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those 12 parameters that individually predicted mor-
tality hazards over 26 years in BASE. In BASE, older 
biological age was associated with more physician-
observed morbidity and higher mortality hazards, 
over and above the effects of chronological age, sex, 
and education. Similarly, in BASE-II, biological age 
was associated with physician-observed morbidity 
and subjective health, over and above the effects of 
chronological age, sex, and education as well as alter-
native biomarkers including telomere length, DNA 
methylation age, skin age, and subjective age but not 
PhenoAge. We discuss the importance of biological 
age as one indicator of aging.

Abstract  Biomarkers defining biological age are 
typically laborious or expensive to assess. Instead, 
in the current study, we identified parameters based 
on standard laboratory blood tests across metabolic, 
cardiovascular, inflammatory, and kidney function-
ing that had been assessed in the Berlin Aging Study 
(BASE) (n = 384) and Berlin Aging Study II (BASE-
II) (n = 1517). We calculated biological age using 
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Introduction

It is an everyday observation that some people seem 
to be significantly younger in their physical appear-
ance and behavior than one would expect based on 
how old they are chronologically, whereas others 
seem to be much older than they are chronologi-
cally. In other words, one of the hallmarks of old 
age is its high degree of heterogeneity between peo-
ple, even if these people are of the same chrono-
logical age [1, 2]. This heterogeneity is known to 
increase with age [3]. It is thus desirable to move 
beyond chronological age as a proxy for underly-
ing biological aging processes and to use biological 
markers available that allow quantifying people’s 
risk of developing age-associated deficits and dis-
eases. One rather conservative definition of such a 
marker of biological age has been proposed by the 
American Federation for Aging Research (AFAR) 
stating that biological age must be able to predict 
the rate of aging and it must be a better predictor of 
life span than chronological age [3–5]. In addition, 
biological age must have the capability to moni-
tor one or more basic processes that contribute to 
or underlie aging rather than merely representing 
effects of disease, be tested without harming the 
person, and work in humans and laboratory animals 
alike [5, 6].

To date, however, no such marker fulfilling the 
AFAR defining features has been identified. As 
a consequence, a number of alternative defini-
tions have been proposed [5, 6]. One of the most 
established alternatives formulated was proposed 
by Jylhäva and colleagues [3] who suggest that 
a marker of biological age must predict existing 
and prospective age-associated phenotypes over 
and above chronological age. To this end, several 

single measures of biological age have been exam-
ined. To illustrate, a well-established biological 
aging marker is represented by the length of chro-
mosome end repeats, i.e., the telomeres. These 
chromosomal regions reflect the replicative age of 
a given cell, such that the average of the telomere 
lengths of a cell or tissue sample is weakly associ-
ated with chronological age as well as with a mul-
titude of aging phenotypes [7–10]. Relative leuko-
cyte telomere length has been assessed in the Berlin 
Aging Study II (BASE-II), one of the two cohorts 
studied here, and similar to other groups, we delin-
eated associations with age-related phenotypes and 
lifestyle [11–14]. Another biomarker example are 
the  epigenetic clocks, which aim to measure DNA 
methylation (DNAm) age and have been described 
to be moderately to strongly associated with chron-
ological age [14–17]. Additionally, DNAm age and 
its deviation from chronological age, the DNAm 
age acceleration, have been suggested to reflect bio-
logical age [15]. Interestingly, DNA methylation 
age measures appear not to be related to telomere 
lengths and therefore might reflect different aspects 
of biological aging [16, 18–22].

While these two sets of measures have the poten-
tial to quantify certain aspects of biological aging, 
they are likely unable to capture the aging process as 
a whole. As a consequence, other approaches to esti-
mate biological age by combining several individual 
biomarkers have been proposed [23], and these algo-
rithms, too, differ in their accuracy to quantify bio-
logical aging. For instance, by comparing five differ-
ent biological age algorithms, Levine has shown that 
the algorithm by Klemera and Doubal, which com-
bines 10 different biomarkers, performed best in the 
National Health and Nutrition Examination Survey III 
(NHANES-III, N = 9389) cohort in predicting mortal-
ity hazards [24]. Employing this algorithm [25] and 
parameters estimated from the NHANES-III dataset 
and considering the exact same 10 biomarkers used 
in NHANES-III, Belsky and colleagues calculated 
biological age in the Dunedin study [26]. Biological 
age was estimated for this birth cohort at age 38 years 
and then used to calculate the rate of aging based on 
longitudinal data on 18 biomarkers reflecting differ-
ent areas of health (e.g., cardiovascular, metabolic). 
Their results indicated that individuals with evidence 
for decelerated biological aging showed better physi-
cal health and cognitive performance [26]. Instead of 
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mortality-predicting biomarkers, Sebastiani and col-
leagues used 19 age-associated parameters to iden-
tify 26 different biomarker signatures in the Long 
Life Family Study. Ten of these signatures were then 
found to be associated with mortality hazards, mor-
bidity, and physical functioning, and seven of these 
signatures could be replicated in an independent 
cohort [27].

