relation to an individual’s calendar 
age [7]. This phenotypic age is especially useful as 
it is associated with mortality and reflects a better 
approximation of biological age than calendar age 
alone [7]. Furthermore, blood biochemistry mark-
ers required to calculate phenotypic age are avail-
able for most of the NHANES participants of the 
2005–2006 study period. Indeed, we found pheno-
typic age to correlate well to calendar age in our 
study population (Spearman’s rho = 0.943, p < 2.2e-
16, R mean squared error (RMSE) 7.40  years) 
(Fig.  1C). Therefore, analogous to how certain 
DNA methylation clocks have been trained using 
PhenoAge rather than calendar age for improved 
assessment of biological aging [7], we aimed to 
build our own aging clock predicting PhenoAge, 
based on simple and accessible parameters.

Following this, we next outlined a general strat-
egy to calculate a physiological aging score using 
easily trackable parameters that could allow for a 
simple interpretation. To achieve this, we selected 
physiological parameters that could linearly be con-
sidered “good” or “bad,” in the context of the aging 
process. This included systolic blood pressure and 
blood sugar, which nearly linearly increased with age, 
and are associated with age-related diseases includ-
ing dementia, heart disease, and metabolic syndromes 
[22–24]. We also included average daily step count 
since a high daily step count is associated with a 
lower risk of all-cause mortality in the elderly [21]. 
Parameters that were less obviously directionally 
linked to aging, such as diastolic blood pressure, or 
that were not necessarily directly related to “more” 
being clearly “better” or “worse”, such as BMI or 
resting heart rate, were omitted from our model, to 
preserve our goal of attaining a simple, interpretable, 
final model. Furthermore, we also planned to apply a 
normalization factor based on an individual’s calen-
dar age, to adjust for systematic over or under estima-
tions of age and provide values relative to other indi-
viduals in the population (Fig.  1D). After assessing 
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data for quality and completeness, 3342 individu-
als possessed data for all relevant parameters. We 
planned to use 80% of the NHANES public data for 
model building and to generate a normalization fac-
tor, and reserved 20% for validation and testing asso-
ciations with mortality (Fig. 1D).

PhysiAge relates to mortality and offers aging 
insights

We proceeded to build a multiple linear model 
using our training data (n = 2673), and found that all 
parameters used were significantly associated with 

Fig. 1  Physiological and phenotypic parameters and a strat-
egy for physiological age prediction. A Comparisons of vari-
ous physiological parameters to age in the NHANES 2005–
2006 study year assessed by Spearman correlations. Body 
mass index (BMI) (rho = 0.075, p = 1.38e-05), blood glucose 
(rho = 0.400, p < 2.2e-16), resting heart rate (BPM = beats 
per minute, rho =  − 0.224, p < 2.2e-16), diastolic blood pres-
sure (diastolic BP) (rho =  − 0.151, p < 2.2e-16), systolic blood 
pressure (systolic BP) (rho = 0.474, p < 2.2e-16), and average 
steps per day (rho = 0.029, p = 0.095) all showed significant 
changes with age. B The nine blood biochemistry markers used 
to calculate phenotypic age [7] include albumin (albu), creati-
nine (crea), blood glucose (Gluc), C-reactive protein (CRP), 
lymphocyte percent (Lymp), mean cell volume (MCV), red 

cell distribution width (RCDW), alkaline phosphatase (Alka), 
white blood cell count (WBCs), in addition to calendar age. 
C Correlation of individual’s phenotypic age with their age 
(Spearman’s rho = 0.943, p < 2.2e-16, RMSE = 7.40  years) 
in the NHANES 2005–2006 study population used. D Strat-
egy for model building to assess physiological age. NHANES 
2005–2006 study year possessing data for average steps per say 
(steps), systolic blood pressure (SysBP), blood glucose (Glu-
cose), and sex (n = 3342) were split into training (80%) and 
testing (20%) datasets and were used to the predict phenotypic 
age of an individual. An age normalization factor was applied. 
Final results were validated in the testing dataset (20%). All 
associations are assessed using Spearman’s correlation where r 
is Spearman’s rho with corresponding p value (n = 3342)
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phenotypic age and contributed to the model’s pre-
diction (sex p = 0.00173, blood glucose p < 2e-16, 
average step count p = 9.73e-10, systolic blood pres-
sure p < 2e-16). When evaluating the prediction’s 
results on the training data, we found a Spearman’s 
correlation of our prediction to calendar age of 0.522 
(p < 2e-16) and RMSE of 16.08  years (Fig.  2A). 
Indeed, the predicted ages remained within a nar-
row range across the population (~ 20–60 years), not 
representing the age range of the original population 
(Fig.  2A). Therefore, we generate a normalization 
factor using an approach we previously developed 
[8], based on the median age predicted across the 
population for any given age (Fig. 2B, Supplemen-
tal Table  1). For each individual, we divided their 
predicted age by the normalization factor relevant 
for their calendar age, and multiplied this result 

by their calendar age. This aligned our predicted 
ages with the chronological ages in the population, 
and produced a final physiological age prediction 
(termed PhysiAge) with a Spearman’s correlation of 
0.906 to calendar age (p < 2e-16) and an RMSE of 
11.72 years (Fig. 2C).

In order to validate our results independently of 
the data used to generate the model and normaliza-
tion, we looked at the ~ 20% remaining data used for 
testing the model (n = 669). Using the model and 
normalization factors derived from the training data, 
we found that the test data resulted in a physiologi-
cal age prediction with a Spearman correlation of 
0.916 to calendar age (p < 2e-16) and an RMSE of 
11.79 years (Fig. 2C).

