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Obesity as a premature aging phenotype — implications 
for sarcopenic obesity
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bioavailability, increases in oxidant stress and inflam-
mation, dysregulation of glucose homeostasis, and 
mitochondrial dysfunction. This review is organized 
by the aforementioned indices and succinctly high-
lights literature that demonstrates similarities between 
the aged and obese phenotypes in both human and 
animal models. As aging is an inevitability and obe-
sity prevalence is unlikely to significantly decrease in 
the near future, these two phenotypes will ultimately 
combine as a multidimensional syndrome (a pathol-
ogy termed sarcopenic obesity). Whether the pre-
mature aging indices accompanying obesity are addi-
tive or synergistic upon entering aging is not yet well 
defined, but the goal of this review is to illustrate the 
potential consequences of a double aged phenotype in 
sarcopenic obesity. Clinically, the modifiable risk fac-
tors could be targeted specifically in obesity to allow 
for increased health span in the aged and sarcopenic 
obese populations.
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Introduction

In recent decades, two key pathologies have insidi-
ously crept to the forefront of U.S. civilization: obe-
sity and aging. Obesity is defined as a body mass 
index (BMI) of over 30, while the definition of 

Abstract Obesity and aging have both seen dra-
matic increases in prevalence throughout society. 
This review seeks to highlight common pathologies 
that present with obesity, along with the underlying 
risk factors, that have remarkable similarity to what 
is observed in the aged. These include skeletal mus-
cle dysfunction (loss of quantity and quality), sig-
nificant increases in adiposity, systemic alterations 
to autonomic dysfunction, reduction in nitric oxide 
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overweight is a BMI of 25–30. Together, approxi-
mately 70% of  U.S. adults are classified as over-
weight or obese and approximately 19% of children 
(age 2–19) are obese [1]. Obesity has largely been 
driven by imbalance between metabolic substrate 
consumption and utilization, namely the accessibil-
ity and affordability of a diet high in carbohydrates 
and fats, in combination with an increasingly sed-
entary lifestyle. The U.S. population is aging, and 
by 2030 the aged population (≥ 65) is expected 
to surpass the population of children for the first 
time in U.S. history. The prevalence of obesity has 
moved upwards in lockstep with population aging, 
with 35% of adults ≥ 65 also considered obese [2]. 
Growth of the aged population has been driven by 
remarkable medical advances that have slowed the 
progression of diseases that once significantly short-
ened lifespan (ex. cancer, cardiovascular disease). 
However, if one were to compare indices of aging 
against common risk factors accompanying obe-
sity, one would observe that many of the key indi-
ces that define the pathology of aging also define 
the pathology of obesity (summarized in Fig.  1). 
The convergence of aging and obesity results in a 

unique pathology termed sarcopenic obesity, in 
which the complications of both states synergisti-
cally combine to cause loss of muscle and strength, 
increases in adiposity, and an inability to exercise 
[3]. Unfortunately, sarcopenic obesity is challeng-
ing to describe as a distinct pathology; it is a mul-
tidimensional syndrome that is loosely described as 
a state in which a patient presents simultaneously 
with muscle weakness and increases in adiposity. 
Thus, the conjunction of two diseases (obesity and 
sarcopenia) termed sarcopenic obesity has created a 
demanding field that merits further exploration and 
discussion. This review seeks to highlight several 
of those pathological similarities, in both human 
and animal models, and this is illustrated in Fig. 1. 
While it is currently under debate whether aging 
is preventable/reversible, obesity and many of its 
accompanied consequences (highlighted below) are 
measurable and are associated with modifiable risk 
factors. It is the intention of the following work to 
assist in identifying how obesity-focused cardiovas-
cular treatment and research can better contribute 
to increasing not just lifespan, but healthspan in the 
aged population.