Importantly, previous studies have found at best 
moderate correlations between the various biologi-
cal age measures, such as telomere length, epigenetic 
clocks, PhenoAge, or biomarker composites [16, 19, 
28, 29], suggesting that even though these measures 
tap into the same overarching construct space, they 
still capture different and unique aspects of aging 
processes. One potential weakness of the biomark-
ers included in previous composite scores is that they 
were typically selected based on their association 
with chronological age [19, 26]. In addition, for prac-
tical purposes, some of these biomarkers are labori-
ous or expensive to determine.

In the current study, we therefore opted for an 
alternative strategy and operationally defined a 
biological age composite using standard validated 
clinical laboratory blood tests across metabolic, 
cardiovascular, inflammatory, and kidney function-
ing with respect to their association with mortality. 
This allowed us to capture the multidimensional-
ity and multifunctionality of biological age beyond 
single measure age indicators. To identify relevant 
laboratory blood parameters, we made use of a sec-
ond and independent study of older adults for whom 
mortality information was available. Laboratory 
blood parameters that were identified as mortality-
relevant were then used to calculate a biological age 
composite. Thus, in the present study, we aimed to 
identify parameters based on standard laboratory 
blood tests across multiple domains of functioning 
in two independent data sets and examined whether 
and how individual differences in biological age are 
associated with sociodemographic and health meas-
ures that may have operated as antecedents, corre-
lates, or outcomes.

Methods

In this report, we used data from the Berlin Aging Study 
(BASE, obtained 1990–1993) and the Berlin Aging 

Study II (BASE-II, obtained 2010–2014). Detailed 
descriptions of participants, variables, and procedures 
can be found in previous publications (BASE [30], 
BASE-II [31]). Selected details relevant to this report 
are given below.

Participants and procedure

Berlin Aging Study (BASE)  The initial BASE sam-
ple consisted of 516 residents of former West Berlin 
districts (age, M = 84.35, SD = 8.66, range = 70–103; 
50% women) identified based on the obligatory city 
registry, recruited and tested from 1990 to 1993. 
Here, we included data from the 384 participants 
(age, M = 84.35, SD = 8.59, range = 70–102; 49% 
women) who had provided information on all vari-
ables of interest (see below). Assessments took place 
either at the hospital (as part of a medical evaluation) 
or at participants’ places of residence (i.e., private 
household or institution, for the self-report question-
naires) and were obtained in individual face-to-face 
sessions by trained research assistants. Sessions 
required an average of 90 min and, when necessary, 
were split into shorter units of assessment. The Eth-
ics Commission of the Berlin Chamber of Physicians 
(Ärztekammer Berlin) approved the BASE study 
prior to the first assessments in 1990 (approvals were 
not numbered at that time).

Berlin Aging Study II (BASE‑II)  The BASE-II sam-
ple included residents of the greater metropolitan area 
of Berlin, recruited via a participant pool at the Max 
Planck Institute for Human Development (Berlin) and 
via advertisements in local newspapers and the public 
transportation system. In the current study, we included 
data from 1517 older participants (age, M = 68.66, 
SD = 3.62, range = 60–85; 51% women) recruited and 
tested from 2010 to 2014 and who had provided infor-
mation on all variables of interest (see below). Meas-
ures were obtained either at the Charité University 
hospital (as part of a medical evaluation) or via self-
administered take-home questionnaires. The Ethics 
Committee of the Charité University hospital approved 
the BASE-II study (approval number EA2/029/09).

Measures

Biological age  To operationally define biologi-
cal age, we selected the following 12 standard blood 
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laboratory parameters from a total of 33 parameters 
across metabolic, cardiovascular, inflammatory, and 
kidney functioning: zinc, sodium, chloride, uric acid, 
albumin, alpha-1 globulin, alpha-2 globulin, HbA1c, 
hemoglobin, leukocytes, lymphocytes, and creatinine. 
All parameters were measured in a clinical routine 
laboratory with appropriate quality standards.

Correlates   We linked the biological age indices 
to a number of sociodemographic and health meas-
ures that may have served as antecedents, correlates, 
or outcomes. As far as this was possible for studies 
conducted some 20 years apart, we used operational 
definitions of our major constructs that closely mir-
rored one another.

Chronological age was calculated based on the year 
and month of the assessment/interview relative to 
the year and month of birth. Sex was coded as a 
binary variable that contrasted women (1) with men 
(0). Following usual practice in BASE [32], socio-
economic status (SES) was operationally defined 
using a unit-weighted composite of three measures: 
(a) equivalent income, defined as the net household 
income weighted by the number of people sharing 
the household; (b) occupational prestige, based on 
a standard rating scale for Germany; and (c) num-
ber of years of education (for details, see [30]). For 
BASE-II, we also followed the usual practice [33] 
and operationally defined socio-economic status as 
the years of education received.

In both studies, morbidity was assessed as part 
of the medical examinations carried out by physi-
cians. Diagnoses were obtained through participant 
reports, with certain diagnoses (e.g., diabetes mel-
litus) being verified by additional (blood laboratory) 
tests. For BASE, we used the number of physician-
observed diagnoses of moderate-to-severe chronic 
illnesses (according to the International Classi-
fication of Diseases-9) (see [34]). For BASE-II, 
we computed a morbidity index largely based on 
the categories of the Charlson index [35], which 
is a weighted sum of moderate-to-severe, mostly 
chronic physical illnesses; see [33].

