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Similarities and dissimilarities between arterial and 
venous aging are highlighted, and shared molecular 
mechanisms of arterial and venous aging are consid-
ered. The pathogenesis of venous diseases affecting 
older adults, including varicose veins, chronic venous 
insufficiency, and deep vein thrombosis, is discussed, 
and the potential contribution of venous pathologies 
to the onset of vascular cognitive impairment and 
neurodegenerative diseases is emphasized. It is our 

Abstract Aging-induced pathological alterations of 
the circulatory system play a critical role in morbidity 
and mortality of older adults. While the importance of 
cellular and molecular mechanisms of arterial aging 
for increased cardiovascular risk in older adults is 
increasingly appreciated, aging processes of veins are 
much less studied and understood than those of arter-
ies. In this review, age-related cellular and morpho-
logical alterations in the venous system are presented. 
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hope that a greater appreciation of the cellular and 
molecular processes of vascular aging will stimulate 
further investigation into strategies aimed at prevent-
ing or retarding age-related venous pathologies.
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Introduction

Diseases that affect the circulatory system, including 
cardiovascular and cerebrovascular diseases, are the 
most common cause of death among older people in 
the developed countries [1]. The extent of human suf-
fering, death, and economic damage caused by venous 
diseases in older adults is not far from that caused by 
arterial diseases [2–8]. The prevalence of several dis-
eases of the arterial system exponentially increases 
with advancing age [9, 10]. Although several impor-
tant venous diseases frequently appear at younger ages, 
their accumulation and progression with advanced age 
are also typical. Age is now accepted as an important 
independent risk factor of venous diseases [3–8, 11, 
12]. Yet, the mechanisms and consequences of aging in 
veins are less extensively studied.

Aging of the arterial system and its pathological 
consequences have recently been reviewed in detail 
[9, 10, 13]. Cellular components of the venous wall 
are identical or close to those of the arteries and arte-
rioles. It is assumed that many of the cellular and 
molecular aging processes that contribute to arterial 
aging impact also venous aging; however, there are 
important dissimilarities between aging of the venous 
and arterial systems and their pathological manifes-
tations. This review discusses the shared processes 
of vascular aging and their putative contribution to 
age-related venous pathologies (Fig. 1) and highlights 
important differences between arterial and venous 
aging.

Aging of veins and arteries: similarities 
and dissimilarities

There are important differences between the 
functional anatomy of veins and arteries which 

contribute to their differential sensitivity to age-
related deterioration. Aging promotes atheroscle-
rosis in the arteries [14, 15]. Although veins are 
exposed to the same circulating factors, they are 
free from atherosclerotic plaque development. This 
is primarily due to the markedly different hemo-
dynamic environment in the arterial and venous 
circulations. Active and passive force-bearing ele-
ments of the venous wall are not stretched by the 
unceasing high wall stress caused by the high dias-
tolic value of arterial pressure and its aggressive 
pulsatile alterations. Although similar age-related 
phenotypic alterations occur in the endothelial and 
smooth muscle cells (including a heightened state 
of inflammation), the hemodynamic environment 
and the altered response to injury of the vascular 
cells determine specific manifestations of vascular 
pathologies in the aged arteries and veins. Fur-
ther, the venous endothelium is not subjected to the 
highest oxygen tension in the body like its arterial 
counterpart. Also, venous wall shear stress is much 
less than in the arteries due to the slower blood 
flow velocity. Yet, high wall stress can develop in 
the venous system. For example, the lower extrem-
ity of humans, to which the genetic adaptation still 
does not seem to be fully adequate, is a predilec-
tion site for disease [16]. The slower blood flow 
increases the danger of thrombotic processes, by 
elevating the probability of platelet and white 
blood cell attachment and also erythrocyte reten-
tion [17]. The blood reservoir function of veins 
requires extensive smooth muscle contraction to 
ensure appropriate vessel volume. The vein valves, 
which are tiny, sensitive anatomical structures, are 
frequently subjected to pathological processes [18, 
19].

Endothelial cells of arteries are in direct contact 
with oxygenized blood, while high pressures of arte-
rial blood extending into the inner layer of the artery 
wall exclude establishment of any microcirculation 
here. There is a much different situation in the venous 
wall. Exhausted blood is in contact with the inner lay-
ers but vasa vasorum microcirculation is possible in 
the wall.

The time course of venous pathologies is different 
from that of arterial diseases: many serious, advanced 
cases of venous disease accumulate at relative early 
age. Notwithstanding, there is a significant increase 
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of venous pathologies with age [3, 4, 6, 7, 12, 20] 
induced by both the accumulation of age-dependent 
pathologic processes and by the increased sensitivity 
to inflammatory and thrombotic processes of the aged 
venous wall [21].

Age‑related cellular and morphological alterations 
in the venous system

Endothelial aging

Among the cell types present in the vascular wall, 
endothelial cells are especially sensitive to the 

Fig. 1  Aging processes identified in veins and their connec-
tions to venous pathology. For detailed description and refer-
ences, see the corresponding chapters. Abbreviations: CK-8, 
Cytokeratin-8; FVIII, FIX, clot factors VIII and IX; ICAM-1, 
Intercellular adhesion molecule-1; iNOS, inducible nitrogen 
monoxide synthase; IL1α, IL6, IL8, interleukins 1alfa, 6, and 
8; MCP-1, Monocyte chemotactic protein; MMP-1, MMP-2, 

