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Abstract Aging slowly erodes skeletal muscle strength 
and mass, eventually leading to profound functional defi-
cits and muscle atrophy. The molecular mechanisms of 
skeletal muscle aging are not well understood. To better 
understand mechanisms of muscle aging, we investigated 
the potential role of ATF4, a transcription regulatory pro-
tein that can rapidly promote skeletal muscle atrophy in 
young animals deprived of adequate nutrition or activ-
ity. To test the hypothesis that ATF4 may be involved in 
skeletal muscle aging, we studied fed and active muscle-
specific ATF4 knockout mice (ATF4 mKO mice) at 6 
months of age, when wild-type mice have achieved peak 
muscle mass and function, and at 22 months of age, 

when wild-type mice have begun to manifest age-related 
muscle atrophy and weakness. We found that 6-month-
old ATF4 mKO mice develop normally and are pheno-
typically indistinguishable from 6-month-old littermate 
control mice. However, as ATF4 mKO mice become 
older, they exhibit significant protection from age-related 
declines in strength, muscle quality, exercise capacity, 
and muscle mass. Furthermore, ATF4 mKO muscles are 
protected from some of the transcriptional changes char-
acteristic of normal muscle aging (repression of certain 
anabolic mRNAs and induction of certain senescence-
associated mRNAs), and ATF4 mKO muscles exhibit 
altered turnover of several proteins with important roles 
in skeletal muscle structure and metabolism. Collec-
tively, these data suggest ATF4 as an essential mediator 
of skeletal muscle aging and provide new insight into a Supplementary Information The online version 
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degenerative process that impairs the health and quality 
of life of many older adults.

Keywords Aging · Sarcopenia · Skeletal muscle · 
Skeletal muscle atrophy · ATF4 · Protein turnover

Introduction

Age-related skeletal muscle atrophy, also known as 
sarcopenia, is a slowly progressive process that can 
be debilitating for many people. In most people, early 
effects of muscle aging emerge in the fourth decade 
of life, when muscle strength begins to decline. Over 
the ensuing decades, both strength and muscle mass 
decline, however, strength is lost more rapidly than 
muscle mass, and thus, a reduction in muscle quality 
(strength per unit muscle mass) is a central feature of 
skeletal muscle aging [1, 2]. By the seventh decade of 
life, many people have overt skeletal muscle atrophy, 
and almost all people are significantly weaker than 
they were as young adults. Consequences of muscle 
aging can include frailty, impaired activity, falls, and 
loss of independent living.

Although skeletal muscle aging has a significant 
impact on health and quality of life, its molecular 
mechanisms are complex, challenging, and not well 
understood [3–5]. In previous studies, we investigated 
the potential role of ATF4, a stress-inducible tran-
scription regulator in the basic leucine zipper (bZIP) 
superfamily [6, 7]. In skeletal muscle fibers of young 
adult mice (3 months old), forced expression of ATF4 
is sufficient to induce skeletal muscle atrophy within 
one week [8]. Conversely, 3-month-old muscle-spe-
cific ATF4 knockout mice (ATF4 mKO mice) are 
partially protected from rapid, acute skeletal muscle 
atrophy during starvation and immobilization [9, 10]. 
Furthermore, at an old age (22 months), ATF4 mKO 
mice have greater strength and muscle mass than lit-
termate control mice [11]. The previously observed 
phenotype of 22-month-old ATF4 mKO mice sug-
gested that ATF4 may be required for age-related 
muscle atrophy and weakness; however, the study 
was limited by an absence of data comparing ATF4 
mKO mice and littermate controls at 6 months of age, 
after development of peak muscle mass and strength 
but prior to the onset of age-related skeletal mus-
cle atrophy and weakness. Thus, we could not rule 
out the possibility that ATF4 mKO mice simply had 

greater muscle mass and function throughout middle 
and old age. For perspective, 6-month-old mice are 
considered to be at a similar life phase as 30-year-old 
humans, and 22-month-old mice are considered to be 
at a similar life phase as 65-year-old humans [12].

In the current study, we tested the hypothesis that 
ATF4 may play an essential role in the loss of mus-
cle mass and function that occurs with normal aging. 
To that end, we compared the phenotypes of ATF4 
mKO mice and littermate control mice at both 6 
and 22 months of age. In addition, because skeletal 
muscle aging involves significant alterations in skel-
etal muscle gene expression and protein metabolism, 
which are thought to contribute to the phenotypes of 
skeletal muscle aging [3, 13], we used unbiased tran-
scriptomic and proteomic methods to test the hypoth-
esis that ATF4 might be responsible for specific age-
related molecular changes in skeletal muscle.

