Skip to main content

Advertisement

Log in

Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94:19–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology–a bidirectional relationship. Nat Rev Neurol. 2014;10:115–9.

    Article  CAS  PubMed  Google Scholar 

  3. Nixon JP, Mavanji V, Butterick TA, et al. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev. 2015;20:63–73.

    Article  CAS  PubMed  Google Scholar 

  4. Kenyon C. A conserved regulatory system for aging. Cell. 2001;105:165–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zegarra-Valdivia JA, Santi A, Fernandez de Sevilla ME, et al 2019 Serum Insulin-like growth factor I deficiency associates to Alzheimer’s disease co-morbidities. J Alzheimers Dis

  6. Junnila RK, List EO, Berryman DE, et al 2013 The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol

  7. Heni M, Kullmann S, Preissl H, et al. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11:701–11.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu M, De Cabo R, Anson RM, et al. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition. 2005;21:378–88.

    Article  CAS  PubMed  Google Scholar 

  9. Zegarra-Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, et al. Insulin-like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J. 2020;34:15975–90.

    Article  CAS  PubMed  Google Scholar 

  10. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8:171–81.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9:759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1. BDNF Serotonin Ageing Res Rev. 2004;3:445–64.

    Article  CAS  PubMed  Google Scholar 

  13. Muller AP, Fernandez AM, Haas C, et al. Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci. 2012;49:9–12.

    Article  CAS  PubMed  Google Scholar 

  14. Munive V, Zegarra-Valdivia JA, Herrero-Labrador R, et al. Loss of the interaction between estradiol and insulin-like growth factor I in brain endothelial cells associates to changes in mood homeostasis during peri-menopause in mice. Aging (Albany NY). 2019;11:174–84.

    Article  CAS  Google Scholar 

  15. Ashpole NM, Sanders JE, Hodges EL, et al. Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol. 2015;68:76–81.

    Article  CAS  PubMed  Google Scholar 

  16. Lai M, Hibberd CJ, Gluckman PD, et al. Reduced expression of insulin-like growth factor 1 messenger RNA in the hippocampus of aged rats. Neurosci Lett. 2000;288:66–70.

    Article  CAS  PubMed  Google Scholar 

  17. Palin K, Moreau ML, Orcel H, et al. Age-impaired fluid homeostasis depends on the balance of IL-6/IGF-I in the rat supraoptic nuclei. Neurobiol Aging. 2008;30:1677–92.

    Article  PubMed  Google Scholar 

  18. Martinez-Rachadell L, Aguilera A, Perez-Domper P, et al. Cell-specific expression of insulin/insulin-like growth factor-I receptor hybrids in the mouse brain. Growth Horm IGF Res. 2019;45:25–30.

    Article  CAS  PubMed  Google Scholar 

  19. Fernandez AM, Jimenez S, Mecha M, et al. Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology. Mol Psychiatry. 2012;17:705–18.

    Article  CAS  PubMed  Google Scholar 

  20. Dima AA, Elliott JT, Filliben JJ, et al. Comparison of segmentation algorithms for fluorescence microscopy images of cells. Cytometry A. 2011;79:545–59.

    Article  PubMed  Google Scholar 

  21. Burry RW. Controls for immunocytochemistry: an update. J Histochem Cytochem. 2011;59:6–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez AM, Fernandez S, Carrero P, et al. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci. 2007;27:8745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bliwise DL. Sleep in normal aging and dementia. Sleep. 1993;16:40–81.

    Article  CAS  PubMed  Google Scholar 

  24. Hasan S, Dauvilliers Y, Mongrain V, et al. Age-related changes in sleep in inbred mice are genotype dependent. Neurobiol Aging. 2012;33:195.e113-195.e126.

    Article  Google Scholar 

  25. Trueba-Saiz A, Cavada C, Fernandez AM, et al. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice. Transl Psychiatry. 2013;3: e330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marks JL, Porte D Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol. 1991;5:1158–68.