We next accessed the mortality records of the 
NHANES participants, which were available in a 

Fig. 2  PhysiAge, mortality, and aging insights. A Asso-
ciation of model prediction to age (Spearman correlation, 
rho = 0.522, p < 2e-16, RMSE = 16.08, n = 2673). B Compari-
son of median predicted age to calendar age, used to generate 
normalization factor (blue fit). C Association of model predic-
tion to age after implementation of normalization factor on the 
training data (Spearman correlation, rho = 0.906, p < 2e-16, 
RMSE = 11.72, n = 2673). D Association of model predic-
tion to age after implementation of normalization factor on 
the testing data (Spearman correlation, rho = 0.916, p < 2e-16, 
RMSE = 11.79, n = 669). E Comparison of deltaAge of indi-
viduals presumed alive (n = 597, median deltaAge 1.13 years) 
and found deceased (n = 72, median deltaAge 7.42  years) in 

the NHANES mortality analysis performed in 2015. Demon-
strates that PhysiAge distinguishes individuals more likely to 
die across the whole population (Students’ t test, two-tailed, 
p = 0.0065). F Comparison of age prediction of individuals 
hardcoded as being 85 + , either found alive (n = 18, median 
PhysiAge 85.0  years) or deceased (n = 63, median PhysiAge 
92.4  years) in the NHANES mortality analysis performed in 
2015. Demonstrates that PhysiAge distinguishes individuals 
more likely to die in the oldest old (Students’ t test, two-tailed, 
p = 0.045). G Depiction of how varying steps per day influence 
PhysiAge in women of two different ages. H Depiction of how 
different blood glucose levels influence PhysiAge in men of 
two different ages
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follow-up evaluation conducted ~ 10  years after 
the initial 2005–2006 survey was performed. 
Using the test data, we calculated the difference 
between our physiological age prediction and cal-
endar age, termed deltaAge. Negative deltaAges 
indicated age deceleration, while positive del-
taAges indicated age acceleration. We found that 
while individuals still alive in the follow-up time 
(n = 597) had a mean deltaAge of 1.12 years, those 
found deceased (n = 72) had a mean deltaAge of 
7.4 years, over 6 years older (Student’s t test, two 
tailed, p = 0.0065). To further validate this find-
ing, we looked at individuals that were scored as 
85 + year olds in the NHANES survey. These indi-
viduals were not used when building the PhysiAge 
model as their exact age was unknown. Their sex, 
blood glucose, average steps, and systolic blood 
pressure were known however, and we used these 
parameters with a default age of 85  years to pre-
dict their PhysiAge scores. Here, we found that 
those still alive in the follow-up period (n = 18) 
had a mean predicted age of 85.01, while those 
found deceased (n = 63) had a mean predicted 
age of 92.43, over 7  years older than their peers 
who remained alive (Student’s t test, two tailed, 
p = 0.045). Taken together, we concluded that Phy-
siAge captures critical elements of the biological 
aging process, reflected in mortality.

Since PhysiAge is built on markers that are 
modifiable by lifestyle, especially average steps 
per day and blood glucose, we next aimed to 
illustrate how a PhysiAge prediction can pro-
vide insights for how a person should modify 
their lifestyle to affect their physiological age. 
In a first assessment looking at average steps per 
day, we defined two representative females, one 
older, with an age of 60 years, blood glucose level 
of 6.0  mmol/L and systolic blood pressure of 
130  mmHg, and one younger, with an age of 20, 
blood glucose level of 4.6  mmol/L, and systolic 
blood pressure of 120 mmHg. Here, we illustrated 
how average steps per day influenced the PhysiAge 
score of the individuals (Fig.  2G). For example, 
the 60-year-old woman having a step count of 5 K 
would place her PhysiAge at 61.34, while increas-
ing this to 12  K would result in a PhysiAge of 
57.38, nearly 4  years younger (Fig.  2G). Mean-
while, the 20-year-old woman could maintain 

her PhysiAge of 20.09 years with an average step 
count of 9 K per day (Fig. 2G).

Following this, we also illustrated how the blood 
glucose range could affect hypothetical individu-
als, and defined one older man of 65  years, with 
a systolic blood pressure of 130  mmHg and aver-
age daily step count of 10 K, and another younger 
man of age 20 years, with a systolic blood pressure 
of 110 mmHg and average daily step count of 12 K 
(Fig.  2H). Here, we illustrate how maintaining a 
low blood glucose levels of, e.g., 5.0 can give both 
the older and younger men a PhysiAge score lower 
than their actual age, of 59.71 and 19.21  years, 
respectively (Fig. 2H). Taken together, we illustrate 
here how PhysiAge can offer insights into how life-
style choices, such as exercise (influencing average 
steps per day) and diet (influencing blood glucose 
levels), can be harnessed to influence the rate of 
physiological aging.