Lung capacity:  Forced expiratory volume in 1 
s (FEV1) was used as an overall indicator of lung 
function. We only analyzed spirometry measure-
ments (using EasyOne Spirometer; ndd Medical 
Technologies) with sufficient measurement quality, 

fully in line with standard procedures following the 
guidelines of the American Thoracic Society [36]. 
Subjective health was assessed using a single-item 
measure asking individuals how they would rate 
their overall health on a scale from 1 (very bad) to 
5 (very good).

Alternative age biomarkers: To ensure that our 
results were not confounded by alternative age bio-
markers that are known to be associated with bio-
logical age [3, 6], we made use of the rich interdis-
ciplinary data in BASE-II that allowed examining 
telomere length, DNA methylation age, skin age, 
and subjective age. The measurement of relative 
leukocyte telomere length (rLTL) is described in 
detail in Meyer et  al. [12]. Briefly, genomic DNA 
was extracted from EDTA blood using the LGC 
“Plus XL manual kit” (LGC, Germany, Berlin). 
rLTL was measured using a modified quantitative 
PCR protocol originally described by Cawthon 
and colleagues (2002). All samples were meas-
ured in triplicate, and their mean was used for 
further analysis when the ct values of both PCRs 
(telomere PCR and single copy gene [36B4] PCR) 
showed a variation coefficient < 2%. The rLTL 
was subsequently calculated according to Pfaffl 
and colleagues (2001). Pooled DNA from 10 ran-
domly selected subjects was used as the reference 
(rLTL = 1). For DNA methylation age, genomic 
DNA was extracted with the LGC “Plus XL manual 
kit” (LGC) from EDTA blood and used for methyla-
tion analysis. An adapted protocol from Vidal-Bralo 
and colleagues [17] was used to measure the frac-
tion of the methylated cysteine bases. DNA meth-
ylation age was calculated based on seven CpG sites 
(for further details, please see [16]). Skin aging was 
estimated by quantifying lentigines on both hands 
from hand photographs taken of each BASE-II par-
ticipant. Photos were taken at the baseline assess-
ment and examined independently by three investi-
gators in three rating sessions. The amount and size 
of lentigines on the back of the hands were quan-
tified using a four-level categorical score (rang-
ing from 0 (no or very few lentigines) to 3 (very 
abundant presence of lentigines on both hands)). 
The resulting lentigine score per BASE-II partici-
pant represents the weighted average of the score 
assigned to each photograph by the three review-
ers. For PhenoAge, a biological aging measure was 
adapted from Levine and colleagues. It incorporates 
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nine blood parameters and chronological age [37]. 
PhenoAge was calculated in BASE-II data with the 
original weights that were defined by Levine and 
colleagues [37] with the help of the BioAge R pack-
age by Dayoon Kwon and Daniel Belsky [23]. Phe-
noAge was calculated with the R software package, 
version 4.2.0 [38].

Subjective age was assessed by asking partici-
pants how old they felt in years [39]. In line with 
previous research [40, 41], we calculated propor-
tional discrepancy scores by subtracting partici-
pants’ subjective age from their chronological age 
and then dividing by chronological age. Positive 
scores indicate a younger subjective age. Following 
usual practice [40, 42], for proportional discrepancy 
scores, three standard deviations above or below the 
mean were considered outliers and replaced with 
a score equivalent to the mean plus or minus three 
standard deviations, respectively; this was necessary 
for one participant only.

For BASE, information about mortality status 
and date of death for deceased participants has been 
updated regularly from the Berlin city registry since 
study inception in 1990. Our information on death 
makes use of data from a November 2016 update, 
when, of the 516 samples, 514 participants were 
known to have died and 2 were still alive.

Statistical procedure

In a preliminary step, we identified a total of 33 blood 
laboratory parameters that had been available in both 
studies for the majority of participants and that had 
been assessed in highly comparable ways. With these 
variables, we estimated a series of separate Cox pro-
portional hazards regression models [43] to identify 
those parameters that have been predictive of mortal-
ity hazards. In a second step, we used the parameters 
identified in the preceding step as being mortality-
relevant to calculate the biological age composite fol-
lowing procedures described in [26]. Specifically, we 
regressed m number of biomarkers on age and calcu-
lated biological age of individual i as

bioagei =

∑m

j=1
(xji − qj)

kj

s2
j

+
agei

s2
bioage

∑m

j=1

�

kj

s2
j

�2

+
1

s2
bioage

where q (intercept), k (slope), and s (root mean squared 
error) are parameters from these regressions and age 
is the chronological age of a participant. With the bio-
logical age composite now being compiled for BASE, 
we conducted descriptive analyses linking biological 
age with chronological age and examining the predic-
tive effects of the biological age composite for mortal-
ity hazards. In a third step, we used regression analy-
ses to examine the predictive role of biological age 
for individual differences in sociodemographic and 
physical health variables. In a fourth step, we used the 
exact same biomarkers identified in BASE as mortality-
relevant to compute the biological age composite in 
BASE-II. In a fifth step, we repeated the analyses noted 
to examine similarities and differences in the nature and 
correlates of biological age between BASE and BASE-
II. Finally, we examined the predictive validity of bio-
logical age for several health measures while at the 
same time accounting for alternative age biomarkers.