Methods

Mouse strains and protocols

ATF4 mKO mice were described previously [9] 
and were generated by crossing mice homozygous 
for a floxed ATF4 allele (ATF4 L/L) to ATF4 L/L 
mice heterozygous for a muscle creatine kinase 
(MCK)-Cre transgene. Control mice were ATF4 L/L 
littermates that lacked the MCK-Cre transgene. All 
mice in this study were males on a C57BL/6 back-
ground. Different cohorts of 22-month-old mice 
were used for different experiments, but in each 
experiment, the 22-month-old control mice were 
littermates of the 22-month-old ATF4 mKO mice. 
Female mice were not studied due to cost con-
siderations and economic limitations. Mice were 
housed (up to five mice per cage) in ventilated 
cages (Thoren Rack system, no. 9 size cages) at 21 
°C with 12:12-h light/dark cycles and ad  libitum 
access to food and water. In all but the protein turn-
over studies, discussed below, the diet was Harlan 
Teklad formula 7913. Water was obtained from a 
filtered automatic watering system. The colony was 
confirmed to be specific pathogen-free via routine 
biannual testing of sentinel mice for a wide range 
of pathogens including mouse hepatitis virus, Par-
vovirus (minute virus of mice, mouse parvovirus), 
Theiler’s murine encephalomyelitis virus, mouse 
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rotovirus (EDIM), Sendai, Mycoplasma pulmonis, 
murine norovirus, pneumonia virus of mice, Reo3, 
Ectromelia, mouse adenovirus 1 and 2, lympho-
cytic choriomeningitis virus, pinworms, fur mites, 
ectoparasites, and endoparasites. The mouse hous-
ing room contained other strains of mice of both 
sexes. Forelimb grip strength was determined using 
a grip strength meter equipped with a triangular 
pull bar (Columbus Instruments), as described pre-
viously [11, 14]. Ex  vivo muscle force generation 
was determined using an Aurora Scientific 1200A 
Intact Muscle Test System to determine maximal 
and specific tetanic force in isolated extensor digi-
torum longus muscles, as described previously 
[15]. The extensor digitorum longus (EDL) muscle 
was used for specific force measurements because 
it is a small muscle that can be adequately oxygen-
ated ex vivo, which is essential for accurate meas-
urement of contractile properties [16]. In the cur-
rent study, EDL muscles were used for specific 
force measurements and were not collected for 
other analyses. The grip strength data and specific 
force data from 22-month-old control, and ATF4 
mKO mice were taken from our previous study of 
22-month-old control and ATF4 mKO mice [11]. 
All of the other data in the current study were pre-
viously unpublished. Endurance exercise capacity 
was determined using a motor-driven open tread-
mill with a shock grid (Columbus Instruments), 
as described previously [15, 17]: For 2 days, mice 
were acclimated to running on a motor-driven open 
treadmill with a shock grid (Columbus Instruments) 
for 5 min/day. During acclimation, the treadmill 
speed was set at 5 m/min, and the treadmill incline 
was set at 0%. On the third day, exercise tolerance 
was tested, the shock grid was set at 0.2 mA, and 
the treadmill incline was set at 10%. For the first 
5 min of testing, treadmill speed was set at 5 m/
min. Every 2 min thereafter, the treadmill speed 
was increased by 2 m/min. Running was terminated 
when mice contacted the shock grid for 10 s. For 
analyses of muscle mass, we used two of the larg-
est limb muscles, gastrocnemius, and quadriceps, 
and we chose to use large muscles because, relative 
to smaller muscles, they make a larger contribution 
to overall muscle mass. Quadriceps were used for 
proteomic analyses based on similar considerations 
and based on a requirement for a large amount of 
tissue for the proteomic method used in this study. 

The transcriptomic analyses used an intermediate-
sized muscle, the tibialis anterior (TA), based on 
our experience with transcriptomic analyses in the 
TA and so that the data from this study can be used 
for comparative transcriptomic studies of mouse 
TA muscles across a variety of experimental condi-
tions. Cage side observations of all mice were made 
daily throughout the study. Aggressive male mice 
were separated from their cage mates and housed 
individually; there was no difference in aggression 
between the strains. Euthanasia was performed by 
subjecting animals to CO2 exposure (flow rate of 
3 L/min) until breathing stopped for a period of 1 
min, and euthanasia was confirmed by decapitation. 
Euthanasia methods were approved by the Panel 
on Euthanasia of the American Veterinary Medical 
Association. All animal procedures were approved 
by the Institutional Animal Care and Use Commit-
tee of the University of Iowa.

Histological analysis

Harvested muscles were embedded in Tissue Freez-
ing Medium (Triangle Biomedical Sciences), and 
a Microm HM 505E cryostat was used to prepare 
10-μm sections from the muscle midbelly. Cryosec-
tions were blocked for 1 h at 25 °C in 5% normal goat 
serum (NGS) and then incubated for 2 h at 25 °C in 
5% NGS containing a 1:2000 dilution of anti-laminin 
(Sigma L9393). Sections were then rinsed with PBS, 
incubated for 1 h at 25 °C in 5% NGS containing a 
1:2000 dilution of Alexa Fluor 568-conjugated anti-
rabbit IgG and then mounted in Vectashield (Vector 
Laboratories). Muscle sections were examined and 
photographed with a Nikon Eclipse Ti automated 
inverted microscope equipped with NIS-Elements 
BR digital imaging software. Image analysis was per-
formed with ImageJ and MyoVision software [18], 
and muscle fiber diameter was determined with the 
lesser diameter (minimal Feret diameter) method, as 
described previously [17].

RNA sequencing

Mouse tibialis anterior muscle RNA was extracted 
using TRIzol solution (Invitrogen) and purified 
using the RNeasy kit and RNase-free DNase Set 
(Qiagen) according to the manufacturer proto-
col. Samples were quantified using the Trinean 
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DropSense 16, and RNA quality was assessed using 
the Agilent BioAnalyzer, with all samples show-
ing an RNA integrity Number (RIN) greater than 8. 
Libraries were prepared using the TruSeq Stranded 
mRNA Sample Prep Kit (Illumina). Briefly, oligo-
dT purification of polyadenylated RNA was fol-
lowed by reverse transcription, fragment purifica-
tion, end polishing and ligation to indexed adaptors. 
Paired-end sequencing with a read length of 2 × 150 
bp was performed on the Illumina platform at the 
Genomics Division of the Iowa Institute of Human 
Genetics.