Further statistical validation of the PhysiAge model

Next, we aimed to further validate the robustness 
of our final PhysiAge model. Specifically, we 
aimed to further evaluate the importance of each 
parameter in PhysiAge. First, we performed cross-
correlations of each continuous parameter to one 
another. We found Pearson correlations of sys-
tolic blood pressure to be greatest to age (0.48), 
compared to the correlation with blood glucose 
(0.20) or average daily steps (− 0.04, Fig.  3A). 
Furthermore, blood glucose correlated strongest 
to age as well (0.25), compared to blood pressure 
(0.20) or average daily steps (− 0.04, Fig.  3A). 
This suggested that both blood glucose and blood 
pressure contributed independently to PhysiAge. 
Average daily steps possessed a higher correla-
tion to blood glucose, though this was similar 
to its correlation to age (− 0.05, Fig.  3A). Taken 
together, this further suggested that all parameters 
contributed to the physiological age-predictive 
capability of our model. In order to further evalu-
ate this however, we proceeded to re-build mul-
tiple versions of the PhysiAge model leaving out 
each of the four parameters once (gender, blood 
glucose, systolic blood pressure, average daily 
steps), and compared this to the final PhysiAge 
model that possessed all five parameters. As a 
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metric to evaluate model performance, we looked 
at RMSE of the models when assessing the testing 
dataset (Fig. 3B), and how significantly the mod-
els could differentiate between live and deceased 
individuals in the follow-up period of analysis 
(Fig.  3C). With this, we used the same approach 
that we originally used when validating our model 
(Fig. 2D for RMSE and Fig. 2E for mortality sig-
nificance, respectively). Interestingly, while main-
taining all five parameters produced an RMSE of 
11.79  years as expected, removing parameters 
could improve the RMSE down to 9.82 years, spe-
cifically when removing blood glucose (Fig. 3B). 
However, this improvement in RMSE came at the 
cost of a poorer separation of live and deceased 
individuals in the follow-up period, where our 
original PhysiAge model, which included all five 

parameters, outperformed all others (Fig.  3C). 
This suggested that a lower RMSE may not neces-
sarily be better for any particular biological aging 
clock, if it removes actually biologically relevant 
information that is present in the model’s error. 
This result also confirmed that all parameters 
significantly contribute to PhysiAge’s biological 
aging score. Finally, to more robustly assess our 
initial RMSE of 11.79, we generated different ver-
sions of the PhysiAge model using different ran-
dom data splits. We found that our RMSE (11.79) 
was similar to other versions of the model gener-
ated by different data splits (maximum RMSE of 
14.27, minimum RMSE of 11.03, median RMSE 
of 11.87, Fig. 3D). Taken together, these findings 
all demonstrate that the PhysiAge model benefits 
from all parameters in its ability to determine 

Fig. 3  Further statistical validation of the PhysiAge model. A 
Cross-correlation of parameters used in PhysiAge, including 
Age, blood glucose, systolic blood pressure, and average (avg) 
daily steps. Shows significant cross-correlation of parameters, 
though in general each parameter correlates more strongly with 
age than any other alone (Pearson correlation, * p < 0.05, ** 
p < 0.01, *** p < 0.001). B R mean squared errors (RMSEs) 
of various versions of the PhysiAge model, either including 
all parameters (“All parameters”) or omitting a single param-
eter (listed with a “—”). RMSE is based on the holdout data-
set reserved for testing of the model. Corresponds to Fig. 2D. 

C Significance level (p values) of various versions of the 
PhysiAge model, either including all parameters (“All param-
eters”) or omitting a single parameter (listed with a “—”), 
when comparing the alive and deceased individuals from the 
NHANES follow-up evaluation period. Results are based on 
the holdout dataset reserved for testing of the model. Corre-
sponds to Fig. 2E. D RMSE of the PhysiAge model using dif-
ferent randomly generated datasplits for training and testing 
datasets. Demonstrates that the final model is not over-fit due 
to a specific data split
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physiological age and the PhysiAge model is not 
over-fit to any particular random split of the train-
ing and testing data.

PhysiAge better predicts age-related decline in 
muscle health

In order to further evaluate the relevance of our Phy-
siAge score to physiological aging, we turned to a 
small and highly characterized human aging cohort 
we previously worked with and extensively pheno-
typed [16, 25]. The cohort consisted of women and 
men who were categorized as either young (ages 
20–30) or older (ages 65–80) individuals, whereby 
the older adults were further segmented to reflect 
their health levels, based on their physical training 
status and (impaired) physical abilities. The groups 
included either exercise trained older adults (self-
assessed as performing at least three structured 

exercise sessions of at least 1 h duration per week), 
normal older adults (performing no more than one 
structured exercise session per week), or physi-
cally impaired older adults (empirically assessed 
using a Short Physical Performance Battery (SPPB) 
test and classified with a score ≤ 9) [16]. From this 
cohort, 59 individuals possessed complete data on 
the parameters necessary to calculate PhysiAge 
(young n = 17, older adults, trained n = 19, normal 
n = 17, impaired n = 6), and they showed a broad 
range of values for systolic blood pressure, average 
daily step count, and fasting blood glucose levels 
(Fig. 4A).

As an initial characterization, we calculated for 
each individual in each group their PhysiAge, which 
showed good correlation to calendar age (Spearman’s 
rho = 0.805, p = 1.027e-12, RMSE = 9.27  years). We 
subsequently calculated their deltaAge, where we 
found the young possessed a median deltaAge of 0.642, 

Fig. 4  PhysiAge and  NAD+, oxidative stress, and physi-
ological functioning. A The cohort (n = 59) used in this study 
consisted of women and men, either young (20–30) or older 
(65–80), whereby the old were segmented into different health 
states, either considered to be athletically trained, normal, or 
impaired in their aging state. The cohort possessed diverse 
levels of the parameters used to measure PhysiAge, including 
systolic blood pressure, average daily step count, and blood 
glucose. B Calculation of deltaAge (PhysiAge minus cal-
endar age) for the individuals in the cohort, grouped by age/
health state. A significant difference between the deltaAge of 