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Segura LM, Rodriguez JR, Torres-Aleman I. Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J Neurocytol. 1997;26:479–90.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Gao XB, Sakurai T, et al. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuronGÇöA potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36:1169–81.

    Article  CAS  PubMed  Google Scholar 

  29. Carro E, Trejo JL, Busiguina S, et al. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001;21:5678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishijima T, Piriz J, Duflot S, et al. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67:834–46.

    Article  CAS  PubMed  Google Scholar 

  31. Tortorella S, Rodrigo-Angulo ML, Nunez A, et al. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle. Front Neurosci. 2013;7:216.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci. 2011;32:451–62.

    Article  CAS  PubMed  Google Scholar 

  33. Carrasco E, Gomez-Gutierrez P, Campos PM, et al. Discovery of novel 2,3,5-trisubstituted pyridine analogs as potent inhibitors of IL-1β via modulation of the p38 MAPK signaling pathway. Eur J Med Chem. 2021;223: 113620.

    Article  CAS  PubMed  Google Scholar 

  34. Davila D, Torres-Aleman I. Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell. 2008;19:2014–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jain S, Golde DW, Bailey R, et al. Insulin-like growth factor-I resistance. Endocr Rev. 1998;19:625–46.

    CAS  PubMed  Google Scholar 

  36. Azpurua J, Yang JN, Van MM, et al. IGF1R levels in the brain negatively correlate with longevity in 16 rodent species. Aging (Albany NY). 2013;5:304–14.

    Article  CAS  PubMed Central  Google Scholar 

  37. Trueba-Saiz A, Fernandez AM, Nishijima T, et al. Circulating insulin-like growth factor I regulates its receptor in the brain of male mice. Endocrinology. 2017;158:349–57.

    CAS  PubMed  Google Scholar 

  38. Ding H, Gao XL, Hirschberg R, et al. Impaired actions of insulin-like growth factor 1 on protein Synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J Clin Invest. 1996;97:1064–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stenvers KL, Lund PK, Gallagher M. Increased expression of type 1 insulin-like growth factor receptor messenger RNA in rat hippocampal formation is associated with aging and behavioral impairment. Neuroscience. 1996;72:505–18.

    Article  CAS  PubMed  Google Scholar 

  40. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31:224–43.

    Article  CAS  PubMed  Google Scholar 

  41. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martín-Segura A, Ahmed T, Casadomé-Perales Á, et al. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell. 2019;18: e12932.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106.

    Article  CAS  PubMed  Google Scholar 

  44. Zegarra-Valdivia JA, Chaves-Coira I, Fernandez de Sevilla ME, et al. Reduced insulin-like growth factor-I effects in the basal forebrain of aging mouse. Front Aging Neurosci. 2021;13:682388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kappeler L, Filho CDM, Dupont J, et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol. 2008;6: e254.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.

    Article  CAS  PubMed  Google Scholar 

  47. Laron Z. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity. Novartis Found Symp. 2002;242:125–37.

    CAS  PubMed  Google Scholar 

  48. Mao K, Quipildor GF, Tabrizian T, et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun. 2018;9:2394.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13:769–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashpole NM, Logan S, Yabluchanskiy A, et al. IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience. 2017;39:129–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bai H, Kang P, Tatar M. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell. 2012;11:978–85.

    Article  CAS  PubMed  Google Scholar 

  52. Bansal A, Zhu LJ, Yen K, et al 2015 Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutant. Proc. Natl. Acad. Sci. U. S. A

  53. Bokov AF, Garg N, Ikeno Y, et al. Does reduced IGF-1R signaling in Igf1r mice alter aging? PLoS ONE. 2011;6: e26891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albani D, Batelli S, Polito L, et al. A polymorphic variant of the insulin-like growth factor 1 (IGF-1) receptor correlates with male longevity in the Italian population: a genetic study and evaluation of circulating IGF-1 from the “Treviso Longeva (TRELONG)” study. BMC Geriatr. 2009;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metabolism. 2003;88:3299–304.