Fig. 1  Schematically highlights common indices (starting 
with increased adiposity) that are altered in the aged and the 
obese. It highlights a potential domino effect of adiposity, 

which in both phenotypes subsequently are driven by increased 
ROS and systemic inflammation, ultimately  contributing to 
vascular damage and mitochondrial dysfunction
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Loss of skeletal muscle mass and function

Loss of skeletal muscle accelerates after the age of 
50 (termed sarcopenia) and in sedentary individuals 
is responsible for a decrease of 1% of muscle mass 
per year. While the mechanisms underlying sarcope-
nia are still being delineated, research by Goodpas-
ter et  al. found aging adults lose muscle strength at 
a faster rate than their concomitant loss of lean mus-
cle mass [4]. The significance of this finding demon-
strates that aging adults’ muscle quality deteriorates 
in combination with loss of muscle quantity, acceler-
ating the overall decline in muscle function. In aged 
muscle, an underlying factor contributing to sarcope-
nia is the decreased regenerative capability of muscle 
stem cells (termed satellite cells) [5, 6]. Although 
controversial, many researchers consider satellite 
cells to be an important component when studying 
sarcopenia. Satellite cells are necessary due to the 
dynamic and constant load placed upon skeletal mus-
cle; thus, reduced regenerative capability of skeletal 
muscle will inevitably directly impair an individual’s 
muscle function and total mass. In both aging humans 
and rodent models, satellite cells are reduced in over-
all content and proliferative function, resulting in the 
loss of skeletal mass and function as observed with 
sarcopenia [6–11]. Much of the controversy sur-
rounding satellite cells is due to the unknown signifi-
cance of heterogeneity in the cell population, relative 
role of intrinsic versus extrinsic factors, and specific 
interactions with neighboring cells [6, 12]. A major 
factor contributing to the lack of satellite cell knowl-
edge, especially in humans, is the difficulty of collect-
ing samples. While this topic can be better defined 
in animals, advancements in muscle satellite cell 
research will enable us to fill the gaps in our knowl-
edge and potentially alter the controversy surround-
ing them when considering sarcopenia in the human 
population.

Obesity is also accompanied by reductions in mus-
cle mass and function [13, 14]. Research has shown 
that obese individuals are able to produce a greater 
force from a single contraction of anti-gravity mus-
cle group when compared to a lean control; how-
ever when normalized to body mass, the force per 
kilogram body weight is reduced [15–17]. A greatly 
increased rate of fatigue in obese individuals has 
also been noted [16]. Muscle quality is diminished 
due to the negative metabolic and cellular changes 

of skeletal muscle, of which a significant portion is 
likely derived from the increase in nearby adipose 
tissue [18, 19]. Muscles not needed for weight bear-
ing experienced a greater rate of impairment, since 
they are not as frequently utilized and typically not 
equipped to function optimally with increased adipos-
ity. It should be noted that obesity also reduces satel-
lite cell number and proliferative capacity, and slows 
their activation, in several rodent models of obesity 
(both diet-induced and genetic) — although evidence 
points toward the regenerative capability being pre-
served in these younger animals with exercise/loading 
[20–22]. Furthermore, it is well established in obese 
diabetic patients that satellite cells maintain an altered 
phenotype, even when removed from the environ-
ment, with sustained increases in inflammation and 
insulin resistance. While overall satellite cell content 
and function remains difficult to ascertain in humans, 
it has been found that the obese secretome signifi-
cantly impairs myogenesis, but this effect is limited to 
old myoblasts compared to young myoblasts [23–26]. 
In summary, both aging and obesity result in not only 
a decrease of muscle mass, but also a reduction in 
muscle quality, and it is suspected that (largely based 
on animal studies) these deficits are driven by altera-
tions to satellite cell content and function.

Increased BMI

Body mass index is a focus of some debate as to 
whether it is an appropriate metric for overall assess-
ment of healthy body composition. However, in the 
aged, BMI does begin to rise due to sustained adi-
pocyte growth despite decreases in skeletal muscle. 
Evidence points toward decreased sex hormone pro-
duction in aging as a contributor to the loss of mus-
cle mass and accumulation of adiposity, although the 
specific hormones are distinct between men (low tes-
tosterone) and women (loss of estrogens) [27–29]. In 
the aging male, lower testosterone (hypogonadism) 
is a natural consequence of diminished testicular 
production and, as an anabolic steroid, subsequently 
results in lower muscle size and strength, impaired 
glucose homeostasis, and accelerated fat deposi-
tion [30, 31]. In the aging female, estrogens begin 
to decline at the onset of menopause and body com-
position subsequently shifts upwards in both overall 
mass and visceral adiposity, with evidence pointing 
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toward alterations in estrogen receptor alpha (ERα) 
mediating these metabolic changes [32–34]. In obese 
individuals, BMI rises as a direct result of increased 
adiposity. Similar to the aged male, testosterone 
is lowered in the obese male, likely as a result of 
increased leptin and aromatase [35, 36]. Although 
typically obesity presents with increased estrogen, 
evidence also demonstrates decreases to the ERα 
receptor in obese women, mimicking the aging phe-
notype [37, 38]. Additionally, most obese individu-
als are less active, resulting in loss of muscle mass 
as fat cells increase in number and size. Obese indi-
viduals are also at a higher risk of other pathologies 
and have an increased chance of mortality when 
compared to lean individuals [39]. A similar overall 
pattern of decreased skeletal muscle mass combined 
with increasing adiposity is also observed in multiple 
rodent models, either genetic or diet-induced obesity 
(DIO) [13, 40]. As such, both aging and obesity have 
fundamentally similar effects in increasing BMI due 
to an overall increase in adiposity paired with a loss 
of muscle mass relative to overall weight.