Results

Variables defining biological age

In a preliminary step, we used mortality information 
available for the earlier-born cohort of participants 
in the Berlin Aging Study (BASE) and estimated a 
series of 33 separate Cox proportional hazards regres-
sion models [43]. We used these to identify mortality-
relevant relevant blood laboratory parameter markers 
reflecting metabolic, cardiovascular, inflammatory, 
and kidney functioning that had been measures in 
both BASE study and its successor study, BASE-II. 
As shown in the Appendix, we identified 12 param-
eters that were predictive of mortality hazards in 
BASE (see Appendix Table A.1), whereas 21 param-
eters were not predictive of mortality (see Appendix 
Table  A.2). Descriptive statistics and intercorrela-
tions among the 12 mortality-relevant parameters that 
were subsequently used to calculate the biological age 
composite are presented in Table 1. Intercorrelations 
are generally in the small to moderate range, with 
the single largest intercorrelation being r = 0.50BASE 
(between leukocytes and lymphocytes in BASE) and 
r = 0.78BASE-II (between leukocytes and lymphocytes 
in BASE-II). These divergences suggest that all these 
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parameters represent different aspects of biological 
aging processes.

Biological age composite in BASE

In the next step, we calculated the biological age 
composite for BASE participants. The upper por-
tion of Table  2 presents the descriptive statistics 
of chronological age, biological age, and the dif-
ference between biological age and chronologi-
cal age. It can be seen that, as a direct consequence 
of the procedures applied, the average biologi-
cal age (84.35  years) was the same as the average 

chronological age (84.35  years). Most important for 
the research question of this study are the individual 
differences between a given participant’s biological 
age and chronological age. The individual distribu-
tion of biological age by chronological age is graphi-
cally shown in the left-hand portion of Fig. 1, sepa-
rately for men and women. These data indicate that 
among participants aged 70 years and older, the per-
son with the youngest biological age is equivalent to 
40 years, and the person with the highest biological 
age is 119 years. Likewise, the discrepancy between 
biological age and chronological age ranges between 
–34 (indicating that, biologically, this person is 

Table 1   Means, standard deviations, and intercorrelations among the variables that constitute the biological aging composite meas-
ures in the Berlin Aging Study (below the diagonal) and the Berlin Aging Study II (above the diagonal)

N = 384. Intercorrelations in bold differ significantly from zero at p < .05

Intercorrelations

1 2 3 4 5 6 7 8 9 10 11 12

MBASE-II 12.43 139.57 102.10 5.34 62.24 8.76 3.47 5.60 13.85 5.81 1.70 68.84
SDBASE-II 1.82 2.77 2.90 1.34 3.23 1.47 0.61 0.51 1.13 2.08 1.24 11.10
(1) Zinc (4.70–17.80) 1 .11 –.01 .02 .05 –.01 –.06 .05 .17 –.01 –.01 .01
(2) Sodium (131–150) .14 1 .61 .01 .14 –.11 –.09 –.11 .05 –.04 –.03 –.04
(3) Chloride (92–122) .02 .45 1 –.03 .08 –.05 –.03 –.14 –.03 –.04 .00 –.02
(4) Uric acid (1.50–12.50) –.14 –.09 –.13 1 –.17 .12 .06 .18 .31 .18 .10 –.32
(5) Albumin (42.80–72.50) .31 .10 .08 –.19 1 –.50 –.40 –.23 .05 –.10 .02 .03
(6) Alpha-1 globulin (1.90–5.30) –.08 .08 .05 –.00 –.28 1 .61 .29 –.04 .17 .03 –.02
(7) Alpha-2 globulin (5.00–16.80) –.05 –.02 –.02 .13 –.41 .34 1 .12 –.01 .12 .03 .00
(8) HbA1c (3.90–12.10) –.02 –.22 –.16 .11 –.06 –.01 .20 1 –.02 .14 .08 –.05
(9) Hemoglobin (7.00–18.50) .25 .05 –.05 –.00 .17 –.08 –.10 .02 1 .06 .01 .03
(10) Leukocytes (2.10–13.00) –.04 –.00 –.05 .13 –.15 .16 .18 .11 .17 1 .78 –.10
(11) Lymphocytes (0.30–5.00) .09 .04 .02 .01 .02 –.05 –.02 .08 .20 .50 1 –.04
(12) Creatinine (13.86–131.60) .12 .01 .05 –.43 .14 .09 –.21 –.13 .29 –.03 .11 1
MBASE 11.37 141.18 104.27 5.45 57.65 3.55 9.54 6.28 14.00 6.63 1.71 52.18
SDBASE 1.98 2.78 3.91 1.53 4.37 0.61 1.56 1.23 1.46 1.82 0.64 16.26