Differential mRNA expression and gene set 
enrichment analysis

Sequencing reads were trimmed to remove adap-
tor sequences using Trimmomatic [19] and mapped 
to the M. musculus reference genome mm10 using 
RNA-star (v2.7.8a) [20]. FeatureCounts (v2.0.1) was 
used to count the number of reads uniquely mapping 
to annotated genes [21] and was used for normaliza-
tion and differential gene expression analysis using 
DESeq2 (v2.11.40.7) [22] on the online platform 
Galaxy [23]. Significantly differentially expressed 
transcripts were identified as those with a FDR 
adjusted P value < 0.1. Gene set enrichment analysis 
(GSEA) was performed for gene sets from the Reac-
tome database (v7.5.1) using GSEA v4.2.3 [24, 25]. 
LFC was used to rank the genes for analysis. Sig-
nificantly enriched gene sets were identified as those 
with a FDR < 0.25. Additionally, a difference in 
nominal enrichment score > 0.4 between genotypes 
was used to identify gene sets enriched in control 
muscle aging, but not ATF4 mKO, muscle aging.

Chemicals

Deuterated leucine (> 98% stable isotope) was 
obtained from Cambridge Isotope Labs. Acetonitrile 
(#AH015) and water (#AH365) were from Burdick 
& Jackson (Muskegon, MI). Iodoacetamide (IAA, 
#I1149), dithiothreitol (DTT, #D9779), formic acid 
(FA, #94318-50ML-F), and triethylammonium bicar-
bonate buffer 1.0 M, pH 8.5 (#T7408), were from 
Sigma Aldrich (St. Louis, MO); urea (#29700) was 

from Thermo Scientific (Waltham, MA); sequenc-
ing grade trypsin (#V5113) was from Promega (San 
Luis Obispo, CA); and HLB Oasis SPE cartridges 
(#186003908) were from Waters (Milford, MA).

Protein turnover studies and mass spectrometric 
analysis

At 19.5 months of age, cohorts of control and ATF4 
mKO mice were switched from standard chow (Har-
lan-Teklad formula 7913) to “Amino Acid Defined” 
chow (Envigo TD.99366), which contains 11.1 g/
kg leucine. Ten weeks later, at 22 months of age, 
mice were switched to a modified Envigo TD.99366 
diet that contained 11.1 g/kg deuterated leucine 
([5,5,5-2H3]-L-leucine) in place of unlabeled leu-
cine. Quadriceps muscles (3-5 per genotype and time 
point) were collected after 3, 7, 15, or 30 days on the 
deuterated leucine diet and then stored in liquid nitro-
gen. As described in great detail in the Supplemental 
Experimental procedures (Supplemental Experimen-
tal Procedures), tissues were homogenized using a 
TissueLyzer II (Qiagen, Hilden, Germany), followed 
by lysis, reduction and alkylation, and proteolytic 
digestion using sequencing grade trypsin (Promega, 
San Luis Obispo, CA) at a 1:25 enzyme:substrate 
ratio (wt/wt). Samples were analyzed by reverse-
phase HPLC-ESI-MS/MS using the Eksigent Ultra 
Plus nano-LC 2D HPLC system (Dublin, CA) com-
bined with a cHiPLC system directly connected to 
an orthogonal quadrupole time-of-flight SCIEX Tri-
pleTOF 6600 mass spectrometer (SCIEX, Redwood 
City, CA) (for details, see Supplemental Experimen-
tal Procedures).

Quantitative analysis of abundance and turnover

For calculation of protein abundance changes, data-
independent acquisitions (DIA) from six samples 
(three ATF4 mKO and three littermate control sam-
ples) were quantitatively processed using Spectro-
naut v14 (14.7.201007) software from Biognosys 
(Schlieren, Switzerland). Experimental parameters for 
the Spectronaut processing are provided in the sup-
plemental methods document (Supplemental Experi-
mental Procedures).

Precursor-pool corrected protein turnover rates 
were calculated in R using the TurnoveR tool, 
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previously described in detail [26]. The Turno-
veR pipeline is similar to analytical approaches 
employed in previous studies using the Topograph 
software platform [27–29]; additional details are also 
described in the supplemental methods (Supplemen-
tal Experimental Procedures). Briefly, precursor pool 
isotopic enrichments, fractional abundances of newly 
synthesized proteins, and half-lives were calculated 
for each protein using the TurnoveR tool. The pre-
cursor pools did not significantly change between 
treatment groups but increased over time points with 
the incorporation of heavy leucine from the diet 
(Fig. 6B). The distribution of newly synthesized pro-
teins did not significantly differ between ATF4 mKO 
and littermate control muscles but increased over 
time as expected (Fig. 6C–D). This yielded the pro-
tein turnover rates that were transformed into half-
lives using a simple conversion [half-life = -ln(2)/
turnover]. For statistical comparison of turnover rates 
between ATF4 mKO and control samples, first-order 
equations were natural log transformed, making a 
linear relationship between the log of percent newly 
synthesized proteins and time. Then, linear modeling 
statistics were applied to determine if the interaction 
between the log-transformed percent newly synthe-
sized values and time are different between ATF4 
mKO and control samples, and the P value of the dif-
ference in interaction was used to determine whether 
protein turnover rates were significantly different by 
genotype. To adjust for multiple hypotheses testing, 
q values (false discovery rate) was calculated using 
the Storey method [30] with the “qvalue” package in 
R. Adjusted P values were also calculated using the 
Benjamini-Hochberg correction. A full report of pro-
tein turnover rates, annotations, variance, statistical 
analysis, and other quantitative information is pro-
vided in Table S5.