Adiposity distribution: subcutaneous 
versus visceral

To add to the complexity of sarcopenic obesity, there 
are considerable differences between where adipose 
tissue accumulates and its effects on overall homeo-
stasis. Total body fat distribution can be further 
divided into subcutaneous adipose tissue (SAT) and 
visceral adipose tissue (VAT). SAT is adipose tissue 
deposited under the skin while VAT surrounds inter-
nal organs, especially the mesentery and omentum. 
Pathologically, VAT is deleterious as it fosters an 
inflammatory state, but SAT appears to be protective 
and, at least from an adiposity perspective, the “lesser 
evil” of the two [41]. The deposition of fat in the 
body is controlled by a multitude of factors, including 
the individual’s sex, age, nutrition, and metabolism. 
As an individual ages, VAT accumulation increases in 
humans [42, 43]. When analyzing the influence of age 
and sex on waist circumference, total body fat, VAT, 
and SAT, Kuk et al. found that aged men had a sig-
nificant increase of VAT percentage when compared 
to young males and females, a result consistently 
observed across multiple studies [43]. While women 
did have a higher total body fat percentage when 

compared to men, their increase in VAT percentage 
was predominantly influenced by menopause instead 
of age. This study highlights how age (and sex) plays 
a considerable role in VAT accumulation. The impor-
tance of fat distribution is a rising area of concern in 
the scientific community focused on osteosarcopenic 
obesity, where deterioration of bone is included with 
the loss of muscle. The increase of abdominal and/
or total body fat causes a rise in pro-inflammatory 
cytokines and hormone disruption, both of which 
are instrumental in driving osteosarcopenic obesity 
[44]. A key study by Perna and colleagues explored 
the differences between osteosarcopenic visceral 
obesity (OSVAT) and osteosarcopenic subcutane-
ous obesity (OSSAT) in humans [45]. Their results 
highlight a significant inflammatory phenotype with 
OSVAT, which was also accompanied with a higher 
risk of fractures and a worse metabolic profile when 
compared to the OSSAT phenotype. This data is also 
congruent with the concept of subcutaneous adipos-
ity serving a “protective” role [46]. In a 2017 cross-
sectional study performed with hospitalized Italian 
elderly patients, those with just sarcopenia were more 
vulnerable to fractures, edema, and inflammation than 
those with sarcopenic obesity, presenting an “obe-
sity paradox.” Additionally, other studies have also 
indicated that higher SAT ratio does not lead to any 
significant pathology, especially when compared to 
those with a high VAT ratio [41, 45, 46]. The “obesity 
paradox” clearly demonstrates the need to address the 
current knowledge gap regarding the impact of total 
body fat distribution, sex, age, length of time of being 
obese, medications, and other factors that contribute 
to both lifespan and healthspan in sarcopenic obese 
patients [47]. An arguably important area of future 
risk assessment for those with sarcopenic obesity (or 
even just obesity) should be determining their VAT/
SAT ratio, which can be performed via DXA, CT 
scan, trunk circumference, or an MRI scan [48, 49]. 
With the relatively recent discovery of how fat distri-
bution is an important factor driving pathology, there 
is a great need for studies that closely examine the 
role of SAT and VAT in sarcopenic obesity.