    Article  CAS  Google Scholar 

  56. Arai Y, Takayama M, Gondo Y, et al. Adipose endocrine function, insulin-like growth factor-1 axis, and exceptional survival beyond 100 years of age. J Gerontol. Biol Sci Med Sci. 2008;63:1209–18.

    Google Scholar 

  57. Barbieri M, Paolisso G, Kimura M, et al. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev. 2009;130:771–6.

    Article  CAS  PubMed  Google Scholar 

  58. Barton-Davis ER, Shoturma DI, Musaro A, et al. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA. 1998;95:15603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brugts MP, Van den Beld AW, Hofland LJ, et al 2008 Low circulating IGF-I bioactivity in elderly men is associated with increased mortality. J Clin Endocrinol Metab

  60. Aleman A, Verhaar HJ, de Haan EH, et al. Insulin-like growth factor-I and cognitive function in healthy older men. J Clin Endocrinol Metab. 1999;84:471–5.

    Article  CAS  PubMed  Google Scholar 

  61. Angelini A, Bendini C, Neviani F, et al. Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch Gerontol Geriatr. 2009;49(Suppl 1):5–12.

    Article  CAS  PubMed  Google Scholar 

  62. Arwert LI, Deijen JB, Drent ML. The relation between insulin-like growth factor I levels and cognition in healthy elderly: a meta-analysis. Growth Horm IGF Res. 2005;15:416–22.

    Article  CAS  PubMed  Google Scholar 

  63. Bellar D, Glickman EL, Juvancic-Heltzel J, et al 2011 Serum IGF-1 is associated with working memory, executive function and selective attention in a sample of healthy, fit older adults. Neuroscience

  64. Zhang WB, Ye K, Barzilai N, et al. The antagonistic pleiotropy of insulin-like growth factor 1. Aging Cell. 2021;20: e13443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gubbi S, Quipildor GF, Barzilai N, et al 2018 IGF-1: The Jekyll & Hyde of the aging brain. J Mol Endocrinol

  66. Kawano T, Nagatomo R, Kimura Y, et al. Disruption of ins-11, a Caenorhabditis elegans insulin-like gene, and phenotypic analyses of the gene-disrupted animal. Biosci Biotechnol Biochem. 2006;70:3084–7.

    Article  CAS  PubMed  Google Scholar 

  67. Marino G, Ugalde AP, Fernandez AF, et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci USA. 2018;107:16268–73.

    Article  Google Scholar 

  68. Matsunaga Y, Gengyo-Ando K, Mitani S, et al. Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18 11. Biochem Biophys Res Commun. 2012;423:478–83.

    Article  CAS  PubMed  Google Scholar 

  69. Merry TL, Kuhlow D, Laube B, et al. Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan. Aging Cell. 2017;16:761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le BE 2015 The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology

  71. Milman S, Huffman Derek M, Barzilai N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab. 2016;23:980–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kauffman AL, Ashraf JM, Corces-Zimmerman MR, et al. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol. 2010;8: e1000372.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chaker Z, George C, Petrovska M, et al. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging. 2016;41:64–72.

    Article  CAS  PubMed  Google Scholar 

  74. Landi F, Capoluongo E, Russo A, et al. Free insulin-like growth factor-I and cognitive function in older persons living in community. Growth Horm IGF Res. 2007;17:58–66.

    Article  CAS  PubMed  Google Scholar 

  75. Lichtenwalner RJ, Forbes ME, Bennett SA, et al. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001;107:603–13.

    Article  CAS  PubMed  Google Scholar 

  76. Arwert LI, Veltman DJ, Deijen JB, et al. Memory performance and the growth hormone/insulin-like growth factor axis in elderly: a positron emission tomography study. Neuroendocrinology. 2005;81:31–40.

    Article  CAS  PubMed  Google Scholar 

  77. Hu A, Yuan H, Wu L, et al. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice. Brain Res. 2016;1631:204–13.

    Article  CAS  PubMed  Google Scholar 

  78. Tanabe K, Itoh M, Tonoki A. Age-related changes in insulin-like signaling lead to intermediate-term memory impairment in Drosophila. Cell Rep. 2017;18:1598–605.