Statistical analysis

RNA-sequencing and protein turnover data were ana-
lyzed as described above. All other statistical analyses 
were performed with GraphPad Prism. The statistical 
tests and sample sizes are provided in the figure legends. 

Data availability

Raw mass spectrometric data files, database search 
results, quantitative reports, spectral libraries, protein 

databases, and other supplementary files are avail-
able on MassIVE (MSV000088083) and ProteomeX-
change (PXD028444). All code used for turnover anal-
ysis is freely available on GitHub (https:// github. com/ 
Camer onWeh rfritz/ Adams- Prote in- Turno ver- Paper. 
git). RNA-seq data are deposited in Gene expression 
omnibus (GEO) (GEO accession no.: GSE212675).

Results

ATF4 expression in skeletal muscle fibers contributes 
to age-related declines in skeletal muscle strength, 
muscle quality, and endurance exercise capacity

To better understand the effects of ATF4 in skeletal 
muscle aging, we investigated muscle-specific ATF4 
knockout (ATF4 mKO) mice, which have a lifelong 
absence of ATF4 expression in skeletal muscle fib-
ers due to the presence of homozygous floxed ATF4 
alleles and an MCK-Cre transgene, which excises 
floxed alleles in fully differentiated skeletal muscle 
fibers and heart, but not satellite cells [9–11, 31, 32]. 
We compared ATF4 mKO mice to littermate con-
trols, which are also homozygous for the floxed ATF4 
allele but lack the MCK-Cre transgene. In both geno-
types, we assessed strength, muscle quality (specific 
force), and endurance exercise capacity at 6 months 
of age, when mice have achieved peak muscle mass 
and function, and at 22 months of age, when mice 
begin to exhibit age-related deficits in skeletal mus-
cle function [11]. The studies of strength and muscle 
quality build upon a previous study where we found 
that 22-month-old ATF4 mKO mice have greater grip 
strength and specific force than age-matched litter-
mate control mice [11]. Importantly, the cohorts of 6- 
and 22-month-old control and ATF4 mKO mice did 
not differ in total body weight, which can influence 
muscle function and mass (Fig. S1A).

At 6 months of age, ATF4 mKO and littermate 
control mice possessed equivalent grip strength, spe-
cific force, and exercise capacity relative to littermate 
controls (Figs.  1A–C and S1B–D), indicating that an 
absence of ATF4 expression in skeletal muscle fibers 
does not impair or enhance normal muscle function. 
As expected, control mice exhibited a decline in muscle 
function between 6 and 22 months, due to normal mus-
cle aging (Figs. 1A–C and S1B–D). In contrast, ATF4 
mKO mice were protected from age-related declines 
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in muscle function and, thus, maintained grip strength, 
specific force, and exercise capacity between 6 and 22 
months of age (Figs. 1A–C and S1B–D). These results 
indicate that ATF4 expression in skeletal muscle fibers 
plays an important role in the loss of skeletal muscle 
strength, muscle quality, and endurance exercise capac-
ity between 6 and 22 months of age.

ATF4 expression in skeletal muscle fibers contributes 
to age-related skeletal muscle atrophy

To test the hypothesis that ATF4 might be required for 
age-related skeletal muscle atrophy, we compared mus-
cle weights and fiber diameter from ATF4 mKO mice 
and littermate controls. At 6 months of age, ATF4 
mKO and control mice possessed similar muscle mass 
(Figs.  2A–B and S2A–B) and muscle fiber diameter 
(Figs.  2C–D and S2C), indicating that an absence of 
ATF4 expression in skeletal muscle fibers does not 
impair development of muscle mass or induce muscle 
hypertrophy. Between 6 and 22 months, both genotypes 
lost muscle mass and fiber size, due to age-related mus-
cle atrophy (Figs. 2A–D and S2A–C). Importantly, how-
ever, ATF4 mKO mice exhibited less age-related muscle 
atrophy than control mice (Figs.  2A–D and S2A–C). 
Thus, a targeted reduction of ATF4 expression in skel-
etal muscle fibers partially prevents age-related skeletal 
muscle atrophy between 6 and 22 months of age.

In skeletal muscle, ATF4 contributes to basal 
expression of 30 mRNAs involved in stress signaling 
and translational control

ATF4 is an essential subunit of at least seven dif-
ferent heterodimeric bZIP transcription factors 
that regulate gene expression in skeletal muscle 
fibers [6, 8, 33]. Thus, to begin to understand the 
preventive effects of ATF4 gene deletion on age-
related muscle atrophy and weakness, we used 
RNA sequencing (RNA-seq) to assess mRNA 
levels in skeletal muscle from both younger (6 
months old) and older (22 months old) control 
and ATF4 mKO mice (Table  S1). As expected, 
at 6 and 22 months of age, ATF4 transcripts were 
abundant in littermate control muscles and nearly 
absent in ATF4 mKO muscles (Fig. 3A). In addi-
tion, at both time points, ATF4 mKO muscles had 
lower levels of 10 transcripts involved in stress 
signaling (Cdkn1a/p21, Grb10, Eif4ebp1/4E-
BP1, Ppp1r15b/CReP, ATF5, Cebpg/C-EBPγ, 
Herpud1, Arhgef2, Phyhd1, and Ccni/Cyclin I), 
and 20 transcripts involved in translational con-
trol (Slc6a9, Slc7a1, Slc7a5, Aars, Cars, Gars, 
Iars, Lars, Mars, Nars, Sars, Tars, Yars, Xpot, 
Eif1, Eif2s2, Eif3c, Aldh18a1, Aldh1l2, and 
Mthfd2) (Fig.  3B). Of these 30 ATF4-depend-
ent transcripts, all but two (Phyhd1 and Ccni) 
arise from genes that are known to be directly 
activated by ATF4 heterodimers [10, 34–49]. 
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Fig. 1  ATF4 promotes age-related declines in skeletal mus-
cle strength, muscle quality, and endurance exercise capacity. 
Weight-matched cohorts of 6- and 22-month-old littermate 
control and ATF4 mKO mice were subjected to assessments of 
in vivo grip strength (A), ex vivo specific force (B), and in vivo 
treadmill running (C). Data are means ± SEM from ≥14 mice 