the trained and impaired elderly was detected (Kruskal-Wallis 
test, p = 0.019; Young n = 17, older adults trained n = 19, nor-
mal n = 17, impaired n = 6). C Correlation of  NAD+ to either 
age (left panel) or PhysiAge (right panel). D Correlation of 
OPA to either age (left panel) or PhysiAge (right panel). E 
Correlation of RAND 36 to either age (left panel) or PhysiAge 
(right panel). F Correlation of NOGD to either age (left panel) 
or PhysiAge (right panel). All associations are assessed using 
Spearman’s correlation with rho and corresponding p value 
(n = 59)
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trained elderly a median deltaAge of − 3.559, normal 
elderly a deltaAge of − 1.204, and impaired elderly a 
deltaAge of 6.718. This was in part to be expected from 
the a priori knowledge that trained older adults inher-
ently possessed greater step counts than the impaired 
older adults (Fig. 3A). However, our score allowed for 
a quantification of the extent to which the trained older 
adults were biologically younger than the impaired 
older adults. Of note, the trained elderly had a signifi-
cantly lower deltaAge compared to the impaired elderly 
(Kruskal–Wallis test, p = 0.019, Fig.  4B), constituting 
over 10 years of age difference between the two groups. 
Taken together, this indicates that PhysiAge accurately 
predicted the aging state reflecting the different health 
groups of the aged individuals.

We next aimed to evaluate how PhysiAge related to 
multiple critical aging parameters previously measured 
in this cohort. First, we turned to our existing muscle 
metabolomics dataset [25], in order to specifically eval-
uate how the metabolite nicotinamide adenine dinucle-
otide  (NAD+), a marker of mitochondrial and metabolic 
health [26], and ophthalmic acid (OPA), a marker of 
oxidative stress, both relevant for aging, related to Phy-
siAge in the older adults. While  NAD+ showed a slight 
negative correlation with age of − 0.164, we found that 
physiAge possessed a stronger negative correlation 
of − 0.331 to  NAD+ (Spearman correlation, p = 0.04) 
(Fig. 4C). Likewise, while OPA possessed a slight posi-
tive correlation with age of 0.177, physiAge possessed 
a stronger positive correlation of 0.372 (p = 0.020) 
(Fig. 4D). This demonstrates that physiAge’s age pre-
dictions reflect the underlying molecular biology influ-
encing the aging process.

We continued to evaluate two more markers that 
are especially representative of healthy aging and 
were characterized for this cohort. These included 
the RAND 36-item survey for self-rated general 
health, and the rate of non-oxidative glucose dis-
posal (NOGD). The RAND 36 is on a scale of 0 to 
100 where higher indicates better self-rated health. 
The NOGD is a proxy for insulin-stimulated gly-
cogen storage, where higher is also better. Here, 
we found that the RAND 36 possessed a trend for a 
negative correlation with age, which was markedly 
significant when considering PhysiAge (Spearman’s 
rho =  − 0.332, p = 0.042). We also found a strikingly 
strong negative correlation of NOGD to PhysiAge 
(Spearman’s rho =  − 0.473, p = 0.0035), which was 
minor when compared to age alone (Spearman’s 

rho =  − 0.190, p = 0.271). Taken together, these find-
ings indicate that physiAge holds better associations 
with the physiological aging parameters compared to 
age alone.

A metabolomics signature of decelerated aging in 
blood plasma

Having observed that PhysiAge could identify meta-
bolic changes representative of accelerated or deceler-
ated aging in muscle, including the decline of  NAD+ 
and increase in the oxidative stress marker OPA, we 
next asked whether we could use PhysiAge to identify 
metabolomic signatures of decelerated aging in blood 
plasma. Blood plasma is especially interesting since 
circulating metabolite levels provide a window into 
physiological processes and homeostasis in the whole 
organism. We therefore turned to the same highly 
characterized independent cohort used to assess Phy-
siAge (Fig.  3A) [16, 25] and collected plasma sam-
ples from these individuals. We performed ultra-high-
performance liquid chromatography high-resolution 
mass spectrometry (UPLC-HRMS) semi-targeted 
metabolomics on 48 available samples, allowing us 
to annotate 113 unique and validated metabolites 
(Fig. 5A, Supplemental Table 2).

Following this, we proceeded to check how each 
metabolite’s abundance correlated to two different 
markers of aging health. Firstly, we correlated the 
metabolite levels to the deltaAge of the aged indi-
viduals based on their PhysiAge scores (n = 36). 
This stratified the metabolites across a scale of being 
more or less related to age acceleration or decelera-
tion (Fig.  5B). Secondly, we correlated the metabo-
lite levels of all individuals to the age/health groups 
of the cohort (n = 48). This served to identify metab-
olites correlating either positively or negatively 
with a health trend as defined by the four groups 
(Fig. 5C). We found that both results were well cor-
related to one another (Spearman’s rho = 0.479, 
p-value = 7.776e-08).

In order to identify metabolic signatures of deceler-
ated aging and health, we then cross-compared these 
results to identify metabolites in common between 
these two analyses, or unique to them. We found nine 
metabolites associated either positively or negatively 
to deltaAge (Spearman correlation, p < 0.05; Fig. 5D, 
blue text), and twenty metabolites associated to the four 
health groups (Spearman correlation, p < 0.01; Fig. 5D, 



3156 GeroScience (2023) 45:3147–3164

1 3
Vol:. (1234567890)

green text). Interestingly, using these cutoffs, three 
metabolites were in common between the two analyses, 
including malate and ribose 5-phosphate, which were 
associated to age deceleration and better health states, 
and glucose, which was associated with age accel-
eration and poorer health states (Fig. 5D, purple text). 

Malate showed significantly lower levels in the normal 
older adults compared to young (p = 0.047), which 
was not seen in the trained older adults compared to 
young (Fig. 5E). Ribose 5-phosphate was lowest in the 
impaired older adults compared to young (p = 0.0044), 
though also low in the normal (p = 0.013) and trained 
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(p = 0.0037) older adults compared to young (Fig. 5F). 
Finally, glucose showed a step-wise and significant 
increase in all of the older adults compared to young, 
likely due to its role in our PhysiAge model prediction 
(Fig. 5G).

