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regression models for falling using 17 ISAW metrics, 
with and without age and fall history, and charac-
terize top-performing models by AUC and metrics 
included. The ISAW test improved distinguishing 
between future fallers and non-fallers compared to 
age and history of falls, alone (AUC improved from 
0.69 to 0.75). Models with 1 ISAW metric usually 
included a postural sway measure, models with 2 
ISAW measures included a turning measure, mod-
els with 3 ISAW measures included a gait variability 
measure, and models with 4 or 5 measures added a 
gait initiation measure. Gait speed and dual-task cost 
did not distinguish between fallers and non-fallers in 
this high-functioning cohort. The best fall-prediction 

Abstract Objective measures of balance and gait 
have the potential to improve prediction of future fall-
ers because balance and gait impairments are com-
mon precursors. We used the Instrumented Stand and 
Walk Test (ISAW) with wearable, inertial sensors to 
maximize the domains of balance and gait evaluated 
in a short test. We hypothesized that ISAW objective 
measures across a variety of gait and balance domains 
would improve fall prediction beyond history of falls 
and better than gait speed or dual-task cost on gait-
speed. We recruited 214 high-functioning older men 
(mean 82  years), of whom 91 participants (42.5%) 
had one or more falls in the 12 months following the 
ISAW test. The ISAW test involved 30 s of stance fol-
lowed by a 7-m walk, turn, and return. We examined 
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models support the notion that older people may fall 
due to a variety of balance and gait impairments.

Keywords Prospective falls · Fall risk assessment · 
Balance · Gait · Wearable sensors

Introduction

The persistence of high rates of falling in older adults, 
despite clinical fall-risk assessments [1], suggests that 
more specific measures of fall risk are needed. Fall 
history is the strongest predictor of future falls [2]. 
However, information about number and severity of 
falls over a previous year from older patients’ memo-
ries can be inaccurate, especially for patients with 
memory problems and those who fall very often [3]. 
Also, people who have not yet fallen may fall in the 
next year [3, 4]. Slow gait speed has also been associ-
ated with falls in older people although robust, high-
functioning older adults with normal gait speed also 
fall. Thus, quantification of subtle, specific balance 
and gait characteristics with a quick and objective test 
may be a useful addition to fall history and gait speed 
to identify fall risk in high-functioning older adults.

The most common reasons for falls (and modifi-
able risk factors) are balance and gait impairments 
[2]. Balance and gait have several different domains 
affected by aging and, therefore, likely to contribute 
in different ways to fall risk [5]. Each balance domain, 
such as anticipatory postural adjustments (APAs; pos-
tural adjustments that precede voluntary movements, 
such as step initiation, to maintain postural stability), 
postural sway in stance, and dynamic balance (lateral 
trunk control) while turning are thought to be nonre-
dundant and represent different neural control circuits 
and different potential reasons for falls [6]. In addi-
tion, postural sway metrics have been shown to bet-
ter predict fall risk than stopwatch measures, such as 
standing on one foot [7]. Like balance, gait has many 
independent, measurable domains such as gait vari-
ability (e.g. stride-time variability) and spatial (e.g. 
stride length), temporal (e.g. double-support time), 
and upper body (e.g. trunk range of motion) domains 
[8]. Many instrumented measures of gait, such as 
double-support time and stride-time variability, may 
predict future fallers better than gait speed [9]. In 
addition, enhancement of gait impairments during 
an attention-demanding, cognitive dual-task may be 

even more sensitive to fall risk than single-task gait 
[10]. Rehabilitation of balance and gait is recom-
mended to prevent falls, but effective rehabilitation 
requires assessment of the specific domain of balance 
and gait to target [11].

To capture multiple domains of balance and gait 
in one test, we used an Instrumented Stand and Walk 
Test (ISAW), a short balance and gait task, using 
wearable inertial sensors [12]. The test results in 
metrics from several different domains of mobility: 
postural sway in quiet stance, anticipatory postural 
adjustments associated with step initiation, quality 
of turning 180°, and 4 domains of gait characteris-
tics that have been shown to be independent factors 
(spatial, temporal, variability, and upper body) [6, 8]. 
Identifying the set of balance and gait domains that 
are best related to falls will help to (1) better under-
stand underlying mechanisms for falls, (2) design a 
concise test protocol, and (3) focus rehabilitation on 
specific balance and gait domains.

Our goal was to identify which combinations of 
ISAW metrics, reflecting different domains of gait 
and balance, would best help separate prospective 
fallers from non-fallers [6, 13–15]. We hypothesized 
that composite models of objective balance/gait met-
rics across different domains in the ISAW test would 
predict who would fall in the next 12 months. These 
models tell us which specific domains of gait and 
balance best predict falls in high-functioning older 
adults. We also hypothesized that using metrics from 
the ISAW test would improve the ability to predict 
who would fall in the following year, beyond clini-
cal predictors such as history of falls and age. And 
additionally predict better than gait speed or dual-task 
cost on gait speed in our high-functioning cohort of 
men in their 9th decade of life.