in (A), ≥ 7 mice in (B), and ≥ 13 mice in (C). Individual data 
points and body weight data are shown in Fig. S1. The grip 
strength and specific force data from 22-month-old control and 
ATF4 knockout mice were shown previously [11]. P values 
compare control and ATF4 mKO mice at each time point using 
two-way ANOVA with Šidák’s multiple comparisons test
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Fig. 2  ATF4 promotes age-related skeletal 
muscle atrophy. Weight-matched cohorts of 
6- and 22-month-old littermate control and 
ATF4 mKO mice were subjected to assess-
ments of combined weight of bilateral gas-
trocnemius muscles (A), combined weight 
of bilateral quadriceps muscles (B), mean 
quadriceps muscle fiber diameter (C), and 
quadriceps muscle fiber size distribution 
of > 3950 muscle fibers per condition (D). 
Data are means ± SEM from ≥10 mice in 
(A), ≥ 10 mice in (B), and ≥ 5 mice in (C) 
and (D). Individual data points are shown 
in Fig. S2. P values compare control and 
ATF4 mKO mice at each time point using 
two-way ANOVA with Šidák’s multiple 
comparisons test
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Furthermore, Cdkn1a/p21 and Grb10 encode 
proteins that are known to negatively regulate 
skeletal muscle mass [10, 50–53]. As previously 
reported in liver-specific ATF4 knockout mice 
[54], ATF4 mKO muscles also contained two 
changes that are likely explained by local chro-
mosome rearrangement following Cre-mediated 
excision of the ATF4 allele: low level expression 
of a non-natural ATF4-Cacna1i fusion transcript 
and decreased levels of Rps19bp1 mRNA, an 
endogenous transcript that is poorly expressed 
in control skeletal muscle and absent in ATF4 
mKO muscles (Fig.  S3). Interestingly, the tran-
scripts that were significantly decreased in 
6- and 22-month-old ATF4 mKO muscles were 
not regulated by aging in control muscles; in 
other words, these mRNAs did not significantly 
increase or decrease as littermate control mice 
aged from 6 to 22 months. These data identified 
primary molecular effects of ATF4 gene deletion 
in skeletal muscle fibers, which occur before and 
after skeletal muscle phenotypes emerge. These 

primary effects include reduced basal expression 
of 30 ATF4 target genes involved in stress sign-
aling and translational control.

During skeletal muscle aging, ATF4 promotes 
induction of transcripts involved in inflammation, 
cellular senescence, and Rho GTPase signaling

We hypothesized that that loss of ATF4 expres-
sion in skeletal muscle fibers might also have 
secondary effects that emerge between 6 and 22 
months of age. As an initial test of that hypoth-
esis, we performed gene set enrichment analysis 
(GSEA) of the RNA-Seq data and identified 36 
Reactome gene sets that were induced by aging 
in control skeletal muscle and not significantly 
affected by aging in ATF4 mKO skeletal muscle 
(Fig. S4 and Table S2). Interestingly, 15 of these 
36 gene sets were thematically linked around 
inflammation (Fig.  4A) and were composed of 
partially overlapping sets of transcripts involved 
in inflammation and the senescence-associated 
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secretory phenotype (Fig. 4B). Consistent with this find-
ing, 19 additional mRNAs contained in transcriptomic 
signatures of cellular senescence were significantly 
increased by aging in control muscle but not ATF4 
mKO muscle (Figs. 4C [55, 56]), including two metal-
lothioneins (Mt1 and Mt2) that promote muscle atro-
phy and weakness [57]. Another 8 of the 36 gene sets 
induced by aging in control but not ATF4 mKO muscle 
were thematically linked around RhoGTPase signaling 
(Fig.  4D–E), which has been implicated in the control 
of muscle mass [58–60]. Altogether, 711 mRNAs were 
significantly induced by aging in control skeletal muscle 
but not ATF4 mKO muscle (Table S3), representing ~ 
3% of total measured transcripts and ~ 20% of total tran-
scripts induced by aging in control skeletal muscle. Thus, 
ATF4 expression in skeletal muscle fibers is required for 
age-related induction of transcripts involved in cellu-
lar processes such as inflammation, cellular senes-
cence, and Rho GTPase signaling.