MMP-3, Matrix metalloproteinases 1, 2, and 3; PAI-1; PDGF, 
platelet-derived growth factor; SM-MHC, Smooth muscle 
heavy chain; TIMP-2, TIMP-3, tissue inhibitor of matrix met-
alloproteinase 2 and 3; TxA2, thromboxane A2; VCAM-1, 
Vascular adhesion molecule-1; vWF, von Willebrand factor; 
TGFbeta, Transforming growth factor beta; VEGF, vascular 
endothelial growth factor
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deleterious effects of aging [22–32]. There is increas-
ing evidence that aging-induced phenotypic and func-
tional alterations of endothelial cells contribute to the 
genesis of age-related venous pathologies, similar to 
the arterial system (Fig.  1). Endothelial dilation is 
depressed in aged veins [33], similar to aged arter-
ies and arterioles [9, 23, 30, 34, 35]. Histologically 
endothelial cells in varicose saphenous vein speci-
mens derived from older adults show progressive 
degeneration, and ultimately will be lost, exposing the 
basement membrane for platelets and clot factors and 
the medial layers for inflammatory protein permea-
tion and migration of white cells [36]. The increased 
permeability of the endothelial layer in aged ves-
sels promotes the entry of circulating inflammatory 
mediators (e.g., cytokines, factors that promote sterile 
inflammation) into the deeper layers of the vascular 
wall. With aging, vascular endothelial cells acquire 
a pro-inflammatory phenotype, which likely con-
tributes to the development of venous diseases [37]. 
Varicose veins are characterized by up-regulation 
of iNOS [38], which is likely to promote the forma-
tion of peroxynitrite. Peroxynitrite is known to play 
multifaceted roles in vascular pathologies associated 
with aging, including activation of PARP-1 and pro-
motion of mitochondrial dysfunction [39]. Also, an 
increasing ratio of aged endothelial cells undergo cel-
lular senescence and exhibit a highly inflammatory 
senescent associated secretory phenotype (SASP). 
This phenotype is characterized by elevated expres-
sion and secretion of soluble signaling factors such 
as chemokines: IL8, MCP-1; interleukins, IL1α, IL6; 
growth factors: VEGF, TGFβ; proteases: MMP-1, 
MMP-3, MMP-10, PAI-1; further endothelial NO-
synthase; and matrix components (fibronectin) [21]. 
Age-related alterations of adhesion proteins and 
glycosaminoglycans on the surface of endothelial 
cells promote platelet adhesion and thrombus for-
mation, as well as adhesion and transmigration of 
leukocytes [21]. Increased presence of white blood 
cells in the aged vascular wall also contribute to an 
inflammatory microenvironment in aged veins [21]. 
Aged endothelial cells exhibit impaired resilience to 
oxidative stressors and are more sensitive to apopto-
sis induction. Accordingly, the number of apoptotic 
endothelial cells increases in veins of older individ-
uals [40]. In the human saphenous vein, there is an 
intimal thickening with advanced age [41]. Molecular 

alterations of endothelial cells will be discussed in 
detail below.

Smooth muscle aging

The aged venous media is scant of cellular com-
ponents, smooth muscle cells are large, and cells 
obtained from aged donors are morphologically dif-
ferent from younger specimens when cultured [42]. 
Aged smooth muscle cells have a polygonate shape, 
and are frequently multinuclear. Their division activ-
ity ceases early, after about 10 passages [42]. In 
venous smooth muscle cell, sensitivity to growth fac-
tors substantially decreases with age [42]. The expres-
sion of laminin and of the adhesion proteins ICAM-1 
and VCAM-1 increases with age [43]. In otherwise 
healthy saphenous vein graft samples, a positive cor-
relation between age and the expressions of SM-MHC 
(Smooth Muscle Myosin Heavy Chain), calponin, 
TIMP-2 and TIMP-3 (Tissue Inhibitor of Metallo-
Proteinase 2 and 3), and a negative correlation with 
CK-8 (Cytokeratin-8) and MMP-2 (matrix metallo-
proteinase-2) were found [44] demonstrating that a 
massive rearrangement of protein expression accom-
panies the aging process. There is a biologically sig-
nificant phenotypic overlap with vascular smooth 
muscle cells isolated from pathologic varicose vein 
samples, in which expression of Bcl-2 (an apoptosis 
controlling protein, located at the outer mitochondrial 
membrane), MMP-1, MMP-2, TIMP-1, and TIMP-2 
is dysregulated and proliferation, adhesion, and 
migration capacities are altered [45]. The number of 
apoptotic smooth muscle cells increases in the aged 
venous system as well as in the prevaricose-varicose 
venous wall [46–50]. In the affected venous networks, 
hypertrophic and atrophic areas are alternating giving 
a foundation for massive morphological deformations 
observed later in life [40, 47, 51].

Connective tissue aging

Connective tissue alterations in the aged, scle-
rotic, and varicose vessels were historically the 
first to be recognized. Decreased cellularity, elas-
tic tissue damage, and collagen accumulation are 
important components of both aging and varicose 

2764 GeroScience (2021) 43:2761–2784



1 3

transformation of the venous wall [19, 52, 53]. 
Similar to other tissues, TGFβ appears to govern 
the pro-fibrotic phenotypic changes both in the 
aged veins and in the varicose vein wall [11, 54]. 
Turnover of connective tissue in the venous wall 
decreases with advancing age and with it the struc-
ture of elastic membranes and collagen bundles is 
altered. There is a higher level of MMP activity in 
aged veins, which contribute to the remodeling of 
the extracellular matrix. MMP activity is controlled 
by TIMP-s. In normal vascular tissue, there is a 
homeostatic balance between MMPs and TIMPs 
which is disturbed in pathological conditions, pro-
moting the development of venous diseases, such 
as varicosities [54]. Fragmentation of the elastic 
membranes and disturbed contact of elastic fib-
ers with smooth muscle cells are important factors 
in the mechanical weakness and morphological 
deformation of varicose venous segments [55–58]. 
Accordingly, enhanced elastase activity was noted 
in varicose saphenous vein specimens from elderly 
subjects [59]. In older patients, a general reduction 
in elastin content is evident in the venous wall [59]. 
This reduction is correlated with a lack of fibril-
lin-1 in some areas and with a disorganized pat-
tern of cells expressing tropoelastin and fibrillin-1. 
A decline in elastin content is causally linked to 
the deformed morphology of varicose veins. These 
dilated, elastin-poor segments are alternating with 
nondilated segments with normal elastin and col-
lagen content. Reduced expressions of the elas-
tin precursor tropoelastin and of lysyl oxidase, the 
enzyme responsible for the cross-linking of mature 
elastic fibers was also demonstrated in older peo-
ple [60]. One theory largely attributes the vascu-
lar aging process to the uncoupling of the smooth 
muscle elastin receptor which results in elevated 
elastase release [61]. These connective tissue rear-
rangements are accompanied by increased rigidity 
and reduced contractility of the wall with substan-
tial hemodynamic consequences [18]. Expression of 
laminin and adhesion molecules increases in aging 
and likely contributes to the genesis of varicosities 
[43]. Diseased veins have marked alterations in the 
expression of extracellular matrix proteins and reg-
ulatory factors: while collagen I chain alpha 1 and 
alpha 2 and laminin beta-1, beta-2, and gamma-1 

are upregulated, small leucine rich proteoglycans 
that control collagen fiber assembly are reduced in 
varicose veins [54].