Malate, which was significantly negatively cor-
related to deltaAge (Spearman’s rho =  − 0.35, 
p = 0.040), is an intermediate of the tricarboxylic acid 
(TCA) cycle, and we noted that two other metabo-
lites of the TCA cycle were associated with deceler-
ated aging when comparing deltaAge to metabolite 
abundance, namely citrate (Spearman’s rho =  − 0.61, 
p = 9.8e-5) and isocitrate (Spearman’s rho =  − 0.47, 
p = 3.9e-3) (Fig.  6). These showed negative correla-
tions to deltaAge, specifically implying that higher 
levels were associated with younger (decelerated) 
physiological age, while lower levels were associ-
ated with older (accelerated) physiological age. Taken 
together, our work here implicates a metabolic sig-
nature of decelerated and healthy aging, involving 
ribose 5-phosphate and implicating the TCA cycle.

Finally, we asked ourselves how the metabo-
lomics signatures of decelerated aging might be dif-
ferent between males and females in our cohort. To 
address this, we separated the cohort into two smaller 
populations (males, n = 21, and females, n = 15) and 
performed the same correlation of metabolites to del-
taAge as generated previously (Fig. 5D on whole pop-
ulation, Fig. 7 in current analysis), focused on decel-
erated aging specifically. Here, we found interesting 

observations to emerge. Firstly, citric acid, the afore-
mentioned component of the TCA cycle, was still sig-
nificantly negatively associated with deltaAge in both 
males and females despite the smaller sample sizes. 
Secondly, nicotinamide, which may be sought after 
to boost  NAD+ levels, was negatively associated with 
deltaAge in females, but not males. While the sam-
ple sizes here were low due to the separation of indi-
viduals into sub-cohorts of males and females, these 
findings nonetheless serve to both highlight again the 
strong relationship of the TCA cycle to age decelera-
tion and suggest that disparities may exist between 
males and females when it comes to metabolic factors 
associated with decelerated aging.

Discussion

We developed a physiological aging score, termed 
PhysiAge, based on systolic blood pressure, blood 
glucose, average steps per day, gender, and a normali-
zation factor based on calendar age. Arguably, these 
parameters are highly accessible to individuals and 
open greater possibility for individuals to assess their 
own aging rates. Furthermore, our aging score allows 
for insights for how a person can directly modify their 
aging rate with suggestions to modify activity level 
or diet. Applying our model to a highly characterized 
and deeply phenotyped cohort allowed us to validate 
our model’s predictions beyond the association we 
found to mortality, and demonstrate that PhysiAge is 
more strongly associated with a decline in  NAD+ lev-
els, increase in oxidative stress markers, and decline 
in physiological functioning, compared to age alone. 
Encouraged by these results, we performed mass 
spec metabolomics on plasma samples from the same 
cohort, which led us to identify a metabolic signature 
of decelerated aging.

Several considerations accompany our study. 
Firstly, systolic blood pressure and blood glucose 
have influence on our model in a linear manner. 
While this was a choice in designing our model to 
offer simple interpretation, it suffers in that patho-
logically low levels of these parameters, i.e., indi-
viduals with hypoglycemia and hypotension, will 
possess physiAge scores skewed towards youth-
fulness. Since these are chronic conditions with 
potentially increased mortality rates [27, 28], the 
physiAge score would not be the most relevant 

Fig. 5  Metabolic signatures of decelerated aging. A Ultra-
high-performance liquid chromatography high-resolution mass 
spectrometry (UPLC-HRMS) metabolomics was performed on 
48 samples and 113 unique metabolites were annotated. B Dis-
tributions of the correlations that metabolites have to deltaAge. 
Spearman correlation using all older adults, n = 36. C Distribu-
tion of the correlations that metabolites have to the four aging/
health groups of the cohort. Spearman correlation using all 
participants, n = 48. D Scatterplot comparing the metabolite 
correlation with deltaAge (x axis) or the four health groups (y 
axis). Sizes represent –log10 p value of the correlation (health 
group) while color denotes –log10 p value of correlation (del-
taAge). Metabolites with text written in red were significant in 
both analyses. E Comparison of malate abundance across the 
four aging/health groups of the cohort. F Comparison of ribose 
5-phosphate abundance across the four aging/health groups of 
the cohort. G Comparison of glucose abundance across the 
four aging/health groups of the cohort. For all group compari-
sons (panels D–F), the Kruskal–Wallis test is used to compare 
differences. Young n = 12. Older adults trained n = 17, normal 
n = 16, impaired n = 3

◂
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Fig. 6  Tricarboxylic acid (TCA) cycle and decelerated aging. 
Multiple metabolites of the tricarboxylic acid (TCA) cycle 
were associated with decelerated aging, including citrate 
(Spearman’s rho =  − 0.61, p = 9.8e-5), isocitrate (Spearman’s 
rho =  − 0.47, p = 3.9e-3), and malate (Spearman’s rho =  − 0.35, 

p = 0.040). Glucose, which through glycolysis forms pyruvate 
which is converted to acetyl-CoA and feeds the TCA cycle, 
is positively correlated with accelerated aging (Spearman’s 
rho = 0.36, p = 0.029)