During skeletal muscle aging, ATF4 promotes 
repression of transcripts involved in mitochondrial 
function, protein synthesis, and metabolism of amino 
acids, polyamines, glutathione, and nicotinamide

We next asked whether loss of ATF4 might pre-
vent repression of cellular processes that normally 
decline during skeletal muscle aging. To that end, we 
identified 24 Reactome gene sets that significantly 
decreased with aging in control skeletal muscle but 
not in ATF4 mKO muscle (Fig.  S5 and Table  S2). 
Interestingly, most of these gene sets were themati-
cally linked around cellular processes that are neces-
sary for the maintenance of skeletal muscle mass and 
function, including mitochondrial function (Fig. 5A), 
protein synthesis (Fig.  5C), and metabolism of 
amino acids, polyamines, glutathione, and nico-
tinamide (Fig.  5E). Many transcripts involved in 
these cellular processes were strongly repressed 
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Fig. 3  In skeletal muscle, ATF4 contributes to basal expres-
sion of 30 mRNAs involved in stress signaling and transla-
tional control. Skeletal muscle from 6- and 22-month-old con-
trol and ATF4 mKO mice was subjected to RNA sequencing 
(RNA-seq). A RNA-seq read alignments at the ATF4 gene. 
The level of ATF4 mRNA in 22-month-old control muscle is 

14% lower than the level of ATF4 mRNA in 6-month-old con-
trol muscle (FDR = 0.09). B mRNAs whose levels were signif-
icantly decreased (FDR < 0.1) in ATF4 mKO muscles (relative 
to age-matched control muscles) at both 6 and 22 months of 
age. Each data point represents one muscle, and bars indicate 
the average log2 fold-change
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by aging in control muscles, but their expres-
sion was maintained in aged ATF4 mKO muscles 
(Fig. 5B, D, and F). Altogether, 708 mRNAs were 
significantly repressed by aging in control skel-
etal muscle but not ATF4 mKO muscle (Table S4), 
representing ~ 3% of total measured transcripts 
and ~ 23% of transcripts repressed by aging in 
control skeletal muscle. These data indicate that 
ATF4 expression in skeletal muscle fibers may 
contribute to age-related repression of metabolic 
processes that are necessary to maintain healthy 
skeletal muscle mass and function.

ATF4 influences turnover of specific proteins in 
skeletal muscle

Through complex regulatory mechanisms that are 
not yet well understood, aging alters protein turno-
ver in many tissues, including skeletal muscle [13, 
29, 61–63]. Furthermore, age-related disruptions 
in protein turnover are thought to play an impor-
tant role in age-related declines in cellular function 
[64–67]. Because loss of ATF4 expression reduced 
age-related muscle atrophy and weakness and 
altered the expression of many transcripts involved 
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Fig. 4  During skeletal muscle aging, ATF4 promotes induc-
tion of transcripts involved in inflammation, cellular senes-
cence, and Rho GTPase signaling. RNA-Seq data from skeletal 
muscle of 6- and 22-month-old control and ATF4 mKO mice 
were used to identify pathways that were induced by aging 
in control but not ATF4 mKO muscles. A–B Inflammation-
associated Reactome gene sets that were significantly induced 
by aging in control but not ATF4 mKO muscles (A) and key 
individual transcripts from those gene sets (B). C Additional 

senescence-associated mRNAs (from CellAge and SenMayo 
gene panels) that were induced by aging in control but not 
ATF4 mKO muscles. D–E Reactome Rho GTPase signaling 
gene sets that were significantly induced by aging in control 
but not ATF4 mKO muscles (D) and key transcripts from those 
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in translational control and protein synthesis, we 
hypothesized that loss of ATF4 expression might 
alter protein turnover in aged skeletal muscle. To 
test this hypothesis, we fed a deuterated leucine diet 
to 22-month-old control and ATF4 mKO mice, col-
lected skeletal muscles after 3, 7, 15, and 30 days 
on the deuterated leucine diet, and then subjected 
the skeletal muscles to a recently developed mass 
spectrometry-based method that quantifies turnover 

of the most highly abundant skeletal muscle pro-
teins (Fig.  6A [26]). Deuterated leucine was effi-
ciently incorporated into skeletal muscle proteins, 
with ~ 75% of all leucine in the muscles isotopically 
labeled at the 30-day timepoint (Fig. 6B). Further-
more, more than half of all measured proteins were 
greater than 50% newly synthesized by the 30-day 
timepoint, and there was no significant difference 
between the two genotypes (Figs. 6C–D).
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Fig. 5  During skeletal muscle aging, ATF4 promotes repres-
sion of transcripts involved in mitochondrial function, protein 
synthesis, and metabolism of amino acids, polyamines, glu-
tathione, and nicotinamide. RNA-Seq data from skeletal mus-
cle of 6- and 22-month-old control and ATF4 mKO mice were 
used to identify Reactome gene sets that were repressed by 
aging in control but not ATF4 mKO muscles. A–B Mitochon-
dria-related gene sets that were significantly repressed by aging 
in control but not ATF4 mKO muscles (A) and key individual 

transcripts from those gene sets (B). C–D Protein synthesis-
related gene sets that were significantly repressed by aging in 
control but not ATF4 mKO muscles (C) and key transcripts 
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polyamine, glutathione, and nicotinamide metabolism (E) and 
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The time course data from this study allowed us 
to quantitate the half-lives of 154 highly abundant 
skeletal muscle proteins in 22-month-old control 
and ATF4 mKO muscle (Fig. 6A and Table S5). Of 
these 154 proteins, 19 proteins (~ 12%) had signifi-
cantly altered turnover rates in ATF4 mKO muscles 
(Fig. 6E, Fig. S6 and Table S5). Interestingly, most of 

these 19 proteins are known to have important roles 
in skeletal muscle metabolism and structure [68–85]. 
Furthermore, most of the proteins with differen-
tial half-lives in ATF4 mKO muscles had decreased 
half-lives, indicating higher rates of protein turnover 
(Fig. 6E). In addition, at least one of the proteins with 
a higher rate of protein turnover in aged ATF4 mKO 
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muscles (isocitrate dehydrogenase 2) is known to 
acquire a lower turnover rate during skeletal muscle 
aging [63]. These results indicate that ATF4 expres-
sion in aged skeletal muscle fibers alters turnover 
of specific proteins with important metabolic and 
structural functions, with most of the regulated pro-
teins having a slower turnover rate in the presence of 
ATF4.