Age-related changes in biomechanics and 
hemodynamics in veins

The age-related cellular and molecular alterations 
described above induce substantial alterations in the 
geometry and biomechanics of the vein wall, and 
consequent functional changes [62]. The venous wall 
is rigid at higher physiological pressures, while it is 
distensible at lower pressures. Venous wall thickening 
and increased collagen-to-elastin ratio reduces lower 
limb venous distensibility in the supine position by 
78% in elderly population [63]. Furthermore, aging 
reduces calf venous compliance by up to 40–45% 
as the efficiency of the calf muscle pump decreases 
in resting venous capacity increases in older adults 
[63–65]. Distensibility of the upper limb venous sys-
tem also decreases by 38% with aging [63]. In aging, 
the distensibility of inner jugular vein decreases by 
68% in supine body position but increases by 106% in 
erect body position [63, 66]. The maximum capacity 
of the internal jugular vein increases with aging and is 
more pronounced on the right side and in males [63]. 
In contrast, distensibility of axillary veins does not 
change significantly with age, which can be explained 
by their intramuscular location [63]. Age-related 
changes in venous distensibility and compliance can 
be attenuated by regular physical exercise [67].

The mechanisms responsible for orthostatic tol-
erance in humans affect mostly the venous system, 
which represents one of the major evolutionary 
challenges for our species. Beyond adaptation to 
the erect body position, veins control adaptation to 
altered blood volume. Local myogenic and humoral 
mechanisms as well as systemic hormonal and nerv-
ous system influence venous biomechanics [68]. 
Long-term gravitational adaptation leads to altered 
venous wall geometry, contractility, and innervation 
density as well as altered venous network [16, 68]. 
There is evidence that regulation of the aforemen-
tioned venous functions is affected by aging [63]. In 
saphenous veins of older adults, a reduced activity of 
postjunctional alpha2 adrenoreceptors was observed, 
which may adversely affect venoconstrictor reflexes 
[69]. Functional deterioration of venous adaptations 
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substantially contributes to the proneness of elderly 
people for orthostatic hypotension, collapse of the 
circulation in exsiccosis, hemorrhage, and heat expo-
sition. Of note, decreased sympathetic reflexes may 
be partially compensated for by the decreased com-
pliance [70–73].

Age-related alterations in venous valves

The essential role of deep vein valves in the develop-
ment of the varicosity disease has been recognized by 
Moore [74]. Venous valves are bicuspid and are posi-
tioned in a valve sinus, which is a local widening of 
the venous wall. The area between a valve leaflet and 
the vessel wall is called the valve pocket [75, 76]. The 
two cusps are thicker at their attachment to the venous 
wall (termed the limbus). Microscopically, the lumi-
nalis zone is the part of the cusp close to the lumen 
and facing the circulating blood stream and consists 
one layer of endothelial cells [77]. Beneath this layer, 
there is a moderately thick, wavy elastic lamella, the 
continuation of the internal elastic lamella of the 
intima. The parietalis zone is the part of the cusp 
facing the vein wall of the sinus, and is lined by 
one layer of endothelial cells. The crypts lined by 
endothelium face the sinus with their bases and usu-
ally are found in irregular intervals. The parietalis 
zone consists of loosely arranged collagen fibers and 
connective tissue cells that is gradually replaced by a 
thick dense collagen starting after the age of 30 [77]. 
Aging crypts of the parietalis zone tend to become 
shallower and the thickness of the elastic lamellae 
increases slightly. From the sixth decade, the elas-
tica itself becomes thicker in the aged and the fatty 
tissue extends from the adventitia into the media of 
the vein wall. Distal to the valve, there is a prolifera-
tion of subintimal connective tissue and elastic fibers 
with aging (termed endophlebohypertrophy) [77]. 
Overall, the venous valve becomes thickened and less 
flexible with increasing age resulting in blood flow 
disturbance, thus enhancing blood stasis in the valve 
sinus and increasing time of reverse flow after valve 
closure [77, 78]. Venous hypertension is a key factor 
in valvular remodeling [79]. The age-related thicken-
ing of venous valves is a result of alterations in valve 
cusp structure including increased collagen deposi-
tion [80, 81]. These structural changes lead to func-
tional changes including diminished elasticity. Due 
to age-related blood stasis, there is increased risk for 

thrombosis. In patients with chronic venous disease, 
about 25% of valvular incompetence can be explained 
as a result of previous deep vein thrombosis [82]. The 
thrombus itself can mechanically damage the valve 
resulting in reflux of venous blood. Thicker and less 
flexible damaged valves in older adults are associated 
with deep vein thrombosis [83].