    Article  CAS  PubMed  Google Scholar 

  79. Abad VC, Guilleminault C. Insomnia in elderly patients: recommendations for pharmacological management. Drugs Aging. 2018;35:791–817.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to M. Garcia for technical support.

Funding

This work was funded by a grant from Ciberned and is part of the project SAF2016-76462 funded by MCIN/AEI/https://doi.org/10.13039/501100011033. J.A. Zegarra-Valdivia acknowledges the financial support of the National Council of Science, Technology and Technological Innovation (CONCYTEC, Perú) through the National Fund for Scientific and Technological Development (FONDECYT, Perú). J. Fernandes received a post-doc fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: # 2017/14742–0; # 2019/03368–5).

Author information

Authors and Affiliations

Authors

Contributions

JAZV conducted experiments, prepared figures, and results and wrote part of the manuscript. JF, ATS, MEFS, JP, and AMF conducted experiments and prepared figures. KS and LMR conducted experiments. MN provided experimental expertise. JE analyzed data. MV provided reagents and data on AIK3a305. AN designed and conducted experiments and wrote part of the manuscript. ITA designed the study and wrote the manuscript.

Corresponding author

Correspondence to Ignacio Torres Aleman.

Ethics declarations

Competing interests

MV and ITA have shares in Allinky BioPharma, manufacturer of AIK3a.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11357_2022_589_MOESM1_ESM.pdf

Supplementary file1 (PDF 169 kb) Supplementary Figure 1: A, ECoG band analysis of young male and female mice (WT ≤ 6 months old; n=15, and n=8 respectively; ordinary Two-Way ANOVA, group factor: F(1,103)=0.0697; p=0.7923). B, ECoG band analysis of old male and female mice (WT ≥ 18 months old; n= 4 each group;, ordinary Two-Way ANOVA, group factor: F (1, 30) = 1,104e-013, p>0.999). C, Latency of evoked potentials registered in the PeF after stimulation of the LC in young and old mice (young= 0,003379 ± 0,0001655, old= 0,003651 ± 0,0001691; Unpaired t-test, t=1.15, df=39, p=0.2572, young=15, old=13). D, Area under the curve of the basal evoked potential (mV2) in young and old mice (young= 0,1235 ± 0,02201, old= 0,1396 ± 0,02147; Unpaired t-test, t=0.526, df=39.78, p=0.6018; young=15, old=13). E, Mean number/microscope field of immunoreactive orexin neurons in young and old WT mice (young=32, 12.94 ± 1.297; old=26, 12.62 ± 1.646; Unpaired t-test, t=0.1559, df=56, p= 0,8766; young=32 cells, old=26 cells). Supplementary Figure 2: A, AIK3 sensitizes astrocytes to IGF-I. After treatment with LPS (1 μg/ml), astrocytes become unresponsive to IGF-I, as determined by lack of phosphorylated Akt (pAkt) after 0.1 or 1 nM IGF-I. Astrocytes simultaneously receiving AIK3a305 (27 mM) regain sensitivity to IGF-I, as phosphorylated Akt was readily detected. A representative blot is shown. B, Concentration along time in the blood (blue trace) and brain (red trace) after oral administration of AIK3a305 (10 mg/kg) in adult male mice (Swiss albino; n= 3). C, ECoG band analysis of young mice (WT ≤ 6 months old), old mice (WT ≥ 18 months old), and old mice treated with AIK3 (young=19, old=13, old+AIK3a305=10). D, Basal evoked potential in LH after LC stimulation in young, old, and old+AIK mice (One-way ANOVA, p=0.1028; n=13 group).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegarra-Valdivia, J.A., Fernandes, J., Fernandez de Sevilla, M.E. et al. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 44, 2243–2257 (2022). https://doi.org/10.1007/s11357-022-00589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00589-1

Keywords

Navigation