Discussion

In the current study, we aimed to better understand 
the role of ATF4 in skeletal muscle aging. Our data 
are summarized by the schematic in Fig.  7. During 
normal muscle aging, ATF4 mediates basal expres-
sion of approximately 30 direct target genes involved 
in stress signaling and translational control. Interest-
ingly, basal expression of these 30 genes does not 
significantly change between 6 and 22 months of 
age. However, many other things do change between 
6 and 22 months of age, including but not limited to 
induction of mRNAs involved in cellular senescence, 
repression of anabolic mRNAs involved in protein 

synthesis and mitochondrial function, and age-related 
declines in muscle mass, strength, muscle quality, and 
endurance exercise capacity. These are some of the 
characteristics of normal muscle aging.

When ATF4 is chronically removed from skeletal 
muscle fibers, as in ATF4 mKO mice, basal expres-
sion of the 30 ATF4 target genes is chronically 
reduced. This does not affect development of peak 
muscle mass or function, and thus, at 6 months of 
age, ATF4 mKO mice are phenotypically indistin-
guishable from littermate control mice. However, as 
ATF4 mKO mice become older, several differences 
emerge, including impaired induction of senescence-
associated mRNAs, impaired repression of anabolic 
mRNAs, partial prevention of age-related skeletal 
muscle atrophy, and protection against age-related 
declines in strength, muscle quality, and endurance 
exercise capacity. Additionally, the phenotype of 
older ATF4 mKO muscles is accompanied by altered 
turnover of several proteins with crucial roles in skel-
etal muscle structure and metabolism. These data 
strongly suggest ATF4 as an important mediator of 
skeletal muscle aging.

One important unresolved question is whether 
ATF4 expression changes with aging. The cur-
rent data indicate that ATF4 mRNA levels do not 
increase and in fact, slightly decrease, in skeletal 
muscle between 6 and 22 months of age. However, 
ATF4 protein levels are primarily regulated by post-
transcriptional mechanisms [6], so changes in the 
level of ATF4 mRNA do not necessarily predict cor-
responding changes in the level of ATF4 protein. 
Unfortunately, we have been unable to quantify the 
level of ATF4 protein in skeletal muscle, either by 
immunoblot or mass spectrometry, presumably due 
to the low abundance and short half-life of ATF4, 
or a lack of highly sensitive and specific antibodies 
against ATF4. Thus, based on the available informa-
tion, we cannot determine whether ATF4 protein lev-
els change between 6 and 22 months of age, and due 
to this uncertainty, we did not include ATF4 levels in 
our model in Fig. 7. Additional studies and probably 
additional technological advances will be needed to 
determine whether ATF4 protein levels significantly 
change during skeletal muscle aging.

Skeletal muscle aging is a slowly progressive pro-
cess that occurs over decades in humans and over 
many months in mice. In contrast to aging, acute 
stress conditions such as fasting and immobilization 
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Fig. 7  Summary of identified age-related changes in mouse 
skeletal muscle, in the presence and absence of ATF4 expression
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induce skeletal muscle atrophy quite rapidly, within 
days in humans and within hours in mice. Interest-
ingly, ATF4 also mediates fasting-and immobiliza-
tion-induced skeletal muscle atrophy [8, 9]. However, 
during those acute stress conditions, ATF4 target 
gene expression increases to levels that are substan-
tially higher than the basal levels observed in this 
study, which utilized 6- and 22-month-old mice that 
were neither fasted nor immobilized. These consid-
erations could suggest a potential model in which 
strong induction of ATF4 target genes during acute 
stress conditions leads to rapid loss of skeletal muscle 
mass and function, whereas chronic basal expression 
of ATF4 target genes during natural aging promotes 
a slow erosion of skeletal muscle mass and func-
tion. Another potential model, not mutually exclusive 
with the first, is that specific detrimental activities of 
ATF4 are preferentially activated with age, perhaps 
mediated by differential abundance of a specific bind-
ing partner in aged muscle. Indeed, ATF4 is not a 
standalone transcription factor capable of activating 
genes by itself, as its name implies, but rather, ATF4 
is one half of many possible heterodimeric transcrip-
tion factors, each with unique and highly context-
dependent functions [6]. In mouse skeletal muscle 
fibers, ATF4 forms multiple heterodimers, but only 
one ATF4 heterodimer, composed of ATF4 and C/
EBPβ, appears to mediate muscle atrophy [33]. From 
this perspective, it is interesting to note that aging 
significantly increases the level of C/EBPβ mRNA 
by 2.5-fold in both control skeletal muscle (FDR 2.0 
×  10–23) and ATF4 mKO muscle (FDR 2.5 ×  10–9) 
(Table  S1). These data, coupled with the phenotype 
of the ATF4 mKO mice, suggest a potential model 
in which aging promotes formation of the ATF4-C/
EBPβ heterodimer in skeletal muscle (at least partly 
through an ATF4-independent increase in C/EBPβ 
expression), and the ATF4-C/EBPβ heterodimer pro-
motes a loss of muscle mass and function between 6 
and 22 months of age. This will be an important area 
for future investigation.