Usually, the inferior vena cava is without a valve. 
In about 70% of limbs, there is one valve in the com-
mon femoral vein the saphenofemoral junction that 
protects the saphenous axis against increases in intra-
abdominal venous pressure [76, 84]. The femoral vein 
exhibits approximately 3 valves, the popliteal veins 
1 to 3. Many more valves are present in the deep 
venous system in the lower extremity: 8 to 19 valves 
are located in each of the posterior tibial veins and 8 
to 11 valves in both the anterior tibial and peroneal 
veins [75, 85, 86]. The number of valves in perforat-
ing veins ranges between 1 and 5; however, avalvular 
perforating veins are mainly located in the foot, hand, 
and forearm [75]. Approximately 7 valves are located 
along the entire length of the great saphenous vein 
[87]. The number of valves in varicose saphenous 
veins is significantly lower compared to nonvaricose 
ones [88]. The number of valves in Africans is higher 
comparing to whites that may account for the high 
prevalence (10–18%) of varicose veins in whites and 
the low prevalence (1–2%) of the condition in Afri-
cans [85].

Venous thrombosis

In older adults, thrombotic risk is significantly 
increased [89] resulting in 1% per year incidence 
of venous thrombosis [90]. Deep vein thrombosis 
of the lower extremity is the most common form of 
thrombosis. Additionally, venous thrombosis can 
also occur in the superficial veins of the leg and also 
in other veins, such as veins of the upper extremity, 
liver, cerebral sinus, and retinal and mesenteric veins. 
The Worcester Deep Vein Thrombosis Study demon-
strated that the incidence of both deep vein thrombo-
sis and pulmonary embolism increases exponentially 
with age [91]. The mechanisms contributing to these 
age-related changes are multifaceted.

In aging, the endothelial cells exhibit pro-throm-
bogenic phenotypic changes [21] and the morphol-
ogy of the venous wall is altered, forming recesses 
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with low flow where activated clot factors and plate-
lets can accumulate. Platelets and endothelial cells 
in older adults overexpress P-selectin, an inflamma-
tory adhesion protein, contributing to a procoagulant 
state [92]. Aging may also be associated with short-
ened prothrombin time; increased plasma levels of 
FVII, FVIII, and vWF; and increased platelet counts 
[81] Increases in fibrinogen, factors VIII and IX, and 
other coagulation proteins, without a proportional 
increase in anticoagulant factors, likely contribute to 
the increased thrombosis risk [90].

Currently, over 35% of individuals aged 65 and 
older are obese (over 55% of Black women) and if 
the current trend continues, nearly half of the elderly 
population in the USA will be obese by 2030 [93, 94]. 
Obesity in older adults may heighten thrombotic risks 
as the adipose tissue is an important source of factors 
regulating thrombus formation including inflamma-
tory cytokines and plasminogen activator inhibitor-1 
(PAI-1) [95].

Older adults frequently have a sedentary life style 
[96], which exacerbates the risk of venous throm-
bosis. The venous compliance in the calf decreases 
as the muscular tone of the calf decreases with age. 
As a result, the function of the aged venous valves 
often become impaired leading to higher thrombotic 
risk [97, 98]. The number of vascular risk factors 
and prevalence of chronic diseases are higher in the 
elderly population, which also contributes to higher 
thrombosis risk [98]. Additionally, abnormalities of 
the coagulation system, either genetic or acquired, 
exacerbate thrombotic risk. Acquired hypercoagu-
lable states (e.g., associated with cancer) are more 
common in older adults. Inherited thrombophilia 
is caused by a variety of genetic abnormalities in 
anticoagulant factors such as antithrombin (AT), 
protein C (PC), and protein S (PS), or coagulation 
factors such as prothrombin and factor V. Genetic 
abnormalities in anticoagulant factors (such as defi-
ciencies of antithrombin, protein C and protein S) 
are found in < 1% of the population and often pre-
sent with unusual clinical episodes and localiza-
tion of venous thrombosis. In a large multicenter 
cohort study of familial thrombophilia (European 
Prospective Cohort on Thrombophilia, EPCOT), 
the annual rate of venous thrombosis was 8 per 
1000 without a clear age effect [99]. However, the 
incidence of venous thrombosis in patients aged 
45  years and older is higher (1–2% per year) in 

retrospective family studies [100, 101]. Genetic 
abnormalities in procoagulant factors (e.g., Fac-
tor V Leiden, leading to APC-resistance and pro-
thrombin G20210A leading to elevated levels of 
prothrombin) are common variants with an overall 
incidence of carriers of 2–5% among Caucasians 
and they are found in 6–20% of patients with deep 
vein thrombosis [102–106]. The LITE (Longitudi-
nal Investigation of Thromboembolism Etiology) 
study investigated the absolute risk of thrombosis 
for carriers of FV Leiden of different ages [107]. In 
subjects older than 45 years of age, FV Leiden led 
to a 4.6-fold increased risk of venous thrombosis 
(vs. noncarriers) [108]. Elevated levels of proco-
agulant factors (i.e., prothrombin (FII), FVIII, FIX, 
and FXI) are associated with the risk of thrombo-
sis [109–111]. Regarding environmental factors, 
surgery, major trauma, immobilization, pregnancy, 
postpartum period, long-distance travel, and cancer 
are the main risk factors for deep vein thrombo-
sis [112–115]. Hypercoagulability in patients with 
malignancy was described first by Armand Trous-
seau in 1865 [116]. Cancer may induce venous sta-
sis, endothelial injury, and an imbalance of pro- and 
anti-thrombotic factors leading to a hypercoaguable 
state [115]. Immobilization and prolonged travel 
increases the risk of thrombosis 2- to threefold in 
older adults [114]. The RIETE (Registro Informa-
tizado Enfermedad TromboEmbolica) registry is 
a large prospective multinational ongoing registry, 
designed to collect data of venous thromboembo-
lism presentation, management, and outcomes from 
multiple centers in 24 countries [117]. In the RIETE 
registry of patients aged over 80 with venous throm-
bosis, it was found that they had been immobilized 
for more than 4  days and had chronic obstructive 
lung disease and heart failure [97].