Materials and methods

Participants

We recruited community-dwelling, older partici-
pants from one site of the largest longitudinal study 
of falls in older men, The Osteoporotic Fractures 
in Men (MrOS; https:// mroso nline. ucsf. edu) [16, 
17]. MrOS has 20  years of data on falls and fall 
injury, physical performance, health status, as well 
as falls, in men who are now in their 80  s. When 
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originally recruited between 2000 and 2002, the 
men in MrOS were 65 years of age or older, able to 
walk without assistance, and without neurological 
disorders or joint replacements. The Portland-site 
MrOS cohort for visit 4 was recruited between May 
2014 and May 2016 and was able to stand and walk 
for 2 min without the use of a cane or other assis-
tive device, although a few used a cane occasion-
ally in daily life. We tested 214 participants, 11 of 
whom were unable to travel to the site so they were 
given the ISAW test in their homes. See Fig. 1A for 
details of participant numbers. The methods were 
performed in accordance with relevant guidelines 
and regulations and approved by the Oregon Health 
& Science University, Institutional Review Board. 
All participants were given a written consent form 
to read, had the study verbally explained to them, 
and, after having any questions answered, docu-
mented their consent by signing the informed con-
sent form.

ISAW test

Participants wore 6 inertial measurement units (Opals 
by APDM Wearable Technologies, a Clario com-
pany) (on each foot, the low back, sternum and both 
wrists), and data were collected using the Mobility 
Lab system. The ISAW test consists of (1) standing 
for 30  s with eyes open, hands at sides with stance 
width standardized using a foot template [18], (2) 
step initiation, (3) walking 7 m, (4) turning 180° over 
a line on the ground, and (5) walking 7 m back to the 
start line (Fig. 1B [12]). This test was repeated with 
a concurrent, cognitive dual task, in which the par-
ticipant was asked to count backward by 3  s (start-
ing from a standard, 3-digit number). Subjects first 
practiced counting backward by 3  s from a different 
3-digit number while sitting for 1 min.

We focused on the following metrics from 7 dif-
ferent domains of mobility: (1) sway during standing 
balance (e.g. area, velocity, frequency), (2) anticipa-
tory postural adjustments for step initiation (peak lat-
eral trunk range), (3) gait spatial measures (e.g. stride 

Fig. 1  A Flowchart of 
number of participants in 
the study and reasons for 
dropouts. B Summary of 
ISAW protocol, mobil-
ity domains, and metrics 
collected. Participants 
stood for 30 s, walked 7 m, 
turned around after cross-
ing a line on the floor and 
returned 7 m to the starting 
location. The balance and 
gait metrics used are listed 
at the bottom, and belong 
to 4 primary mobility 
domains: postural Sway 
during quiet stance, gait 
over 7 m × 2, turning 180°, 
and anticipatory postural 
adjustments (APAs) prior to 
step initiation. Gait metrics 
were further divided into 
independent factors of 
temporal, spatial, variabil-
ity, and upper body metrics. 
A anticipatory, S sway, G:T 
gait/temporal, G:S gait/
speed, G:V gait/variability, 
G:U gait/upper body, T turn
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length), (4) gait temporal measures (e.g. cadence, 
double-support time), (5) upper body gait (e.g. trunk 
range), (6) gait variability (e.g. stride time variabil-
ity), and (7) turning quality (e.g. peak turn velocity, 
number of steps). We a priori considered 17 ISAW 
measures out of over 100 ISAW potential measures 
for this study by selecting valid and reliable, nonre-
dundant (not highly correlated) measures from each 
domain [13–15, 19] (Fig.  1B). We used the com-
mercial gait analysis algorithms included in Mobility 
Lab™, Version 2 (APDM Wearable Technologies-
a Clatrio company, Inc., Portland, Oregon) [12] to 
extract 17 ISAW measures which have been validated 
previously [14, 20–22].

Clinical measures

Demographic and clinical characteristics recorded 
at MrOS Visit 4 included age, height, weight, mari-
tal status, living arrangement, self-rated quality of 
health, and use of walking aids. The Physical Activity 
Scale for the Elderly (PASE), a patient-reported scale 
of physical activity over the past month, was adminis-
tered. The PASE has a maximum total score (highest 
physical activity) of 793 and an average score of 101 
for men > 70 years [23]. Other clinical tests included 
(1) walking speed based on two stopwatch trials of a 
6-m, natural-pace walk, (2) ability to complete 5 chair 
stands, and (3) bilateral grip strength.