Other important areas for future investigation 
include the downstream mechanisms (ATF4 target 
genes) that mediate age-related skeletal muscle atro-
phy and the upstream mechanisms that control ATF4 
protein levels in skeletal muscle fibers. Two potentially 
important downstream mediators are the p21/Cdkn1a 
and Grb10 genes, which encode negative regulators of 

skeletal muscle mass [10, 50–53] and exhibit chroni-
cally reduced expression in ATF4 mKO muscles at 
both 6 and 22 months of age. It also remains possible 
that additional ATF4 target genes may become active 
between 6 and 22 months and contribute to age-related 
changes. As an example, one ATF4 target gene that 
promotes muscle atrophy, Gadd45a [9, 33], had lower 
expression in ATF4 mKO muscles at 22 months, but not 
6 months (Table S1). We suspect that multiple ATF4 tar-
get genes may be involved in age-related skeletal mus-
cle atrophy, but further studies will be needed to test this 
hypothesis. There are also several potential upstream reg-
ulators of ATF4 protein expression during muscle aging. 
For example, in other cell types, ATF4 protein levels can 
be increased by mTORC1 signaling, the integrated stress 
response, and other signaling pathways that reduce eIF2B 
activity, all of which have been implicated in skeletal mus-
cle aging [86–89]. Furthermore, pharmacologic inhibitors 
of the integrated stress response and mTORC1 have been 
proposed as potential approaches for the prevention and 
treatment of age-related skeletal muscle atrophy and weak-
ness [90–92], and ursolic acid and tomatidine, two small 
molecules that reduce age-related skeletal muscle atrophy 
and weakness in mouse models, also reduce ATF4-medi-
ated gene expression in aged skeletal muscle, consistent 
with the phenotype of ATF4 mKO mice [11, 14, 15]. A 
better understanding of these upstream and downstream 
mechanisms could inform therapeutic approaches.

Interestingly, ATF4 activity is positively associated with 
lifespan and healthspan in a number of preclinical models 
[93, 94], although much of this work has focused on liver. 
This raises the question of how ATF4 activity can be posi-
tively associated with geroprotective interventions in some 
contexts and also play a detrimental role in other contexts, 
such as skeletal muscle aging. We speculate that the com-
plexity of ATF4-dependent phenotypes during aging is 
largely if not entirely due to the complexity of ATF4 itself. 
As discussed above, ATF4 is a rate-limiting component 
of many different heterodimeric bZIP transcription fac-
tors with unique and highly context-dependent functions 
[6]. Thus, ATF4 is a multifunctional protein that can par-
ticipate in a wide range of biological processes, some of 
which may be geroprotective, and some of which may be 
degenerative.

Although we believe the results of this study are 
interesting and important, we also believe that the study 
has some limitations. First, mice have advantages but 
also inherent limitations as a model system for studying 
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skeletal muscle aging, so it will be important to extend 
these studies to other species, particularly humans. Sec-
ond, the transcriptomic and proteomic data presented 
here are correlative and do not establish causal mecha-
nisms beyond implicating ATF4 in a variety of age-
related processes. Furthermore, the slow nature of aging 
studies precludes us from quickly testing the suggested 
hypotheses. Thus, additional studies will be needed to 
determine which downstream effects of ATF4 are essen-
tial for age-related skeletal muscle atrophy and weakness. 
Third, the current study only investigated mice up to 22 
months of age, so we do not yet know whether ATF4 
plays an essential role in later stages of muscle aging, 
which are characterized by more profound muscle atro-
phy and functional deficits. Fourth, the current study 
examined the role of one transcription regulatory protein, 
ATF4, in one genetic background (C57BL/6), one gender 
(males), and a few muscle types. However, many other 
factors also influence age-related loss in muscle mass 
and function, including motoneuron loss, neuroendocrine 
factors, genetic background, gender, and inherent prop-
erties of specific muscle types and specific muscle fiber 
types [3, 95]. Thus, it will be important in future studies 
to investigate how ATF4 interacts with other pathogenic 
processes and mediators (such as motoneuron loss and 
neuroendocrine factors), whether ATF4 might also play 
a role in age-related loss in muscle mass and function in 
different contexts, (including other genetic backgrounds, 
female gender, and other muscle types) and whether 
ATF4 has fiber type-specific effects.

An additional potential limitation of the current study 
relates to the non-natural ATF4-Cacna1i fusion transcript 
and decreased levels of Rps19bp1 mRNA in ATF4 mKO 
muscles. These may be off-target effects of Cre-mediated 
excision of ATF4 exons 2 and 3, and similar changes 
(lower levels of Rps19bp1 mRNA and an increased 
level of a Cacna1i-assigned transcript) have also been 
observed in the livers of liver-specific ATF4 knockout 
mice [54] and in global ATF4 knockout mice and cell 
lines with constitutive loss of ATF4 exons 2 and 3 [96, 
97]. Because Rps19bp1 mRNA is poorly expressed in 
control skeletal muscle and only trace amounts of the 
ATF4-Cacna1i fusion transcript are observed in ATF4 
mKO muscles (Fig. S3), it seems unlikely that changes 
in these transcripts could explain the ATF4 mKO phe-
notype. Furthermore, the phenotypes observed in ATF4 
mKO muscles are consistent with previous obser-
vations that RNAi-mediated knockdown of ATF4 

mRNA reduces muscle atrophy, and ATF4 overex-
pression induces muscle atrophy [8].

In summary, the current study identifies ATF4 
as a likely mediator of several age-related changes 
in skeletal muscle, including repression of genes 
involved in mitochondrial function and protein syn-
thesis, induction of genes involved in cellular senes-
cence, and most importantly, age-related declines in 
muscle mass, strength, muscle quality, and endurance 
exercise capacity. These findings could contribute to a 
greater mechanistic understanding of skeletal muscle 
aging and inform development of new approaches to 
preserve muscle mass and function in older adults.
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