Fig. 7  Female and male metabolic signatures of decelerated 
aging. Scatterplot comparing the metabolite correlation with 
deltaAge for either males (x axis, n = 21) or females (y axis, 
n = 15). Correlation considers only older adults. Related to 
the x axis Fig. 5D. Sizes represent –log10 p value of the cor-

relation for males while color denotes –log10 p value of the 
correlation for females. Metabolite with text written in red is 
significant in both males and females, while in blue are those 
significant for males and in green are those significant for 
females (Pearson correlation, p < 0.05)
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metric to use for these individuals. Additionally, 
both systolic blood pressure and blood glucose 
plateau at older ages (apparent in Fig. 1A), result-
ing in the normalization factor used to generate 
PhysiAge plateauing as well (apparent in Fig. 2B). 
This implies that the normalization factor in Phy-
siAge becomes less important at older ages, put-
ting more weight onto the parameters themselves 
(e.g., blood glucose and systolic blood pressure) 
for the final PhysiAge score. Therefore, the differ-
ence between an 80-year-old and an 82-year-old 
for their final PhysiAge score will be more heav-
ily weighted by their actual physiology (e.g., blood 
glucose and systolic blood pressure) rather than 
age. This likely contributes to PhysiAge’s inher-
ently strong association with mortality (Fig.  2E), 
since parameters in PhysiAge including blood glu-
cose and systolic blood pressure are also health 
risk factors in general.

A second consideration for our work is that 
future versions of the PhysiAge model may benefit 
from including the non-linearly associated aging 
parameters we omitted. While this would convo-
lute the interpretation of PhysiAge, it may offer 
additional resolution on the biological aging pro-
cess and allow greater associations to mortality. A 
third consideration of our work is that our use of an 
average daily step count may not fully capture the 
broad range of activities that benefit physiologi-
cal age, such as swimming and cycling. To resolve 
this, users may convert minutes of these particu-
lar activities into their equivalent step counts 
before calculating their PhysiAge [29]. Similarly, 
users who assess their step count via their mobile 
phone may have under-evaluated their true step 
count [30]. It is therefore advisable to use a reli-
able wearable device to assess step count for our 
model. A fourth consideration of our work, also 
regarding step counts, is that while immediately 
changing a person’s average daily step count will 
immediately change their PhysiAge score, the 
actual physiological effects may take longer to take 
effect biologically. Finally, a fifth consideration of 
our work is that our model uses age as a param-
eter in the prediction. While this approach has 
been used by us and others previously [7, 8, 31], 
it nonetheless results in a limit for how much age 
deceleration can occur. For example, an 80-year-
old, even with the most youthful (though realistic) 

blood pressure, blood glucose, and steps per day, 
will never have the physiological age of a 20-year-
old by our model. While a limitation, this may in 
fact provide a realistic view on how much one can 
modify their actual physiological age. Nonethe-
less, despite these limitations, our model provides 
a window into how choices influence physiological 
aging rates, and through this can provide motiva-
tion for healthier lifestyles.

Our work implicates the TCA cycle in human 
healthy aging. While discrepancies in the field exist 
[32], a vast body of literature also implicates abun-
dance of TCA cycle metabolites in longevity, in line 
with our findings. For example, supplementation 
of the TCA cycle components malate and fumarate 
activate nuclear translocation of the FOXO/DAF-16 
longevity gene, increase oxidative stress resistance, 
and extend lifespan in C. elegans worms [33]. Sup-
plementation of TCA cycle component oxaloacetate 
also extends lifespan in worms dependent on the 
longevity gene FOXO/DAF-16 [34]. Supplementa-
tion of succinate, citrate, and alpha-ketoglutarate 
also extend lifespan in worms [35]. Furthermore, 
supplementation of citrate reduces energy status 
and extends lifespan in Drosophila melanogaster 
flies, and in mice fed a high-fat diet citrate improves 
metabolic health and memory [36]. Adding to this, 
TCA cycle genes are upregulated in Ames dwarf 
mice and little mice, which are both long-lived 
strains [37]. Functionality of the TCA cycle is also 
preserved when comparing long-lived to short-lived 
strains of Brown-Norway rats [38]. Remarkably, 
the TCA cycle intermediate alpha-ketoglutarate 
alone fed to mice extends lifespan and compresses 
morbidity [39]. In humans, a retrospective study 
using DNA methylation clocks to assess biological 
age found that supplementing alpha-ketoglutarate 
and certain other vitamins conferred an average of 
8  years reduced biological age after an average of 
7 months of use [40].

The finding that the TCA cycle was so strongly 
associated to decelerated aging in our data opens more 
questions. Firstly, it may be possible that beta-oxidation 
is feeding the TCA cycle. This is in line with obser-
vations that higher beta-oxidation is also present in 
long-lived mice [41]. Interestingly, our previous work 
in aging mice has suggested a shift in fat metabolism 
with aging [42]. However, dedicated metabolic flux 
experiments would be required to address this, which is 



3160 GeroScience (2023) 45:3147–3164

1 3
Vol:. (1234567890)

difficult to perform in humans. Secondly, it may be that 
our measures on the TCA cycle in blood plasma serve 
as an indirect readout of mitochondrial activity in tis-
sues. Indeed, our previous work with the same cohort 
used in PhysiAge validations implicated increased 
mitochondrial mass in the trained older adults [16, 
25]. Again here, dedicated flux experiments would be 
required to trace whether muscle TCA cycle metabo-
lism contributes to blood plasma TCA cycle compo-
nents. Of additional consideration, it may be possible 
that the nature of metabolomics, being targeted, has 
had our investigational lens focus on known pathways 
including the TCA cycle. It would be of interest to per-
form these analyses using untargeted metabolomics. Of 
final note, our own study implicating the TCA cycle 
involved trained older adults, and therefore increasing 
TCA cycle constituents may in the end be best achieved 
simply by training more, rather than by supplementa-
tion strategies. In conclusion, these and our own find-
ings support two main conclusions: (1) the function of 
the TCA cycle is causally linked to healthy aging across 
species, also in humans; and (2) an aging score derived 
from physiological parameters can serve as a proxy for 
individuals to assess their own biological aging.