Falls

To define a prospective faller, we utilized the MrOS 
postcards that were sent out every 4 months to inquire 
if any falls had occurred. We defined as a participant 
with at least one reported fall in the 12-month period 
following the ISAW test at MrOS visit 4. Missing 
data on falls (such as a postcard not being returned) 
were handled as follows: participants for whom fall 
status in the 12-month period following the ISAW 
test could be determined were included in the analy-
sis, and others were not included.

Cognitive function of both fallers and non-fallers 
was in the normal range for their age. See Teng Modi-
fied Mini-Mental State (3MS) in Table 1. Numbers of 
reported falls in each 4-month interval were used to 
determine fall status over the 12-month period after 
the ISAW test.

Statistical analysis

Given our hypothesis that ISAW metrics across differ-
ent mobility domains could help predict falls and the 
limitation of our sample size, we chose a modeling 
approach that averaged across many statistical mod-
els, rather than choosing the “best” model. We ran a 
set of logistic regression models on prospective fall 
status (fallers versus non-fallers) in the 12 months fol-
lowing ISAW: covariates included age at MrOS visit 
4, estimated number of falls in the year before ISAW 
(continuous value), and all possible subsets of the 
top-performing balance and gait metrics (log-trans-
forming skewed metrics). Since there were 17 ISAW 
metrics under consideration, we had  217 = 131,072 
potential models. We computed the Bayesian Infor-
mation Criterion (BIC) [24], a measure of model fit, 
and assigned a “weight” to the model based on the 
value of the BIC [25, 26]. We combined coefficient 
estimates for the ISAW metrics from each model, 
using the weights on the models, to yield Bayesian 
model-averaged, coefficient estimates, referred to as 
the BIC-weighted model average. Additionally, for 
each ISAW metric, we computed a Bayesian posterior 
probability of inclusion in the “true” model. These 
posterior probabilities can be interpreted as measures 
of importance of each ISAW metric in discriminating 
fallers from non-fallers, with and without including 
age and fall history in the model. We also compared 
the 17 ISAW metrics between non-fallers and fallers 
using Student T tests.

We examined how well ISAW metrics could aid 
in distinguishing fallers from non-fallers with and 
without information on fall history and age. Com-
paring each analysis across these two scenarios: (a) 
ISAW metrics alone and (b) ISAW metrics + fall his-
tory + age, allowed us to see which ISAW metrics and 
domains were amplified in their importance when fall 
history and age were included in the model. In order 
to see the impact of including ISAW metrics, we 
compared ROC curves from the model that included 
fall history and age only, the BIC-weighted average of 
all possible models, and the top-performing models 
with 3 ISAW metrics plus fall history and age. To see 
the impact of including dual-task cost on gait speed 
and turning speed in the model, we added dual-task 
cost calculated as: dual-task cost [%] = 100 × (dual-
task metric − single-task metric) / single-task metric. 
All analyses were done in Stata/IC 15.1 for Windows.
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Data availability

Information on accessing the data is available from 
https:// mroso nline. ucsf. edu/

Results

Participant characteristics

In total, 236 participants from the Portland MrOS 
site participated in this ancillary ISAW study and 229 
contributed usable ISAW data. For 15 of these 229 
participants, fall status in the 12  months following 

the ISAW test was indeterminate due to missing data 
(Fig.  1A). Reasons for missing information on falls 
included death, missing postcards, or postcards with 
missing information. Hence, 214 participants were 
included in our fall prediction analysis. The health 
and demographic information were collected at the 
MrOS Study Visit 4. The ISAW test was also admin-
istered at visit 4 or within the following month, in 206 
of the 214 (96.3%).

Table  1 summarizes characteristics of the 214 
high functioning older men in whom we predicted 
falls in the following 12 months. Most participants 
lived in the community (96.3%), either alone or 
with a family member. Only 8 participants (3.7%) 

Table 1  Demographic and clinical characteristics at MrOS Visit 4 separated by fall status in the 12-month period following ISAW 
test. Results given as median (interquartile range), or percent (frequency), as appropriate

* Details about fall numbers are in Fig. 2

Characteristic All with known fall status 
(n = 214)

Non-fallers (n = 123) Fallers (n = 91)

Age, years 83 (80, 87) 83 (80, 86) 84 (80, 89)
BMI, kg/m2 25.8 (23.8, 28.3) 25.5 (23.5, 28.4) 26.0 (24.4, 28.0)
Living situation:

  Alone in community 22.4 (48) 20.3 (25) 25.3 (23)
  With others in community 73.8 (158) 74.8 (92) 72.5 (66)
  Assisted living 3.7 (8) 4.9 (6) 2.2 (2)