Alterations to autonomic function

Normal autonomic regulation is a critical deter-
minant of cardiovascular health, involving the 
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sympathetic and parasympathetic nervous system 
and comprising multiple spatially distinct recep-
tors (nine receptors comprising α1a,b,d, α2a–c, and 
β1–3) that are targeted by catecholamines. These 
summate to impact overall blood pressure via 
peripheral resistance and cardiac function. One of 
the major clinical consequences of autonomic dys-
regulation, shared by both aging and obesity, is the 
development of hypertension. The aged are com-
monly afflicted with isolated systolic hypertension, 
of which a significant risk factor is sympathetic 
over-activation [50, 51]. Several lines of evidence 
ranging from direct nerve recordings to plasma 
norepinephrine (NE) levels support the key role of 
an overactive sympathetic nervous system in both 
aging and obesity. While there are regional differ-
ences in sympathetic outflow to different vascular 
beds, elevated sympathetic nerve activity (SNA) 
to the muscle is common to both pathologies 
[52–55]. In addition, chronic increases in SNA to 
the muscle cause internalization of the β-adrenergic 
receptors and decreased expression at the plasma 
membrane with age, termed “β-adrenergic desen-
sitization” [51]. This results in unfavorable activa-
tion of α-adrenergic receptors, further augmenting 
the effects of SNA on vasoconstriction and in turn 
blood pressure [51]. Along with the dysregulation 
of receptors, clearance of plasma NE decreases sig-
nificantly in the aged, causing prolonged activation 
of the cardiovascular system [56, 57]. The neural 
mechanisms underlying aging and obesity-induced 
increases in SNA are reviewed elsewhere [50, 51]. 
Obesity also results in an increased stimulation of 
the sympathetic system by adrenergic manipulation, 
commonly seen as hypertension [58]. Independent 
of direct effects on blood pressure, normotensive 
obese individuals still had a significantly increased 
muscle sympathetic nerve activity (measured by 
microneurography) when compared to lean normo-
tensive individuals, suggesting that the underlying 
autonomic dysfunction is still present [59]. Con-
trary to the sympathetic system, interventions that 
activate the parasympathetic system including vagal 
nerve stimulation are shown to exert beneficial 
effects on the heart and vasculature in both obesity 
and aging [60–62]. The dysregulation of autonomic 
function noted in both aging and obesity contributes 
to unfavorable hypertension and an increased risk 

of cardiovascular disease, which does serve as the 
leading cause of preventable deaths globally [63].

Reduced nitric oxide bioavailability

As discussed above, adrenergic dysfunction skews 
vascular function toward a chronic constricted state 
in aged individuals. This effect is compounded by a 
reduction in the bioavailability of nitric oxide (NO), 
a potent vasodilator [64]. Functionally, this reduction 
begins with decreases in the expression and activity 
of endothelial nitric oxide synthase (eNOS). Addi-
tionally, uncoupling of eNOS can reduce NO pro-
duction, as it is one of the enzymes known to need 
multiple cofactors, making it susceptible to uncou-
pling when any of those are limited [65–69]. Beyond 
aged individuals having dampened NO anabolism, 
there is also an enhanced NO breakdown (linked 
to an increase of reactive oxygen species) [64]. For 
obese individuals, there is an obvious change in the 
cellular environment, producing conditions not suit-
able for optimal vascular function [70]. Similarly to 
aged individuals, obese individuals have an impaired 
NO production and utilization, much of which is sec-
ondary to increased ROS [71]. The NADPH oxidase 
family (NOX, isoforms NOX1–5) seems to be key 
as it is upregulated in obesity and is responsible for 
producing reactive oxygen species (superoxide and 
hydrogen peroxide). While the isoforms are not con-
served across species (NOX5 is not found in mice or 
rats) and likely play organ-specific roles, NOX1, 2, 
and 5 are significant producers of superoxide with 
NOX4 predominantly producing hydrogen perox-
ide. In obese humans and rodents, targeting the NOX 
family reduces vascular dysfunction significantly 
[72, 73]. While the direct mechanism whereby obe-
sity upregulates the NOX family remains elusive, 
its expression correlates very well with adiposity 
and glucose, both key indices that have observed 
increases in aging and obesity [74–76]. Thus, the 
decrease in NO bioavailability observed in obesity 
likely results from scavenging by ROS, as opposed 
to the altered production as seen in aging (although 
eNOS uncoupling can also occur in obesity) [77–79]. 
Beyond the periphery, microvascular endothelial dys-
function due to decreased NO bioavailability also 
affects brain perfusion and in turn leads to cogni-
tive dysfunction in obesity. Tucsek et al. showed that 
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aging further exacerbates obesity-induced decrease in 
NO bioavailability as reflected by impaired neurovas-
cular coupling responses (a mechanism of moment-
moment adjustment of blood flow to meet the nutri-
tional demands of active brain regions) [80]. Chronic 
vascular dysfunction paired with cellular senescence 
in the brain has been noted in obese mouse models, 
causing obesity-induced sympathoexcitation [81]. 
Furthermore, hypertension induced by angiotensin 
II infusion (well characterized to be potentiated by 
NOX1) in an aged Alzheimer’s mouse model clearly 
showed increased cerebral microhemorrhages and 
was accompanied with functional deficits in move-
ment [82]. Combined, these mechanisms suggest a 
positive feedback loop, where increases in adipos-
ity drive microvascular dysfunction through reduced 
dilatory capacity, altering brain blood flow/function 
and amplifying the sympathetic tone to peripheral 
vasculature, leading to an overall increase in vascu-
lar resistance. When considering both obese and aged 
pathologies together, there is an additive effect of vas-
cular impairment that will likely result in a greater 
risk of cerebral vascular disease and cognitive dys-
function in the sarcopenic obese population [39].