Methods

Physiological parameters used for exploration and 
model building

The 2005–2006 data was accessed from the NHANES 
portal at CDC.gov. Participant age and gender was 
obtained from the DEMO_D.XPT file. BMI was 
obtained from the BMX_D.XPT data file. Heart 
rate and systolic and diastolic blood pressure were 
obtained from the BPX_D.XPT data file. Blood glu-
cose was obtained from the BIOPRO_D.XPT data file. 
Step counts: To obtain average daily step counts, the 
paxraw_d.xpt accelerometer data file was used. Each 
of the 7 days of step data present per participant in the 
PAXSTEP data column was summed to get a maxi-
mum stem count per day and the 7 days were averaged 
to obtain an average daily step count per participant. 
Multiple individuals appeared to possess average daily 
step counts that were outliers in the population (e.g., 
their average daily step count was of several millions) 
and an outlier cutoff was applied, mainly for data visu-
alization purposes, where individuals were removed if 

their average daily step count was defined as an outlier 
in a box-and-whisker plot [43] when considering all 
average daily step counts of the population.

Calculation of phenotypic age

The 2005–2006 data was accessed from the NHANES 
portal at CDC.gov. Albumin, creatinine, blood glu-
cose, and alkaline phosphatase values were obtained 
from the BIOPRO_D.XPT data file. CRP levels were 
obtained from the CRP_D.XPT data file. Lympho-
cyte, MCV values, red cell dist width, and WBCs were 
obtained from the CBC_D.XPT file. Participant age 
was obtained from the DEMO_D.XPT file. For each 
participant, phenotypic age was calculated based on 
calendar age and blood parameters according to the 
weights and equation developed by Levine and col-
leagues [7].

PhysiAge data preparation

One datafile was compiled which contained participants 
which had data entries for all parameters explored in 
this study, including age, glucose, gender, BMI, systolic 
blood pressure, diastolic blood pressure, heart rate, phe-
notypic age, and average step count, for visualization 
purposes (Fig. 1). Any participant with a zero entry in 
one of those data columns was excluded from the analy-
sis. For downstream validation, mortality information 
per participant was accessed at NHANES_2005_2006_
MORT_2015_PUBLIC.dat from the CDC website. 
Data was filtered to only include remaining participants 
who possessed no NA entries in any of the parameters, 
and whose age was between and including 20 to 84. The 
85 age entry was a code for 85 + in the NHANES data-
set and included any individual aged 85 and older. Since 
precise ages were not available, this age group was not 
included in model building. These steps resulted in 3342 
participants of ages distributed across a range from 20 to 
84 years. Data was split into 80% training data and 20% 
testing data, equally across both sexes. Randomization 
seed was set to “1” for splitting the data using the set.
seed function in R (version 3.5.1 [44]).

PhysiAge model

A multiple linear model was made in R (version 3.5.1 
[44] ) using the lm() function, to predict phenotypic 
age using gender, blood glucose, average steps per 
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day, and systolic blood pressure as input parameters. 
The median predicted value per (calendar) age in the 
training data was used as a normalization parameter, 
specific for each year of age. The prediction from the 
model, with normalization, is termed PhysiAge. The 
final PhysiAge model can be defined as follows:

where “Sex” is a value of 1 for men and 0 for women, 
“Gluc” is blood glucose (mmol/L), “Steps” is aver-
age daily step count, SysBP is systolic blood pressure 
(mmHg), “NFAge” is a normalization factor specific 
for the calendar age of the individual, and “Age” is 
the calendar age in years.  NFAge for each calendar age 
is available in Supplemental Table 1.

PhysiAge model variants

Several variants of the PhysiAge model were generated 
in this study. (1) Variants were produced identically as 
described above (section: PhysiAge model) but omit-
ting once each parameter of the model, producing four 
additional models (omitting either Sex, Gluc, Steps, or 
SysBP). (2) All five parameters were used (Sex, Gluc, 
Steps, SysBP, Age) though different random data parti-
tions were generated to make the 80% training and 20% 
testing datasets. Specifically, the function set.seed() was 
used in R version 3.5.1 [44], where randomization seed 
was set to either “1” (used in the actual final PhysiAge 
model) or 2–10 (used in assessing outcomes of 9 addi-
tional models with other random data partitions).

PhysiAge aging insights

To demonstrate aging insights, four hypothetical 
individuals were created with blood pressures, blood 
glucose levels, and average daily step counts roughly 
representing the norm for their age. Either average 
daily step counts were varied (ranging from 5000 to 
20,000 and increasing by 1000 unit increments) or 
blood glucose levels were varying (ranging from 4 to 
10 and increasing by 1 unit increments). The hypo-
thetical individuals then had their biological ages and 
deltaAges calculated for each varying value. DeltaA-
ges were compared to how average daily step counts 
or blood glucose levels varied to demonstrate how 
each parameter influences the predicted age.