The most serious complication of venous thrombo-
sis is pulmonary embolization and paradoxical embo-
lism leading to ischemic stroke. Paradoxical embo-
lism resulting in ischemic stroke can occur in the case 
of a patent foramen ovale, present in about 20% of the 
population. When the right atrial pressure transiently 
exceeds the left atrial pressure, even small venous 
emboli can transmit the canal of patent foramen 
ovale. Post-thrombotic syndrome develops in approxi-
mately 25–60% of patients with acute lower extremity 
deep venous thrombosis depending on severity, chro-
nicity, anatomic level of involvement, and efficacy of 
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anticoagulation [118]. The most prominent clinical 
signs of post-thrombotic syndrome are leg swelling, 
pain, and skin alterations, and even skin ulceration.

Residual thrombus damages venous valves and 
obstructs outflow, the main etiologic factors for 
ambulatory venous hypertension, which has been 
shown to be significantly associated with an increased 
risk of post-thrombotic syndrome. The main patho-
mechanism leading to post-thrombotic syndrome is 
aseptic inflammation triggered by thrombus forma-
tion, which results in venous wall fibrotic remodeling. 
Additionally, thrombus formation via direct mechani-
cal venous valve damage exacerbates venous valve 
incompetence, contributing to the development of 
post-thrombotic syndrome. The relationship between 
venous valve incompetence and thrombosis is bi-
directional, as incompetent venous valves promote 
venous stasis and thereby thrombus formation [119]. 
Remodeling of the vein wall in the post-thrombotic 
syndrome is more extensive in elderly people [120]. 
Timely removal of the thrombus may improve deep 
venous flow and hence decrease the incidence of post-
thrombotic syndrome. Patients treated with new oral 
anticoagulants (including dabigatran, rivaroxaban, 
apixaban, and edoxaban) or percutaneous endovenous 
intervention for lower extremity deep venous throm-
bosis showed lower incidence of post-thrombotic 
syndrome and reduced recurrent deep vein thrombo-
sis and venous obstruction [121] [122]. Endovascular 
methods have been developed as an aggressive treat-
ment for lower-extremity deep vein thromboses that 
can remove acute venous thrombus and facilitate stent 
treatment of underlying venous stenoses [123]. These 
involve catheter-directed thrombolysis and percutane-
ous mechanical thrombectomy, balloon venoplasty, 
iliac vein stenting, and manual aspiration [124]. The 
lysis of endovascular thrombus results is a more rapid 
thrombus dissolution than systemic thrombolysis, 
thereby preserving valvular function [125]. The most 
important and most frequent complication of cath-
eter-based interventions in patients with deep vein 
thrombosis is bleeding, mostly related to the use of 
thrombolytic agents [126].

Chronic venous disease — varicose veins

 Chronic venous disease of the lower limbs is mani-
fested as a progressive impairment of the venous 

circulation of the tissues [82]. The clinical signs of 
chronic venous disease range from edema, venous 
eczema, hyperpigmentation of skin, and lipoderma-
tosclerosis (induration caused by fibrosis of the sub-
cutaneous fat) to varicose veins and venous ulcers 
[82]. Chronic venous disease can be graded according 
to the descriptive Clinical, Etiological, Anatomical, 
Pathophysiological (CEAP) classification [82]. The 
clinical signs are categorized into seven classes (des-
ignated C0 to C6) according to severity [82]: no vis-
ible or palpable signs of venous disease (C0), telangi-
ectasias or reticular veins (C1), varicose veins (C2), 
edema (C3), pigmentation or eczema (C4a), lipo-
dermatosclerosis or atrophie blanche (C4b), healed 
venous ulcer (C5), and active venous ulcer (C6). 
Varicose veins are dilated, thickened, elongated, and 
twisted blood vessels, whose ability to control organ 
blood flow is impaired. Varicosities are present from 
class 2 of chronic venous disease. Severe chronic 
venous disease (C4 to C6) is termed “chronic venous 
insufficiency,” which is characterized by the presence 
of skin alterations in addition to varicose veins [82].

Advanced age, obesity, family history, and a sed-
entary lifestyle represent major risk factors for the 
development of chronic venous disease [82]. Severity 
of chronic venous disease progresses with advanced 
age [82]. The Framingham Study showed that the 
incidence of chronic venous disease is higher among 
women than men [4]. Women with varicose veins 
are more often obese, have lower levels of physi-
cal activity, and have higher systolic blood pressure. 
Men with varicose veins are characterized by lower 
levels of physical activity and higher smoking rates 
[4]. Although the pathomechanism of chronic venous 
disease is not entirely known, it is characterized with 
venous hypertension, venous reflux, and venous 
wall inflammation and fibrosis that can progress in 
a vicious circle of inflammation resulting in further 
progression of venous hypertension, venous reflux, 
and production of inflammatory mediators [82]. In 
the Edinburgh Vein Study, venous reflux increased 
the risk of developing varicose veins, especially when 
combined deep and superficial reflux was present [4, 
8].

The mechanisms by which aging exacerbates pro-
gression of chronic venous disease are multifaceted. 
There is a general thickening of the venous wall with 
aging, even without the presence of reflux or venous 
hypertension [127]. Spatial heterogeneity in PDGF 
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production within the aged venous wall has been 
causally linked to tortuosity [128]. Chronic venous 
hypertension initiates a range of pathophysiologic 
changes in the venous wall and surrounding tissues 
including inflammation, and increased permeability 
of endothelium. The resulting accumulation of fibrin 
and hemosiderin in the perivascular tissues acts to 
exacerbate inflammation and promote collagen syn-
thesis by fibroblasts leading to venous wall thicken-
ing and remodeling. Tissue hypoxia leads to apopto-
sis and extracellular changes [129]. Aging-induced 
inflammation in veins is associated with elevated 
cytokine production [130] and increased MMP acti-
vation, which likely play a critical role in the patho-
genesis of chronic venous disease [131, 132].