Table 2   Descriptive 
statistics for chronological 
age, biological age, 
and the difference 
between biological age 
and chronological age, 
separately for the Berlin 
Aging Study and the Berlin 
Aging Study II

N M SD Min–max

Berlin Aging Study
  Chronological age 384 84.35 8.74 70–102
  Biological age 384 84.35 12.70 40–119
  Δ biological age – chronological age 384 0 9.36 –34–27

Berlin Aging Study II
  Chronological age 1517 68.66 3.62 60–85
  Biological age 1517 63.48 8.33 37–90
  Δ biological age – chronological age 1517 –5.19 7.86 –29–23
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34 years younger than one would expect based on his 
or her chronological age) and 27 (indicating an age 
acceleration of 27  years when comparing biological 
to chronological age). Of note is also that the corre-
lation between chronological age and biological age 
is r = 0.65 among women and r = 0.70 among men, 
indicating that participants who are older chronologi-
cally also tend to be older biologically but that there 
are also individual differences in how chronological 
age and biological age coincide.

Table 3 reports results of Cox proportional hazards 
regression models testing the predictive performance 
of biological age and the sociodemographic cor-
relates for mortality hazards. As one would expect, 
being older was associated with greater mortality risk 
(hazard ratio, HR = 1.08; 95% confidence interval, CI, 
1.06–1.10), and being a woman was independently 
associated with lower mortality risk (HR = 0.72; 95% 
CI, 0.58–0.88; both p’s < 0.05). There was no effect 
of socio-economic status (SES) in this population 
(p > 0.10). Most important for our research question is 
that biological age exhibits additional unique predic-
tive effects for mortality hazards over and above those 
found for chronological age and sex (HR = 1.03; 95% 
CI. 1.02–1.04; p < 0.05). With every one additional 
year of biological age, the residualized risk of death 
increased by 3%. Figure  2 shows the Kaplan–Meier 

survival curves for two groups above or below the 
median biological age. Those who are biologically 
younger relative to their chronological age live longer 
than those who are biologically older relative to their 
chronological age, a difference in average survival 
probability that amounts to more than 1.5 years.

In a series of follow-up analyses, we tested the 
unique predictive effects for mortality hazards of bio-
logical age compared to those of chronological age, 
sex, and SES. Results are summarized in the Appen-
dix (Table  A.3). From the middle column, it can be 
seen that chronological age, sex, SES, and biological 
age together accounted for 26.81% of the variance in 
mortality hazards among BASE participants. From the 
right-hand column, it is clear that, as one would expect, 

Fig. 1   Biological age in the Berlin Aging Study (left-hand panel) and the Berlin Aging Study II (right-hand panel)

Table 3   Hazard ratios for mortality by biological age and the 
correlates in the Berlin Aging Study

N = 384
*  p < .01

Predictors Hazard ratio [95% CI]

Chronological age 1.08* [1.06–1.10]
Women 0.72* [0.58–0.88]
Education 0.99 [0.94–1.04]
Biological age 1.03* [1.02–1.04]
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chronological age yields the largest unique predictive 
effects in this age range, whereas the effects of sex 
and SES were negligible. In contrast, biological age 
had a unique predictive impact on mortality hazards 
that (a) was over and above that of chronological age, 
(b) was more than 2.5-fold the effect of sex, and (c) 
was smaller than the effect of chronological age. The 
majority of the variance is shared between predictors 
(8.21 + 0.77 + 0.02 + 2.17 = 11.17 unique variance out 
of 26.81 total variance amounts to 42% unique vari-
ance and 58% shared variance).

Correlates of biological age in BASE

In a third step, we used regression analyses to exam-
ine whether and how sociodemographic and physi-
cal health predict individual differences in biologi-
cal age. Results are presented in the middle column 
of Table 4 and graphically illustrated in the left-hand 
panel of Fig. 3. It can be seen that being older chrono-
logically was associated with being older biologi-
cally (β = 0.638, p < 0.05). Important for the question 
at hand, morbidity (β = 0.114, p < 0.05) was also 
uniquely associated with biological age, over and 
above the effects of chronological age, sex, and SES. 
Participants who suffer from more physical illnesses 
(see left-hand portion of Fig. 3) were more likely to 
be biologically older than they were chronologically 
relative to their peers with fewer diseases.

Biological age composite in BASE‑II

In the next step, we used the independently identi-
fied parameters from BASE to calculate a biological 
age composite in participants of its successor study, 
BASE-II. Results of this step are reported in Table 2 
and the right-hand panel of Fig.  1. Three findings 
are noteworthy. First, on average, BASE-II par-
ticipants were 6.10  years younger biologically than 
their chronological age. Second, again we found 

Fig. 2   Kaplan–Meier 
survival curves in the Berlin 
Aging Study for two groups 
based on a median cutoff for 
biological age. Those who 
are biologically younger rel-
ative to their chronological 
age live longer than those 
who are biologically older 
relative to their chrono-
logical age, a difference in 
average survival probabil-
ity that amounts to more 
than 1.5 years. Curves are 
residualized for differences 
by age, sex, and education