Race/ethnicity
  White 91.6 (196) 91.1 (112) 92.3 (84)
  African-American 3.3 (7) 4.1 (5) 2.2 (2)
  Asian 2.8 (6) 2.4 (3) 3.3 (3)
  Hispanic 0.5 (1) 0.8 (1) 0.0 (0)
  Other 1.9 (4) 1.6 (2) 2.2 (2)

Self-rated quality of health
  Excellent 43.5 (93) 44.7 (55) 41.8 (38)
  Good 48.1 (103) 46.3 (57) 50.5 (46)
  Fair, poor, or very poor 8.4 (18) 8.9 (11) 7.7 (7)

Teng Modified Mini-Mental State (3MS) 96.5 (92, 99) 97 (92, 99) 96 (92, 99)
No walking aids 95.7 (202) 96.7 (117) 94.4 (85)
PASE score 127 (80, 171) 132 (89, 175) 111 (67, 169)
6-m walking speed, m/s 1.19 (1.04, 1.33) 1.22 (1.08, 1.34) 1.15 (1.01, 1.29)
% able to complete 5 chair stands 98.5 (193) 99.1 (113) 97.6 (80)
Grip strength, kg (avg of left and right) 33.5 (29.0, 39.0) 36.0 (30.8, 39.3) 32.5 (27.0, 36.0)
Falls in 12 months before ISAW test:

  % who fell once or more 37.4 26.0 52.7
  Number of falls (total)* 165 40 125

Falls in 12 months after ISAW test:
  % who fell once or more 42.5 0.0 100.0
  Number of falls (total)* 227 0 227

827

https://mrosonline.ucsf.edu/


GeroScience (2023) 45:823–836

1 3
Vol:. (1234567890)

were living in an assisted living facility. The major-
ity (91.6%) reported their quality of health at visit 
4 as either “excellent” or “good” and most (94.4%) 
did not use walking aids. Only a few participants 
reported comorbidities that may contribute to fall 
risk, such as Parkinson’s disease (n = 5, all prospec-
tive fallers), stroke (n = 22, 8/22 = 36% prospective 
fallers), or dementia (n = 10, 6/10 = 60% prospec-
tive fallers). Median PASE score for self-reported 
activity level was 127 out of a maximum of 793 
(interquartile range 80–171, a high level of reported 
activity for their age) [23].

Differences between non-fallers and fallers across 
the 17 ISAW metrics are summarized in Table 2. Fall-
ers showed slower sway velocity, slower gait speed, 
shorter strides, more variable stride time, and slower 
turning velocity.

Falls

During the 12 months before the ISAW test, 80 of the 
214 participants (37.4%) reported at least one fall, 
and the total number of reported falls in this period 
was 165. The maximum number of reported falls per 

Table 2  Mean and SD for 
each of the ISAW measures 
with the p-value between 
fallers and non-fallers

P < 0.05 is in bold
S sway, A anticipatory postural adjustment, G:T gait/temporal, G:S gait/spatial (pace), G:V gait/
variability, G:U gait/upper body, T turning
* log-transformed metric (base e)

ISAW metric Non-fallers (n = 123) Fallers (n = 91) p-value

Mean SD Mean SD

S — centroidal frequency (Hz)*  − 0.068 0.259  − 0.125 0.239 0.104
S — jerkiness  (m2/s5)* 0.361 1.032 0.367 0.979 0.965
S — velocity (m/s)*  − 2.085 0.595  − 1.888 0.566 0.015
S — coronal RMS (m/s2)*  − 3.649 0.602  − 3.540 0.510 0.164
A — lateral peak (m/s2) 0.381 0.164 0.422 0.180 0.107
G:T — stride time (s) 1.119 0.092 1.138 0.095 0.150
G:T — double support time (%) 22.21 3.519 23.09 3.736 0.079
G:S — speed (m/s) 1.064 0.176 1.000 0.187 0.011
G:S — stride length (m) 1.175 0.152 1.125 0.187 0.033
G:V — stride time CoV 0.031 0.013 0.035 0.015 0.045
G:V — stride length CoV 0.084 0.062 0.091 0.055 0.383
G:V — lateral step deviation SD (cm) 4.079 1.194 4.333 1.461 0.164
G:U — coronal ROM (deg) 5.436 2.128 5.330 2.115 0.719
G:U — sagittal ROM(deg) 4.307 1.258 4.200 1.183 0.528
G:U — arm ROM (deg) 40.66 14.62 38.35 13.76 0.242
T — durations (s) 2.354 0.491 2.389 0.471 0.601
T — velocity (deg/s) 169.4 46.00 154.80 38.90 0.016

Fig. 2  A Number of falls 
participants had in the 
12 months prior to the 
ISAW test among the 214 
participants. B Number 
of falls participants had in 
the 12 months following 
ISAW test among the 214 
participants

A. Past 12 months Falls before ISAW test B. Prospective 12 months Falls after ISAW test 
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participant in the year prior to the ISAW test was 12 
(Fig. 2A). The total number of prospective falls over 
12 months in our cohort was 227, and the maximum 
number of reported falls per participant was 13 (fre-
quency distribution in Fig. 2B). Ninety-one out of the 
214 participants included in our analysis (42.5%) had 
one or more estimated falls in the 12 months follow-
ing the ISAW test. Fall status in the 12 months before 
and after the ISAW test was able to be determined for 
all 214 participants. Unsurprisingly, fall history was 
associated with future falls: 67.9% of participants 
who did not fall in the 12 months prior to the ISAW 
also did not fall in the following 12  months, while 
60.0% of those who fell in the 12 months prior to the 
ISAW also fell in the following 12 months.