The effects of sex hormones on venous diseases

Sex differences in the pathogenesis of venous dis-
eases have been extensively studied [133]. Female 
sex is associated with greater risk factors for vari-
cosis [133]. Lower limb venous pressure depends 
on the degree of calf muscle mass and activity and 
body mass index. Females have lower resting venous 
pressures because females, in general, have smaller 
calf size than males [134, 135]. The progression 
of chronic venous disease in the Edinburgh Vein 
population-based cohort study did not differ by sex, 
but family history of varicose veins or deep venous 
thrombosis increased the risk of disease progres-
sion [136]. The prevalence of deep vein thrombosis 
was higher in males. Similarly, the Austrian Study of 
Recurrent Venous Thromboembolism showed that 
men had a 3.6-fold higher risk of recurrent venous 
thrombosis than women [137, 138]. There are strong 
data suggesting that both estrogen and testosterone 
signaling pathways modulate biological processes 
involved in venous thrombosis [139–141]. Important 
in that regard is that women using exogenous estro-
gens either as contraceptives or as post-menopausal 
hormonal replacement have a higher risk of venous 
thrombosis [142–144].

Role of veins in vascular cognitive impairment 
in aging

There is increasing evidence supporting an impor-
tant role of age-related functional and structural 

alterations in cerebral veins in the pathogenesis of 
vascular cognitive impairment and dementia (VCID) 
[145]. Pathophysiological consequences of aging-
induced dysregulation of the cerebral venous circula-
tion potentially include disruption of the blood–brain 
barrier, development of cerebral microhemorrhages 
of venous origin, altered production of cerebrospinal 
fluid, glymphatic dysfunction, and dysregulation of 
cerebral blood flow [145].

Aging is known to alter the structure of cerebral 
veins, resulting in increased collagenosis [146, 147]. 
Increased venous collagenosis was demonstrated in 
brains with manifest leukoaraiosis [147], suggest-
ing that pathological remodeling of the venous wall 
may contribute to the genesis of white matter lesions 
[148]. Recent studies started to determine how imag-
ing alterations of deep medullary veins, small ves-
sel disease, and cognitive impairment in older adults 
associate [149, 150]. There is emerging evidence that 
the increased diameter of the internal cerebral veins 
and of the basal veins of Rosenthal in older adults 
associate with regional white matter disease [150]. 
Periventricular venous collagenosis was reported to 
associate with white matter hyperintensities in both 
AD patients in older adults without AD patholo-
gies [148]. In the aged, brain venules often exhibit 
increased tortuosity [151, 152]. It has been proposed 
that venular tortuosity may be an early neuroimaging 
marker of small vessel disease and may correlate with 
white matter hyperintensities and/or cerebral micro-
hemorrhages [152]. A recent brain imaging study 
comparing deep medullary veins showed that patients 
with early Alzheimer’s disease also exhibit increased 
venular tortuosity [153]. The mechanisms contribut-
ing to exacerbated venous tortuosity in the brain are 
likely multifaceted and, based on analog mechanisms 
manifested in the peripheral venous circulation, may 
include elevated cerebral venular pressure (similar to 
the role of increased venous pressure in formation of 
varicose veins in the lower extremities [154]), altered 
elasticity of the vascular wall, degenerative changes 
of the media, and pathological remodeling of the 
extracellular matrix and basal membrane [151].

Age-related structural alterations of the bridging 
veins, which connect the superficial venous network 
to dural sinuses, have an important role in subdural 
bleedings associated with traumatic brain injury in 
older adults [155]. Because of brain atrophy and 
consequential expansion of the subdural space, 
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elevated mechanical tension is imposed on the bridg-
ing veins in older individuals [155, 156]. The result-
ing increased mechanical burden combined with the 
aging-induced decrease in the elasticity of the venous 
wall predispose these bridging veins to a mechani-
cally induced rupture in response to even minor brain 
trauma, resulting in increased incidence of bleedings 
into the subdural space in the elderly even with minor 
trauma [155, 156].

There is ample evidence documenting aging-
induced degenerative changes and pathological 
remodeling in venous valves [81], which potentially 
contribute to venous valve insufficiency associated 
with advanced aging [77, 78]. On the basis of our 
understanding of the pathogenesis of chronic venous 
insufficiency in the peripheral venous circulation, it 
can be predicted that aging-induced alterations in cer-
ebral venous valves also contribute to valvular incom-
petence [157], promoting venous reflux and cerebral 
venous hypertension. Elevated cerebral venous pres-
sure has been proposed to contribute to pathological 
processes including microhemorrhages of venous ori-
gin, blood–brain barrier disruption, and perivascular 
inflammation, all of which promote age-related cog-
nitive decline [145, 158, 159]. When venous hyper-
tension develops in the superior sagittal sinus, it also 
impairs the absorption of the cerebrospinal fluid.

The internal jugular vein valve, which is the 
only venous valve situated in the venous circulation 
between the heart and the brain, is critical for the pre-
vention of retrograde flow of venous blood. A missing 
or damaged internal jugular vein valve may promote 
jugular venous reflux [160]. There is strong anatomi-
cal evidence that the internal jugular vein valve is 
often incompetent in older adults. With an incompe-
tent internal jugular vein valve, increases in intratho-
racic pressure due to Valsalva maneuvers for example 
result in jugular venous reflux [161]. The incidence 
of jugular venous reflux significantly increases with 
advanced age [162–167], as a consequence of aging-
induced degenerative changes in the venous valves. 
Jugular valve insufficiency and jugular venous reflux 
likely contribute to various brain pathologies [168, 
169], including intra-cerebral hemorrhages of venous 
origin [170].

Cerebral white matter hyperintensities (WMHs) 
are a common radiological finding on MRI imag-
ing of the aging brain showing damage in the white 

matter regions near the lateral ventricles (“leu-
koaraiosis”) [171–174]. WMHs can be diagnosed 
on T2-weighted fluid inversion recovery (FLAIR) 
sequences, without significant hypointensity on 
T1 images. The clinical significance of WMHs 
stems from their association with vascular cogni-
tive impairment [175–177] as well as Alzheimer’s 
disease [178–181] in older adults. In addition to 
the well-documented contribution of pathological 
alterations in the arterial circulation (e.g., microvas-
cular consequences of arterial hypertension), there 
is also increasing evidence supporting the role of 
aging-induced venous pathologies in the genesis 
of WMHs [182]. A number of age-related venous 
abnormalities were shown to associate with WMHs 
[146, 182], including jugular venous reflux and 
increased cerebral venous pressure [183].