Increased oxidative stress and inflammation

Oxidative stress refers to excess levels of reactive 
oxygen species, some of which are free radicals. Oxi-
dative stress is the foundation of many pathologies 
observed in obesity and aging, through its effects to 
induce vascular dysfunction, disrupt biochemical 
processes, promote chronic inflammation, and impair 
mitochondrial function (to name a few) [83, 84]. As 
animals age, the increased incidence of biochemical 
mishap is a natural consequence of cellular replica-
tion [85]. Aging individuals experience an increase 
of reactive oxygen species production, which shift 
the body’s cellular processes toward a toxic environ-
ment. Some of the most notable alterations that occur 
with oxidative stress include apoptosis, necrosis, 
autophagy, and cellular senescence. Upon entering 
cellular senescence, cells change to a senescence-
associated secretory phenotype (termed SASP), 
which alters their secretome profile to be much more 
inflammatory and promote an environment poised for 
tissue dysfunction. Cellular senescence is associated 
with the development of multiple age-related diseases 

and an upregulation of the DNA damage-response 
system causing inflammation [86]. Within aging, 
inflammatory cytokines are upregulated, including 
tumor necrosis factor-α (TNF-α) and interleukin-6 
(IL-6) [87, 88]. IL-6 regulates the inflammatory 
C-reactive protein and promotes a chronic inflam-
matory response in humans [89]. Adiposity itself is 
an active endocrine organ, secreting adipokines that 
result in an unnatural environment promoting free 
radicals and inflammation. When measuring serum 
malondialdehyde (MDA), a biomarker of oxidative 
stress, obese humans have a statistically significant 
increase of MDA compared to lower BMI individu-
als [90]. Increased free radical production and inflam-
mation are interrelated, and unfortunately, adiposity 
stimulates both detrimental factors. Oxidation of lipo-
proteins induces monocytes to release pro-inflamma-
tory cytokines [91]. Along with the oxidized lipopro-
tein, adipose tissue itself secretes the inflammatory 
cytokines IL-6 and TNF-α, resulting in elevated lev-
els in the obese [92]. Systemic and sustained inflam-
mation and reactive oxygen species are detrimental to 
the health of any animal and the increased production 
in the obese and aged, in combination with downreg-
ulation of antioxidant defenses, is a pointed indicator 
of increased morbidity and mortality.