Table 4   Predicting biological age from  chronological age, 
sex, education, and physician-observed morbidity, separately 
for the Berlin Aging Study and the Berlin Aging Study II

Standardized regression coefficients are reported. Berlin 
Aging Study: N = 397. Berlin Aging Study: N = 1210. Age and 
women centered at sample mean, all other predictors z-stand-
ardized
 *p < .05

Dependent variable: biological age

Predictors Berlin Aging Study Berlin Aging Study 
II

Chronological age .638* .504*
Women –.020 –.001
Education .036 –.028
Morbidity .114* .108*
Total R2 .448 .274
F (df1, df2) 69.08* (4, 345) 113.55* (4, 1205)

2692



GeroScience (2022) 44:2685–2699

1 3
Vol.: (0123456789)

considerable individual differences in biological age. 
Among participants chronologically aged 60  years 
and older, the person with the youngest biological 
age was 37  years, and the person with the oldest 
biological age was 90 years. Likewise, the discrep-
ancy between biological age and chronological age 
ranges between –29 (indicating a 29  years younger 
biological than chronological age) and 23 (indicat-
ing a 23  years older biological than chronological 
age). Third, the correlation between chronological 
age and biological age is r = 0.49 among women and 
r = 0.53 among men meaning that participants who 
are older chronologically also tend to be older bio-
logically, but there are also individual differences in 
how chronological age and biological age coincide.

Correlates of biological age in BASE‑II

In a final set of analyses, we again examined corre-
lates of biological age. Mimicking our analyses in 
BASE, we started with regression analyses that link 
sociodemographic and physical health variables with 

biological age. Results are presented in the right-hand 
column of Table  4 and graphically illustrated in the 
right-hand panel of Fig.  3. Similar to BASE, older 
chronological age was associated with older biologi-
cal age (β = 0.504, p < 0.05). Importantly, for again, 
morbidity (β = 0.108, p < 0.05) was uniquely associ-
ated with biological age, over and above the effects of 
chronological age, sex, and SES. Those who suffered 
from more physical illnesses (see right-hand portion 
of Fig.  3) tended to be biologically older than they 
were chronologically.

In the last step, we made use of the rich interdis-
ciplinary data in BASE-II that allowed us to examine 
the role of biological age for various physical health 
measures while accounting for sociodemographic 
factors and a number of alternative age biomarkers, 
including telomere length, DNA methylation age, 
PhenoAge, skin age, and subjective age (intercorre-
lations are reported in Appendix Table A.4). Results 
are reported in Table  5. Over and above the well-
known effects of chronological age, sex, and educa-
tion as well as the alternative age biomarkers, older 

Fig. 3   Linking physician-
observed morbidity with 
biological age in the Berlin 
Aging Study (left-hand 
panel) and the Berlin Aging 
Study II (right-hand panel). 
Consistent across sample, it 
can be seen that participants 
who had more physical 
illnesses were more likely 
to be biologically older than 
they were chronologically, 
as compared with their 
peers with fewer diseases
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biological age as assessed by our novel the biological 
age composite was found to predict higher physician-
observed morbidity (β = 0.144, p < 0.05) and lower 
subjective health (β = –0.099, p < 0.05), whereas 

no associations were found with lung capacity 
(β = 0.004, p > 0.10) (see Table A.5). However, these 
results did not remain significant when also account-
ing for PhenoAge (Table  5) (physician-observed 

Table 5   Predicting physician-observed morbidity, lung capacity, and subjective health from five different alternative age indices in 
the Berlin Aging Study II: shared and unique effects

DNA meth, DNA methylation age. Standardized prediction effects (β). a p = .07, b p = .05, * p < .05
Intercorrelations in bold differ significantly from zero at p < .05