Cerebral microhemorrhages (CMHs, also known 
as “cerebral microbleeds”), which result from 
rupture of small intracerebral blood vessels, are 
highly prevalent in older adults [159]. CMHs were 
reported to contribute to the pathogenesis of cog-
nitive decline [159, 184–192]. In addition to the 
well-characterized arteriolar origin of CMHs, there 
is emerging evidence that CMHs can also origi-
nate from the rupturing of small veins, venules, 
and capillaries [159, 193–195]. Studies linking the 
development of CMHs to the performance of Val-
salva maneuvers [196] support this concept. Dur-
ing the Valsalva maneuver, intrathoracic pressure 
can increase over 150  mmHg [197], which can be 
transmitted to the cerebral venous circulation if the 
internal jugular vein valves are incompetent [161, 
198–201]. It has been proposed that when the pres-
sure in the thin-walled cerebral venules exceeds a 
critical limit, multifocal venous CMHs may ensue 
in older adults.

Research into the pathogenesis of cerebral amy-
loid angiopathy has been primarily focused on Aβ 
deposition in the wall of arterial vessels. Yet, there 
is also increasing evidence from preclinical studies 
and clinical investigations that veins and venules are 
also affected by accumulation of Aβ likely through 
impaired perivascular clearance [202, 203]. It has 
been proposed that venular amyloidosis exacerbates 
microvascular pathologies associated with AD and 
may promote the development of amyloid plaques 
in the brain parenchyma as well [203].
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Aging veins as grafts

A special issue associated with vein aging relates to 
the surgical application of venous grafts for arterial 
bypasses. Saphenous veins have been used for coro-
nary artery bypass grafting for more than 50  years. 
The advantages of this approach include ease of 
access, ease of operation, sufficiency of length for 
transplantation, and shortness of harvest time [204]. 
Vein grafts are living conduits which respond to 
hemodynamical and other local environmental stim-
uli. The transposition of vein segments from venous 
low pressure and low flow circumstances to arterial 
high pressure and high flow environment results in 
structural and functional remodeling of the venous 
wall. This remodeling can be either physiological or 
pathological, but the underlying regulatory mecha-
nisms are not well understood.

The venous tunica media layer may become dam-
aged during bypass grafting [205]. Vascular smooth 
muscle cells convert from contractile to synthetic 
phenotype as a consequence of damage. Altered 
shear, circumferential, longitudinal, compressive, and 
pulsatile stresses induce smooth muscle migration 
and proliferation into the intima, and deposition of 
collagen and proteoglycans into the intima and tunica 
media leading to thickening of these two layers [206]. 
The inward/outward luminal and wall remodeling 
of venous grafts leads to “arterialized veins” with 
altered structural and biomechanical features as com-
pared to “normal” veins. Early studies showed that 
the lumen of venous bypass grafts may increase by 
25 to 75% due to this adaptive remodeling [207]. The 
time course of venous graft remodeling is relatively 
rapid, the majority of the luminal and wall remode-
ling of the graft occurs in the first month after implan-
tation [207]. The PREVENT III and IV randomized 
controlled trials showed that 30–40% of coronary and 
lower extremity vein grafts develop significant steno-
sis within the first year following implantation [205, 
208].

There is evidence that grafting with veins from 
older adults is less successful than with younger 
veins [209–211]. Potential mechanisms contribut-
ing to pathological remodeling of older vein grafts 
include the dysregulated expression of Notch-4 [212], 
Ephr-B4 [213], smooth muscle myosin heavy chain, 
calponin, TIMP-2 and TIMP-3, cytokeratin-8, and 
MMPs [44].

Shared mechanisms of vascular aging affecting 
the venous system

The role of shared cellular and molecular mechanisms 
of aging in age-related alterations of the venous sys-
tem has not been studied in detail and can be inferred 
from studies on arterial aging [9, 10, 24]. Here we 
highlight some of these critical shared mechanisms 
of vascular aging, which may be targeted in future 
experimental and clinical studies for prevention of 
age-related venous alterations.

Increased oxidative and nitrative stress

Strong evidence implicates increased oxidative stress 
in vascular aging processes, including the genesis of 
endothelial dysfunction and pathological vascular 
remodeling [22, 25, 30, 214–223]. Vascular oxida-
tive stress results in impaired bioavailability of NO 
and increased generation of the highly reactive oxi-
dant peroxynitrite  (ONOO−; the reaction product of 
NO and superoxide). There is evidence that aging 
results in increased presence of nitrotyrosine (a 
marker of increased  ONOO− formation) in endothe-
lial cells obtained from the antecubital veins [22], 
consistent with the view that increased oxidative and 
nitrative stress is a critical feature of venous aging. 
NO exerts potent anti-inflammatory, anti-thrombotic, 
and anti-leukocyte adhesion effects; thus, reduction 
in NO, in addition to the direct pro-inflammatory 
effects of increased levels of reactive oxygen spe-
cies, likely contributes to age-related venous patholo-
gies. Increased vascular oxidative stress has also been 
linked to activation of matrix metalloproteinases 
(MMPs) and consequential disruption of the struc-
tural integrity of aged vessels.

Increased cellular senescence

Cellular senescence is emerging as an important 
mechanism of aging-induced vascular impairment 
[224, 225]. Oxidative stress–induced DNA damage 
is an important mechanism contributing to cellular 
senescence. Senescent endothelial cells express a 
senescence-associated secretory phenotype (SASP), 
characterized by increased secretion of inflammatory 
cytokines, immune modulators, growth factors, and 
proteases. There are studies supporting the concept 
that endothelial senescence is also a feature of venous 
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aging [226]. Future studies are needed to define the 
role of senescence and SASP factors in the pathogen-
esis of venous alterations in aging.