Loss of glucose homeostasis

Maintenance of blood glucose homeostasis by insulin 
and glucagon is arguably one of the most important 
physiological processes in mammals. Glucose is the 
body’s main source of energy and is especially criti-
cal for brain function as the brain has little (if any) 
ability to synthesize it. Insulin, a hormone produced 
by the pancreatic β-cells, enables glucose absorption 
from the bloodstream by insulin-sensitive tissues such 
as muscle and adipose. Decreased sensitivity of insu-
lin receptors results in chronic type 2 diabetes mel-
litus, characterized by excessively high blood glucose 
levels (hyperglycemia). Both obesity and aging are 
leading risk factors for type 2 diabetes. Indeed, data 
from the 2013–2016 NHANES show approximately 
27% of US aged (> 65 years old) adults have diabetes 
[93]. The increased cellular senescence in the aged is 
thought to hinder pancreatic β-cell function [94]. In 
a mouse model with increased β-cell senescence by 
genetic manipulation, glucose homeostasis returned 
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to normal levels after senolysis (clearance of the 
senescent cells) [94]. In a human study, insulin bind-
ing in peripheral tissue was decreased in aged partici-
pants, demonstrating an age-related decrease in insu-
lin sensitivity [95]. Thus, age-related loss of glucose 
homeostasis can be attributed to β-cell dysfunction 
coupled with lowered insulin sensitivity. While not 
all obese individuals are diabetic, obesity is an inde-
pendent risk factor for diabetes. Indeed, within the 
type 2 diabetic population, a high percentage (52%) 
meet the definition for obesity (BMI > 30); when cri-
teria are broadened to include overweight individu-
als (BMI > 25), 90% of type 2 diabetic patients are 
included [96, 97]. Of great concern is that increasing 
BMI, especially at younger ages, will dramatically 
increase lifetime risk for diabetes [98]. Increased 
adipose tissue is an important causal factor for glu-
cose dysregulation. Adipocytes of obese individuals 
store large amounts of lipoproteins and have a limited 
ability to absorb postprandial increases in circulating 
lipids. This leads to fat deposition in non-adipose tis-
sues such as skeletal muscle, which is directly linked 
to insulin resistance in those tissues [99]. Lastly, 
increased inflammation, which is noted in both aged 
and obese individuals, disrupts cellular insulin sen-
sitivity and contributes to insulin resistance. In a 
diabetic obese mouse model, treatment with an anti-
inflammatory drug notably decreased insulin resist-
ance, due to improved cell signaling [100]. In sum-
mary, many of the factors that contribute to and drive 
the progression of impaired glucose homeostasis are 
similar in both aging and obesity.

Loss of mitochondrial function

Overall, mitochondrial dysfunction in the aged is 
likely a consequence of the integration of many of 
the abovementioned pathologies. Originally, it was 
theorized that loss of mitochondrial function cor-
related with increased inflammation and oxida-
tive stress, but more recent studies have favored the 
theory of age-related dysfunction as a combination 
of the aforementioned pathologies and the rise of 
mitochondrial DNA (mtDNA) dysfunction [101, 
102]. It is well established that mitochondrial con-
tent in skeletal muscle decreases with aging [103, 
104]. Short et  al. observed that, compared to young 
healthy counterparts, even healthy aged patients had 

decreased skeletal muscle mitochondrial function that 
correlated well with age-related decreases in mtDNA, 
mitochondrial proteins, mRNA, and mitochondrial 
ATP production. These conditions occurred in com-
bination with a rise in oxidative DNA damage, as 
assessed by 8-oxo-deoxyguanosine [102]. Additional 
studies have examined if intramyocellular lipids 
(IMCL) in the ultrastructure of skeletal muscle could 
impact mitochondrial function in aging, as metabolic 
syndrome increases IMCL [105]. Crane et  al. found 
that, while aging reduces mitochondrial content in the 
aged population, the IMCL droplets are also signifi-
cantly larger. These changes are directly associated 
with changes in mitochondrial dynamics and reduced 
mitochondrial ATP production in aged individuals 
[105]. However, in one study, age-matched elderly 
pre-frail subjects had significantly decreased skeletal 
muscle mitochondrial function in  vivo compared to 
active elderly controls, along with decreased mtDNA. 
These results demonstrate that exercise in the elderly 
can help counteract the effects of aging on mitochon-
dria [106]. This is further supported by the work of 
Distefano et  al., who showed that older active indi-
viduals had improved skeletal muscle performance 
compared to an older sedentary group, in addition to 
improved mitochondrial energetics and lower adipos-
ity [107]. Together, this work suggests that mitochon-
drial dysfunction may be directly linked to physical 
(in)activity as opposed to an endogenous chronologi-
cal aging process. Obese individuals have also been 
reported to have downregulation of mitochondrial 
oxidative capacity when compared to lean individu-
als [108]. In obesity, excess caloric intake and/or 
high-fat diets overwhelm mitochondrial and cellular 
metabolic processes with a plethora of substrates, 
leading to an overproduction of reactive oxygen spe-
cies (ROS), which cause further mitochondrial dam-
age and dysfunction [109]. Potes et  al. specifically 
targeted an overweight and aged population to see if 
mitochondrial dynamics would be altered without the 
presence of true obesity. The study showed significant 
impairment in ATP production, a further reduction in 
pyruvate kinase activity, and accompanying protein 
oxidative damage compared to aged controls [110]. 
Interestingly, measures of mtDNA were increased 
with obesity but were also accompanied by a reduc-
tion of mitophagy markers. Taken together, this seems 
to suggest that obesity may upregulate mitochondrial 
biogenesis while impairing mitophagy, the long-term 
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result of which would be accumulation of dysfunc-
tional mitochondria with aging. While it is certainly 
interesting to speculate regarding whether mitochon-
drial (dys)function could be improved or prevented 
in aging (and exercise/activity does look promising) 
when taken together, the dysregulation of the “pow-
erhouse of the cell” in both aging and obese individu-
als propagates underlying dysfunction, regardless of 
whether the cell type utilizes the mitochondrial out-
put as a source of energy or a signaling molecule.