PhysiAge =
((

−18.5 +
(

1.972
∗Sex

)

+
(

3.348
∗Gluc

)

+
(

−0.0004715∗Steps
)

+
(

0.3988
∗SysBP

))

∕NFAge
)∗
Age

MitoHealth cohort and participant parameters

The MitoHealth cohort is registered on clinicaltri-
als.gov (identifier NCT03666013). Participants were 
recruited in the community of Maastricht (The Neth-
erlands) and its surroundings through advertisements 

at Maastricht University, in local newspapers, super-
markets, and at sports clubs. The study protocol was 
approved by the institutional Medical Ethical Com-
mittee and conducted in agreement with the decla-
ration of Helsinki. All participants provided their 
written informed consent. Fifty-nine individuals pos-
sessed complete data on the parameters necessary to 
calculate PhysiAge. Data for either muscle metabo-
lomics (NAD + and OPA) or physiological parame-
ters (RAND 36, NOGD, and parameters for PhysiAge 
calculation) were accessed from Janssens et  al. [25] 
or Grevendonck et al. [16] studies, respectively.

Plasma collection

At 9 AM, after an overnight fast from 10 PM the pre-
ceding evening, blood plasma was collected. Sam-
ples were immediately stored at − 80 °C until further 
analysis.

Metabolomics

Metabolomics was performed as previously 
described, with minor adjustments [45]. In a 2-mL 
tube, the following amounts of internal standard 
dissolved in water were added to each sample of 
approximately plasma: adenosine-15N5-monophos-
phate (5  nmol), adenosine-15N5-triphosphate 
(5  nmol),  D4-alanine (0.5  nmol),  D7-arginine 
(0.5  nmol),  D3-aspartic acid (0.5  nmol), 
 D3-carnitine (0.5 nmol),  D4-citric acid (0.5 nmol), 
13C1-citrulline (0.5  nmol), 13C6-fructose-1,6-di-
phosphate (1  nmol), guanosine-15N5-monophos-
phate (5  nmol), guanosine-15N5-triphosphate 
(5  nmol), 13C6-glucose (10  nmol), 13C6-glucose-
6-phosphate (1 nmol),  D3-glutamic acid (0.5 nmol), 
 D5-glutamine (0.5 nmol),  D5-glutathione (1 nmol), 
13C6-isoleucine (0.5 nmol),  D3-lactic acid (1 nmol), 
 D3-leucine (0.5  nmol),  D4-lysine (0.5  nmol), 
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 D3-methionine (0.5 nmol),  D6-ornithine (0.5 nmol), 
 D5-phenylalanine (0.5  nmol),  D7-proline 
(0.5  nmol), 13C3-pyruvate (0.5  nmol),  D3-serine 
(0.5 nmol),  D6-succinic acid (0.5 nmol), D5-trypto-
phan (0.5 nmol),  D4-tyrosine (0.5 nmol),  D8-valine 
(0.5  nmol). After adding the internal standard 
mix, a 5-mm stainless-steel bead and polar phase 
solvents (for a total of 500 µL water and 500 µL 
MeOH) were added and samples were homogenized 
using a TissueLyser II (Qiagen, Hilden, Germany) 
for 5 min at a frequency of 30 times/s. Chloroform 
was added for a total of 1 mL to each sample before 
thorough mixing. Samples were then centrifuged 
for 10 min at 18,000 g. The top layer, containing the 
polar phase, was transferred to a new 1.5-mL tube 
and dried using a vacuum concentrator at 60  °C. 
Dried samples were reconstituted in 100 µL 3:2 
(v/v) methanol:water. Metabolites were analyzed 
using a Waters Acquity ultra-high-performance 
liquid chromatography system coupled to a Bruker 
Impact II™ Ultra-High Resolution Qq-Time-Of-
Flight mass spectrometer. Samples were kept at 
12 °C during analysis and 5 µL of each sample was 
injected. Chromatographic separation was achieved 
using a Merck Millipore SeQuant ZIC-cHILIC 
column (PEEK 100 × 2.1 mm, 3 µm particle size). 
Column temperature was held at 30  °C. Mobile 
phase consisted of (A) 1:9 (v/v) acetonitrile:water 
and (B) 9:1 (v/v) acetonitrile:water, both contain-
ing 5  mmol/L ammonium acetate. Using a flow 
rate of 0.25 mL/min, the LC gradient consisted of 
100% B for 0–2  min, reach 0% B at 28  min, 0% 
B for 28–30  min, reach 100% B at 31  min, and 
100% B for 31–32 min. Column re-equilibration is 
achieved at a flow rate of 0.4  mL/min at 100% B 
for 32–35 min. MS data were acquired using nega-
tive and positive ionization in full scan mode over 
the range of m/z 50–1200. Data were analyzed 
using Bruker TASQ software version 2.1.22.3. All 
reported metabolite intensities were normalized to 
dry tissue weight, as well as to internal standards 
with comparable retention times and response in 
the MS. Metabolite identification has been based 
on a combination of accurate mass, (relative) reten-
tion times, and fragmentation spectra, compared 
to the analysis of a library of standards (Sigma-
Aldrich MSMLS). General repeatability of metab-
olite analysis was assessed for each metabolite 
using repeated measurements of a pooled sample. 

Additionally, all peak integrations were manually 
checked for quality in each sample, as large natural 
variance may skew pooled sample results.

Statistical analyses and data visualization

Data was processed and analyses were performed with 
R version 3.5.1 [44] and Bioconductor version 3.7 
[46]. Data was processed in part with the R package 
dplyr version 1.0.2 [47]. Correlations and statistical 
evaluations were performed in R using Spearman’s 
test. Comparisons of groups were performed in R 
using the Kruskal-Wallis test. Cross-correlations of 
parameters was performed in R using PerformanceAn-
alytics version 2.0.4. Visualization of data was per-
formed using ggplot2 version 3.2.1 [48], ggpubr v 
0.2.5 [49], ggrepel version 0.8.1 [50], with (certain) 
colors from RColorBrewer version 1.1–2 [51].
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