Prediction of falls

ISAW metrics, alone, were able to distinguish future 
fallers from non-fallers quite well with the area under 
the curve (AUC) of the receiver operating character-
istic (ROC) curve = 0.715 (95% confidence interval 
(0.639, 0.790)) for the BIC-weighted model average), 
even without history of falls or age (Fig. 3A). When 
three ISAW metrics were included in the model, the 
median AUC among 3-metric models in the top 100 
was 0.647, and the maximum AUC over all 3-met-
ric models was 0.692. Figure  3B  shows the tradeoff 

between model performance as measured by AUC 
and model fit as measured by the Bayesian Informa-
tion Criterion (BIC), as well as the impact of includ-
ing additional ISAW metrics in the model, for the 100 
top-performing models in this scenario. The best-fit-
ting ISAW model had two metrics, and including up 
to four ISAW metrics conferred gains in AUC with-
out substantial loss of model fit.

The model containing age and history of falls was 
strengthened by adding ISAW metrics. Fall history 
and age alone discriminated fallers from non-fallers 
with AUC 0.685 (0.611, 0.760) (Fig.  4A). Among 
the best-fitting 100 models, the median AUC among 
3-metric models was 0.730, and the maximum AUC 
achieved was 0.750. The BIC-weighted model aver-
age of ISAW plus fall history and age had an AUC 
of 0.751 (0.680, 0.821). Age in this cohort alone, 
however, was not helpful in distinguishing fallers 
from non-fallers (AUC 0.551). When history of falls 
and age were included in each model, each additional 
ISAW metric, up to 3, gave a boost in AUC without 
substantial loss of model fit (Fig. 4B).

Which ISAW domains help predict falls?

The models with the best combination of AUC and 
BIC included metrics from multiple different bal-
ance and gait domains of the ISAW, consistent with 
our hypothesis that several independent domains 

Fig. 3  ROC curves for discriminating between fallers and 
non-fallers. A. ISAW metrics only (no fall history and age). 
Best-fitting models that include 3 ISAW metrics are shown 
in light grey, with smoothed average shown overlaid in thick 
dark grey. Smoothed curve for BIC-weighted model average 
is shown in thick dark blue. B. Plot of best-fitting 100 mod-
els for distinguishing future fallers from non-fallers based on 

AUC versus best-fitting models (Bayesian Information Crite-
rion (BIC); best is zero on this scale) for ISAW metrics alone 
(color-coded by number of ISAW metrics. The strongest mod-
els are circled in black with a list of the included ISAW met-
rics. Notice that sway (S) was the most commonly included 
ISAW domain
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contribute valuable information about fall risk. The 
models with the best AUC each included a standing 
postural sway characteristic (e.g. larger sway veloc-
ity or higher sway frequency in fallers), whether 
fall history and age were included in the models or 
not. Likewise, models that included 2 ISAW met-
rics added slower turn velocity in fallers to increase 
AUC. When a third ISAW metric was added to the 
ISAW model, the best AUCs came from adding gait 
variability (e.g. increased gait cycle duration CoV in 
fallers) to sway and turning metrics. When a fourth or 
fifth ISAW metric was added to both types of models, 
it was most often the anticipatory postural adjustment 
prior to gait initiation (smaller amplitude in fallers).

A measure of the value of each ISAW met-
ric within the seven mobility domains in predict-
ing falls is given in Table  3. Specifically, this table 
gives the posterior probability that each ISAW met-
ric is included in the “true” model, for the scenario 
in which only ISAW metrics are included in models, 
and the scenario in which fall history and age are also 
included. As we can see, when only ISAW metrics 
are used to predict future fallers, sway velocity, which 
is positively correlated with fall history (Spearman’s 
r = 0.18) and not an important predictor when fall 
history is known, becomes the most valuable met-
ric. Turning velocity, which is negatively correlated 
with fall history (r =  − 0.08), also becomes much 

more valuable when fall history is not known. Stride 
time variability, which is uncorrelated with fall his-
tory (r = 0.01), also becomes more valuable in pre-
dicting falling. However, when fall history and age 
are included in the models, frequency of sway is the 
most important predictor of falling; it has the highest 
posterior probability of inclusion in the model and is 
uncorrelated with fall history, which suggests that it 
may capture an aspect of fall risk not explained by fall 
history.