Predictors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Conjoint model

Physician-observed morbidity
Chronological age .007 .002 .019 –.039 .066* –.009 –.031
Women –.068* –.053 .034 –.069* –.058 –.034 .024
Education –.018 –.030 –.006 –.032 –.029 –.002 .049
Telomere length –.029 –– –– –– –– –– –.018
DNA meth1 –– –.058 –– –– –– –– .053
PhenoAge –– –– .224* –– –– –– .232*
Biological age –– –– –– .145* –– –– .013
Skin age –– –– –– –– –.014 –– .047
Subjective age –– –– –– –– –– –.048 .021
Total R2 .005 .008 .047 .023 .009 .003 .065
F 1.35 2.31 12.11* 7.07* 2.30 0.89 3.76*
(df1, df2) (4, 1164) (4, 1172) (4, 976) (4, 1205) (4, 987) (4, 1127) (9, 687)
Lung capacity
Chronological age –.210* –.220* –.191* –.191* –.220* –.223* –.177*
Women –.710* –.704* –.756* –.709* –.715* –.715* –.795*
Education .033 .044 .000 .047 .050 .021 –.018
Telomere length –.004 –– –– –– –– –– –.057
DNA meth1 –– .003 –– –– –– –– –.037
PhenoAge –– –– –.094* –– –– –– –.038
Biological age –– ––  –– –.023 –– –– .001
Skin age –– –– –– –– .005 –– .013
Subjective age –– –– –– –– –– –.018 .049
Total R2 .544 .548 .578 .556 .554 .556 .559
F 175.34* 179.66* 166.59* 188.46* 144.54* 179.58* 39.39*
(df1, df2) (4, 587) (4, 594) (4, 492) (4, 603) (4, 466) (4, 573) (9, 245)
Subjective health
Chronological age –.025 –.026 ,014 –.034 –.063* .137* .033*
Women –.090* –.086* –.126* –.055* –.033 –.072* –.076
Education –.000 –.020 .045 .014 .022 –.009 .046
Telomere length –.019 –– –– –– –– –– –.024
DNA meth1 –– .001 –– –– –– –– –.021
PhenoAge –– –– –.141* –– –– –– –.147*
Biological age –– ––  –– –.101* –– –– –.004
Skin age –– –– –– –– .076* –– .015
Subjective age –– –– –– –– –– –.289* –.186*
Total R2 .008 .008 .027 .011 .009 .066 .055
F 2.42* 2.41* 7.19* 3.72* 2.47* 21.59* 3.34*
(df1, df2) (4, 1107) (4, 1111) (4, 1039) (4, 1125) (4, 893) (4, 1060) (9, 526)
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morbidity, β = 0.013, p > 0.05; lower subjective 
health, β = 0.001, p > 0.05; lung capacity, β = –0.004, 
p > 0.05). To examine the unique contribution of each 
age indicator, we fitted a regression of each meas-
ure on chronological age, computed residual values, 
z-standardized these residual values, and fitted the 
regression of each outcome on the z-scored residu-
als. Effect sizes are reported in the Online Supple-
ment (see Table A.6). We note that PhenoAge is not 
available for BASE. As a consequence, we could only 
conduct such a comparison for BASE-II data and thus 
not examine predictive effects for mortality hazards. 
Results revealed that for morbidity and lung capacity, 
PhenoAge explained more variance than biological 
age (e.g., morbidity, β = 0.222 and β = 0.119, respec-
tively) and for subjective health, the predictive effects 
of PhenoAge and biological age were almost identical 
(β = –0.102 and β = –0.098, respectively).

Discussion

In the current study, we identified 12 standard labora-
tory parameters reflecting metabolic, cardiovascular, 
inflammatory, and kidney functioning that were each 
identified as being mortality-relevant that were avail-
able in two independent cohorts (BASE and BASE-
II). These 12 parameters were selected because they 
showed the strongest association with mortality in 
the earlier-born cohort (BASE). These mortality-
relevant parameters were then used to define a com-
prehensive multi-indicator biological age composite 
which was also associated with mortality indepen-
dently of chronological age. Proceeding to validate 
biological age in BASE-II as well, we found that in 
both cohorts, biological age was not associated with 
a composite index of morbidity when also account-
ing for PhenoAge. There were also no associations 
found with subjective health, suggesting that our 
biological age indicator might not have added value 
for our specific outcomes of interest over and above 
PhenoAge. However, our biological age and Pheno-
Age are relatively highly correlated (r = 0.39) so is 
PhenoAge and chronological age (r = 0.62) indicating 
multicollinearity, which should be explored further in 
future research. Also, previous genetic studies indi-
cated that different biological age composite markers 
can be linked to different pathways, e.g., cardiometa-
bolic pathways or inflammaging/immunosenescence 

pathways, suggesting two measures can capture dif-
ferent domains of aging [19, 44]. These results are 
clearly plausible if the parameters underlying the bio-
logical age composite markers compared do not over-
lap or overlap only slightly. There is a moderate over-
lap between the parameters underlying our biological 
age indicator evaluated here and PhenoAge (biologi-
cal age indicator (BASE), twelve laboratory parameters; 
PhenoAge, nine laboratory parameters + chronologi-
cal age; overlap, four laboratory parameters (albumin, 
lymphocytes, leucocytes, creatinine)). Future stud-
ies thus need to examine these associations in more 
diverse samples with more diverse health outcomes.

The correlation between chronological age and 
the biological age composite was lower in BASE-
II (r = 0.53 in men and r = 0.49 in women) than in 
BASE (r = 0.70 in men and r = 0.65 in women). 
These differences between the two cohorts could 
be explained by a combination of several fac-
tors. First, the BASE-II cohort investigated here 
(68.8 ± 3.7  years) is on average younger than the 
BASE participants (84.9 ± 8.7 years). In addition, the 
overall BASE-II sample is on average more positively 
selected on variables such as education, self-reported 
health, and other characteristics, which is related to 
its recruitment as a convenience sample [31], whereas 
ascertainment of BASE participants was based on 
city registry information in the aim to collect a rep-
resentative sample. Another factor in this context is 
that BASE-II participants were born on average more 
than 20  years later than participants of the BASE 
study and thus represent different birth cohorts. We 
have shown earlier for propensity score–matched sub-
samples (matched for age, sex and education) of these 
two cohorts that the later-born BASE-II participants 
performed significantly better on cognitive, psycho-
social, and physical health variables when compared 
with same-aged BASE participants born and tested 
20 years earlier [45–47]. Analyzing matched samples 
was not an option for the current report because this 
would have reduced the effective sample size to less 
than n = 100 in each cohort. Since the biological age 
composite relies on laboratory parameters associated 
with mortality in BASE which was significantly older 
than BASE-II at baseline, the lower degree of correla-
tion between the biological age composite and chron-
ological age in BASE-II is not unexpected.