Discussion and future impact of sarcopenic obesity

To conclude, much of the research into obesity and 
its accompanying cardiometabolic disease demon-
strates very clear and important correlations to aging. 
However, the long-term consequences of exposing 
the human body and organ systems to lifelong obesity 
(or premature aging) and then subsequently enter-
ing an aging paradigm would likely lead to a deeply 
entrenched disease state that would be highly resistant 
to reversibility or rescue, either pharmacologically 
or with lifestyle changes. It is very clear that as the 
number of co-morbidities increase with sarcopenia, 
there is an increased risk of mortality [111]. Argu-
ably, obesity is one of the most critical co-morbidities 

to be taken into account when analyzing sarcopenia 
in an individual. While there are certainly large gaps 
of knowledge regarding mechanistic links and cru-
cial drivers of pathology between obesity and aging, 
we hope this review addressed similarities that could 
drive pathology in the sarcopenic obese population. 
There is also a considerable lack of studies investigat-
ing the effects of intentional weight loss, via exercise 
and/or nutrition, in individuals with sarcopenic obe-
sity [112]. However, even with the minimal studies 
examining the effects of weight loss in sarcopenic 
obesity, there is evidence that directly targeting adi-
posity and skeletal muscle health (by either aerobic or 
weight training) can assist with maintaining glucose 
regulation, decrease the use of hypertension medi-
cation, and improve control of pulmonary function 
in obese or aged individuals [113–117]. Regardless, 
there is a growing population of patients presenting 
with sarcopenic obesity, a dual condition in which 
obesity and sarcopenia synergistically present with 
increased morbidity, disability, and mortality [3, 118, 
119]. Indeed, end-organ damage within sarcopenic 
obesity has not been well characterized and thus 
may have progressed to a point of no return, regard-
less of treatment. The increase in visceral adiposity, 
dysfunction of skeletal muscle, autonomic signaling, 
vascular maintenance, and an inability to maintain 

Fig. 2  Highlights the 
“double aged” phenotype 
that could be hidden within 
sarcopenic obesity. Namely, 
the additive nature of 
skeletal muscle dysfunc-
tion, autonomic dysfunc-
tion, increased ROS, and 
glucose dysregulation will 
drive entrenched hyperten-
sion, chronic inflammation, 
diabetes, and increased 
disability, and acceler-
ated cognitive decline, 
ultimately resulting in 
increased mortality

GeroScience (2022) 44:1393–14051400
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glucose homeostasis all contribute to the severity of 
the pathologies (represented schematically in Fig. 2, 
where sarcopenic obesity has an “aging” phenotype 
hidden within obese physiology). As such, given 
the increasing and sustained rates of obesity in both 
adults and children, it is a medical necessity that we 
identify and target key outcomes (blood pressure, 
renal function, glucose homeostasis, vascular health, 
muscle mass) that must be preserved for overall 
healthspan and lifespan to be maintained in the aged.
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