Do gait speed or dual-task cost improve fall 
prediction?

Although gait speed is the gait metric most often 
related to fall risk in the literature, it did not appear 
often in our top-performing fall prediction mod-
els. Therefore, we asked, specifically, how well gait 
speed alone, either as collected from stopwatch time 
of the 6-m walk (averaged across 2 trials) or from 
the ISAW 14-m walk, predicted future fallers. As 
expected, the stopwatch and ISAW gait speeds were 
highly correlated (r = 0.86; p < 0.001). However, 
neither stopwatch gait speed nor ISAW gait speed 
(stride velocity) predicted future fallers on their own 
(AUC = 0.589 and 0.595, respectively).

Adding a cognitive task while walking tended to 
reduce gait speed among participants, and the cost of 

Fig. 4  ROC curves for discriminating between fallers and 
non-fallers with each model including fall history and age with 
ISAW metrics, and model that includes fall history and age, 
only, is shown in red (A). B Plot of best-fitting 100 models for 
distinguishing future fallers from non-fallers based on AUC 
versus best-fitting models (Bayesian information criterion 

(BIC) best is zero on this scale) for ISAW metrics alone (color-
coded by number of ISAW metrics) and fall history and age 
with ISAW metrics. The strongest models are circled in black 
with a list of the included ISAW metrics. Notice that sway (S) 
was the most commonly included ISAW domain
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the dual task on gait speed was very similar in future 
fallers and non-fallers. Mean dual task cost on gait 
speed was 20.53% and 19.99% among fallers and 
non-fallers, respectively (p < 0.001 in each case), and 
the dual task was associated with slowing of gait for 
all but 7 in each group.

In contrast to dual-task cost on gait speed, dual-
task cost on turn velocity during the ISAW did 
improve prediction of future fallers from AUC 0.63 
for ISAW metrics alone to AUC 0.745–0.764. This 
AUC for ISAW metrics during single-task walking 
plus dual-task cost on turning speed is slightly better 
than AUC for ISAW metrics combined with fall his-
tory and age (AUC 0.75 for BIC average, above).

Interestingly, approximately half the participants 
slowed down their turns while dual-tasking while 
the other half sped up their turns. Surprisingly, most 
participants who significantly slowed down their 
turns while performing the serial subtraction task 
were non-fallers, whereas most participants who 
significantly sped up their turns while dual-tasking 
were fallers. Non-fallers slowed turns by 13.33% 
while dual-tasking, whereas faller dual-task cost was 
only 3.14%. Turning velocity dual-task cost, alone, 

predicted falling quite well (AUC 0.629) compared to 
gait speed alone (AUC 0.504).

Discussion

This is the first study to examine the contribution 
of objective gait as well as balance performance, 
across several different domains, to fall risk. We 
found that the Instrumented Stand and Walk 
(ISAW) test that quantified 17 characteristics across 
3 balance domains (standing postural sway, APAs 
for step initiation, and turning) and 4 gait domains 
(spatial, temporal, variability, and upper body) pre-
dicted future fallers and significantly improved abil-
ity to predict who would fall in the next year above 
predictions from history of falls and age, alone.

The ISAW models that best predicted future 
fallers most often included measures of postural 
sway and adding turning velocity, gait variabil-
ity, and anticipatory postural adjustments (APAs), 
as we hypothesized, based on the independence of 
these domains of mobility [6]. Unlike ISAW meas-
ures, gait speed, even when challenged with a dual 

Table 3  Posterior inclusion 
probabilities of each ISAW 
metric in the BIC-weighted 
model average, in which 
only ISAW metrics are 
predictors and when 
fall history and age are 
also included in models. 
Probabilities above 0.40 are 
shown in bold

APA anticipatory postural adjustment, RMS root mean square, CoV coefficient of variation, SD 
standard deviation

Domain Metric ISAW metrics 
only

Fall his-
tory + age + ISAW 
metrics

Sway Centroidal frequency 0.429 0.334
Jerkiness 0.109 0.206
Velocity 0.142 0.635
Coronal RMS 0.076 0.102

APA* Lateral peak 0.208 0.253
Gait/temporal Stride time 0.112 0.087

Double support time 0.081 0.083
Gait/spatial Speed 0.154 0.202

Stride length 0.095 0.130
Gait/variability Stride time CoV 0.270 0.403

Stride length CoV 0.074 0.075
Lateral step deviation SD 0.194 0.205

Gait: Coronal ROM 0.208 0.103
Upper body Sagittal ROM 0.078 0.083

Arm ROM 0.092 0.109
Turn Duration 0.112 0.137

Velocity 0.255 0.569
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(cognitive) task, was not a good predictor of who 
would fall, although dual-task cost on turning speed 
was a good predictor.