BASE was initiated in 1990, and therefore, cer-
tain laboratory parameters widely available now were 
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not available for this cohort. This is a limitation with 
respect to the strategy chosen here, where we selected 
only parameters that were available in both data 
sets. At the same time, this can also be considered 
a strength of the current study because the selected 
parameters today are regularly available as clinical 
routine parameters for people of the age group inves-
tigated here. In other words, the biological age com-
posite can be calculated and might add to the overall 
view in clinical decision-making without additional 
costs to assess more sophisticated biological age 
indicators such as those that consider parameters 
not routinely clinically available [19, 26], biomarker 
signatures [27], or metabolic profiles [48]. Another 
strength is the strategy of drawing on the older BASE 
study to construct the biological age composite and 
then evaluate it in the BASE-II cohort. Because sev-
eral investigators of BASE were also involved in ini-
tiating BASE-II, this ensured a high degree of con-
sistency in data collection with respect to the tests 
employed in the two cohorts investigated. Addition-
ally, participants from both studies were recruited 
from the same geographical area, Berlin, Germany, 
which further increases comparability between the 
two cohorts studied here. Thus, using two independ-
ent samples allowed us to cross-validate findings 
within this study report.

We also note that several approaches have been 
applied to index biological age which could result 
in distinct biological age measures [26]. It is thus 
crucial to also consider the analytic aspects when 
examining composite scores of biological age. 
For instance, in the present study, we calculate the 
biological age composite following procedures 
described in Belsky et  al. [26]. For example, it 
would be very informative to examine correlations 
with more established DNA methylation (DNAm) 
measures of aging, which were, however, not avail-
able for the Berlin Aging Study (first birth cohort) 
and for BASE-II at baseline (even though planned 
for the future), the time point assessed here. It is 
thus unclear how our biological age measure gener-
alizes beyond the findings obtained here [49].

In the present study, we selected a specific set of 
biomarkers based on availability in both studies and 
their association with mortality in the earlier BASE 
study. We are aware that the biological age com-
posite is always dependent on the set of biomarkers 
chosen. Based on the extant literature, it is unlikely 

that a study will be able to find an indicator that 
fulfills all AFAR criteria at the same time. But this 
does not mean that subsets of biomarkers cannot 
be used to examine biological age composites. For 
example, we note that the highest correlation was 
found between lymphocytes and leukocytes. This 
is not surprising given that lymphocytes are a sub-
group of leukocytes. However, both parameters con-
tribute independently and significantly to the bio-
logical age composite. It is therefore necessary to 
further examine the specific dynamic mechanisms 
of each biological age component, ideally over time, 
to better understand how, first, they change over 
time, and also how their effect size with respect to 
contributing to biological age changes over time.

Lastly, our study examined the nature and corre-
lates of biological age in two independent cohorts. 
Importantly, the correlational design of the cross-
sectional data used does not allow us to draw con-
clusions about the causal or directional mechanisms 
underlying these associations. For instance, it is 
conceivable that the predictive validity of individ-
ual biomarkers of aging varies across the lifespan, 
with some being more important at younger ages 
and others being more important at old age. Based 
on the currently available data, we are unable to 
quantify to what extent biological age is related to 
individual differences in the rate of aging over the 
course of the second half of life [50] or whether it 
could also be a matter of persistent individual dif-
ferences that have already emerged at earlier stages 
of life [51]. Ideally this question should be exam-
ined in appropriately designed longitudinal stud-
ies. Similarly, even though biological age might 
be a promising tool as a biomarker to predict dis-
eases before they manifest clinically and to monitor 
effects of interventions, the underlying molecular 
and cellular mechanisms of the observed correla-
tions still remain largely unknown.

Conclusions

In the present study, we operationally defined bio-
logical age as a comprehensive multi-indicator bio-
marker developed on the basis of a total of 12 single 
markers reflecting metabolic, cardiovascular, inflam-
matory, and kidney functioning that had each been 
identified as being mortality-relevant over a > 25-year 
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observation period (BASE). In that study, older bio-
logical age was associated with more physician-
observed morbidity and higher mortality hazards, 
over and above the well-known effects of chrono-
logical age, sex, and education. In the later BASE-II 
cohort, older biological age was associated with more 
physician-observed morbidity and lower subjec-
tive health (but not lung capacity), over and above the 
well-known effects of chronological age, sex, 
and  education. This, however, was not longer true, 
when additionally considering alternative biomark-
ers including telomere length, DNA methylation age, 
PhenoAge, skin age, and subjective health in a con-
joined model. Our findings suggest that our biological 
age composite based on convenient and non-invasive, 
inexpensive, standard validated laboratory blood tests 
promises to provide unique insights into the hetero-
geneity of aging and into biological aging processes.
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