We decreased the risk of overfitting statistical 
models by first narrowing the set of gait and balance 
measures, and then averaging over thousands of mod-
els for fall risk that included every possible combina-
tion of ISAW metrics. Thus, rather than promoting a 
single combination of ISAW metrics to predict fall-
ing, we present results from an average of the models 
and present examples of top-performing models to 
examine which ISAW metrics were contributing.

History of falls in the past year was able to dis-
criminate between prospective fallers and non-fallers 
reasonably well (AUC 0.695), consistent with previ-
ous studies in older adult participants [25]. How-
ever, ISAW metrics alone were able to predict falling 
slightly better than fall history (AUC 0.715 for model 
average with ISAW metrics alone). ISAW metrics 
also improved fall prediction when added to fall his-
tory and age (AUC 0.751 for the model average), sug-
gesting that objective measures of balance and gait 
capture fall risk factors not apparent from fall history. 
Unlike fall history, ISAW metrics provide specific 
balance and gait targets for rehabilitation to prevent 
falls. Age, alone, did not provide good discrimination 
between fallers and non-fallers in this cohort (AUC 
0.551). For this group of mostly white men with very 
good to excellent self-reported health, the age range 
was limited, but not trivial (78–96 years), and these 
older participants appeared particularly fit based on 
their PASE scores [23, 26, 27].

The impact of comorbidities on gait and bal-
ance may be captured by ISAW metrics. We did not 
include comorbidities in the modeling process since 
the focus of this paper is on the ability of ISAW met-
rics alone, and with age and fall history, to predict 
falling in a cohort with little comorbidity. Also, the 
available data on comorbidities has limitations due 
to self-report, which could make results mislead-
ing. Future studies should investigate whether add-
ing comorbidities to the fall prediction model would 
improve performance.

Gait speed and dual-task gait

Surprisingly, gait speed was not represented in our 
fall prediction models very often, although it is the 
most frequently cited and most easily measured gait 

feature [9, 28]. Gait speed alone did not distinguish 
between fallers and non-fallers (AUC only 0.595). 
However, this high-functioning cohort of older men 
had a mean gait speed of 1.19 m/s (interquartile range 
(1.04, 1.33), so they would not be considered high 
risk for a fall based on gait speed, alone [29].

In addition, dual-task cost on gait speed while seri-
ally subtracting was not helpful for fall prediction. 
Dual-task cost may not have been helpful because 
of high cognitive function in this cohort who had no 
trouble walking while subtracting by threes. However, 
dual-task cost on turning speed did predict future fall-
ers, but not as expected. Fallers tended to increase 
their turning speed while dual-tasking, unlike non-
fallers, who slowed down. Speeding up turns so the 
mental task that can be accomplished may be a mala-
daptive strategy that leads to more falls. In fact, dual-
task cost on turning velocity improved prediction of 
future fallers from AUC 0.63 for ISAW metrics alone 
to AUC 0.764. This AUC for ISAW metrics during 
single-task walking plus dual-task cost on turning 
speed was even better than the AUC for ISAW met-
rics combined with fall history (AUC 0.75) suggest-
ing that fall history reflects real-world challenges of 
dividing attention while performing difficult mobility 
tasks, such as turning.

Balance and gait domains

The ISAW was specifically designed to include sev-
eral different domains of balance and gait in a short 
(< 1  min), clinical protocol appropriate for clinical 
trials or clinical practice. Laboratory and home stud-
ies of balance and gait have suggested that postural 
sway characteristics (area, velocity, and frequency), 
gait characteristics (stride time variability, double 
support time, trunk range, and gait speed), and turn-
ing characteristics (peak velocity, number of steps, 
variability) differ in older adult fallers versus non-
fallers [30]. Studies have shown that balance control 
for sway in quiet stance relies upon different neural 
control systems than control of gait [6] or from con-
trol of APAs [31]. In fact, straight-ahead gait, itself, 
consists of several different domains, since factor 
analysis consistently shows separate domains for 
spatial (pace/speed), timing, variability, and upper 
body control [8]. Our results are consistent with our 
hypothesis that several different domains of the ISAW 
test can help predict future fallers.
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Most studies examining the relationship between 
mobility metrics from body-worn sensors and fall 
risk have focused on gait [30, 32, 33]. However, in 
our study, postural sway metrics in standing were 
more frequent in our fall-prediction models than 
gait metrics. Surprisingly, sway metrics most likely 
to be included in the models were sway velocity or 
frequency, not sway area [34, 35]. Postural sway rep-
resents the output of a complex multisensory (vision, 
vestibular, and somatosensory) multi-motor (corti-
cospinal, reticulospinal, vestibulospinal) control sys-
tem for control of postural equilibrium. Increases in 
postural sway velocity or frequency may reflect more 
frequent balance corrections needed to maintain equi-
librium [36]. The most common reason for increased 
postural sway frequency or velocity in the older adults 
is proprioceptive neuropathy, followed by vestibular 
and/or visual loss, and muscle weakness, but we can-
not distinguish which set of age-related impairments 
was present in our relatively healthy cohort [37]. 
Note that postural sway was measured with eyes open 
while standing on a firm surface with feet a standard 
distance apart, a simple condition that all of our par-
ticipants could accomplish.

After postural sway, turning characteristics were 
most frequently presented in the models. This result 
is consistent with our previous study showing that 
turning measured during a week of daily life could 
separate older adult fallers from non-fallers [38, 39]. 
Turning is a complex dynamic balance task that 
requires reorientation of the oculomotor system, fol-
lowed by a top-down axial rotation. The body center 
of mass passes close to its limits of foot stability dur-
ing turns making it a high-risk, functional activity 
in people with compromised balance control [40]. 
In fact, many falls and fractures in older adults have 
been associated with turning [38, 39]. However, fall-
ers (but not non-fallers) in our study increased their 
turning velocity when attention was diverted with 
a cognitive dual-task, suggesting poor compensa-
tion for their dynamic balance deficits, leading to 
increased fall risk.

When 3 or more ISAW metrics were added to the 
models, the lateral peak APA became helpful. Lat-
eral weight-shift, necessary to unweight the stepping 
leg, is known to be critical for developing fast, long 
initial steps [41]. The size of the APA is normally 
tuned to the anticipated gait velocity, as well as to ini-
tial stance width, with larger APAs needed for larger 

stance widths. The ISAW test controlled standing 
stance width across all participants using a foot tem-
plate [18, 41]. We found that larger APAs were more 
commonly associated with future fallers but know of 
no other studies relating APAs to falls. Excessively 
large APAs, however, can be seen in patients with 
Parkinson’s with freezing and people with neuropa-
thy, common neurological disorders in older adults, 
and associated with frequent falls [42, 43]. The most 
common gait metric added to our fall prediction 
models was variability (COV) of stride time. Indeed, 
stride time variability has previously been found to be 
associated with past and future fallers, as it may rep-
resent compensatory stepping for postural corrections 
of imbalance while walking [32, 44].

Significance of the ISAW test

Despite normal gait speed and normal dual-task cost, 
our mostly healthy, independent cohort of older men 
in their 80  s demonstrated many abnormalities of 
standing balance, gait initiation, turning (and dual-
task turning), and gait characteristics that can con-
tribute to their fall risk. Although gait speed alone 
did not distinguish between fallers versus non-fallers 
(AUC = 0.589) in this cohort, ISAW measures alone 
did much better (AUC = 0.715). Most of the objective 
measures from the ISAW cannot be readily observed 
with clinical tests of balance or gait. ISAW testing 
could be useful for those without a history of falling, 
those who cannot reliably recall past falls, and those 
who should be referred to fall risk reduction physi-
cal therapy so the therapists can focus their exercises 
on the specific domain of balance or gait affected 
[45]. Unlike clinical tests of balance and gait that 
rate ability to accomplish functional tasks, the ISAW 
provides objective measures of specific balance and 
gait domain impairments that document how and 
why each individual’s task performance is impaired 
[46–48].

Limitations

This study has two main limitations. First, the indi-
vidual models are not yet validated in a separate 
cohort so performance of the models considered is 
optimistic. However, our approach yielded a weighted 
average across many models, including those with 
good and poor performance, and this averaging across 
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models tempers overfitting. Second, our cohort con-
sisted of white, high-functioning, mostly community-
dwelling men at one site. The relative homogeneity 
of the cohort in terms of gender, age, race/ethnicity, 
geographic area, and good-to-excellent self-reported 
health limited the external generalizability of the 
results. Nevertheless, the ISAW helped to predict 
the 40% who were fallers, despite their good health, 
normal gait speed, and normal dual-task cost on gait 
speed. In view of these limitations, we believe that 
external validation with a larger, more heterogeneous 
sample is needed to determine the best ISAW model 
for fall prediction, and perhaps even to discriminate 
frequent fallers from single fallers. Although the 
specific, best ISAW metrics for fall prediction may 
vary per cohort, we predict multiple gait and balance 
domains would be represented.

Conclusions

The ISAW test, based on wearable inertial sensor 
measurements of three balance and four gait domains, 
predicted falls as well as fall history and improved 
prediction of future fallers when added to fall history. 
The best models most often included measures of 
postural sway, gait variability, turning speed, and gait 
initiation, consistent with our hypothesis that older 
people may fall due to a variety of balance and gait 
impairments.
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