Increased inflammatory status

There is a strong connection between aging and 
chronic sterile inflammation in the cardiovascular sys-
tem [10, 25, 27, 28, 217, 227–231]. The mechanisms 
contributing to age-related sterile vascular inflamma-
tion are likely multifaceted. Importantly, increased 
production of ROS activates pro-inflammatory signal-
ing pathways, including NF-κB [222], which promote 
endothelial activation and up-regulate expression of 
various pro-inflammatory paracrine mediators. Aged 
venous endothelial cells also exhibit a pro-inflamma-
tory phenotype, including an increased activation of 
NF-κB [22, 232]. Additionally, senescent cells also 
contribute to vascular inflammation via their SASP. 
Heightened inflammatory status likely contributes to 
pathological remodeling of aged veins [11, 38].

Increased vascular apoptosis

Apoptosis is an evolutionarily conserved cell death 
program which was shown to contribute to a range 
of vascular aging phenotypes [10, 233]. In the aged 
arterial system, there is an increased presence of 
apoptotic endothelial cells, which has been linked 
to impaired bioavailability of pro-survival NO, 
increased levels of the pro-apoptotic inflammatory 
cytokine TNFα, and/or increased mitochondrial oxi-
dative stress [29, 234–236]. Apoptosis also likely 
contributes to the pathogenesis of age-related venous 
diseases. Increased presence of apoptotic endothelial 
and smooth muscle cells was documented in varicose 
veins removed from older patients [40]. Recent obser-
vations confirmed the presence of apoptotic cells in 
the venous wall in chronic venous insufficiency [237].

Role of sirtuins

Sirtuins (including SIRT1, SIRT3) are 
 NAD+-dependent protein deacetylases, which regu-
late important cellular pathways involved in regula-
tion of mitochondrial energy metabolism, cellular 
metabolic processes, chromatin function, and gene 
transcription [238–241]. There is strong evidence 
suggesting that sirtuin activation exerts anti-aging 

effects in the arterial system [242–245].  NAD+ is 
a rate-limiting co-substrate for sirtuins. Cellular 
 NAD+ levels are decreased in advanced aging [246, 
247], at least in part, as a consequence of increased 
 NAD+ utilization by overactivated PARP-1 enzyme 
[248]. Recent studies suggest that in mouse models 
of aging, treatments that boost  NAD+ biosynthesis 
(e.g., administration of nicotinamide mononucleotide, 
a key  NAD+ precursor [246]) can activate sirtuins 
and reverse aging-induced endothelial dysfunction in 
the arterial system [23, 34]. Initial evidence suggests 
that interventions that activate SIRT1 or SIRT3 likely 
exert beneficial effect on the aged venous system as 
well [249, 250].

Impaired cellular stress resilience

Impaired cellular stress resilience (the impaired abil-
ity of vascular cells to counteract the deleterious 
effects of various molecular stresses and return to 
homeostasis) has been identified as a universal hall-
mark of the aging process. In young organisms in 
the presence of increased production of ROS, adap-
tive homeostatic mechanisms are invoked, including 
the Nrf2 (nuclear factor erythroid 2-related factor 
2)-driven antioxidant defense pathways [251–253]. 
Nrf2 is a redox-sensitive transcription factor, which 
orchestrates the antioxidant response [254]. In the 
young vasculature, this adaptive homeostatic mech-
anism up-regulates the expression of antioxidant 
enzymes and proteins that repair ROS-induced mac-
romolecular damage, thereby protecting cells against 
oxidative injury triggered by dietary and lifestyle fac-
tors (e.g., smoking), diabetes mellitus, and inflam-
mation. Importantly, Nrf2 activation has been shown 
to protect venous endothelial cells from oxidative 
stress–mediated apoptosis and injury [255–259]. Nrf2 
activation was also demonstrated to confer potent 
anti-inflammatory [260] effects. Aging is associated 
with Nrf2 dysfunction in the vascular system, exac-
erbating oxidative stress and its sequela, including 
increased inflammation and cellular senescence [251, 
252, 261]. Age-related loss of oxidative stress resil-
ience is thought to promote development of vascular 
pathologies [262]. Recent studies provide preliminary 
evidence that mutations in the Nrf2 pathway may 
associate with deep vein thrombosis [263]. Further 
studies are warranted to determine how age-related 
Nrf2 dysfunction contributes to the genesis of venous 
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aging phenotypes and to investigate the potential 
beneficial venous effects of pharmacological Nrf2 
activators.

mTOR signaling

Cellular mTOR signaling is an important regulator of 
metabolic processes including autophagy. Reduced 
activity of the mTOR pathway is well-documented 
to regulate aging processes [264]. There is growing 
evidence that experimental inhibition of mTOR activ-
ity (e.g., by rapamycin) interferes with the patho-
genesis of a range of age-related diseases [265, 266] 
and exerts anti-aging endothelial protective effects 
[266–273]. Preliminary evidence also implicates 
mTOR in the pathogenesis of chronic venous insuf-
ficiency [274]. DEPTOR (domain-containing mTOR 
interacting protein) is involved in mTOR signaling 
pathway as an endogenous regulator. Recent studies 
demonstrate that overexpression of DEPTOR results 
in marked phenotypic changes in human saphenous 
vein endothelial cells [275].

Interventions for healthy vein aging

Results from the Framingham Study suggest that 
increased physical activity and weight control may 
help prevent varicose veins among adults at high 
risk [90]. For prevention of deep vein thrombosis in 
older adults, lifestyle changes are warranted includ-
ing increasing physical activity, ceasing to smoking, 
and reducing excess bodyweight. Conservative and 
interventional treatments can improve health-related 
quality of life and diminish or delay symptoms and 
progression of chronic venous insufficiency. Com-
pression stockings are used to relieve symptoms; 
however, the compliance to wear them is not always 
adequate. Venoactive drugs may slow progression 
of chronic venous disease, but in advanced clinical 
stages aggressive medical intervention is needed. 
Thromboprophylaxis in high-risk states, such as 
immobilization and surgery, is mandatory. Further-
more, temporary anticoagulant therapy is needed 
in the case of venous thrombosis, while in the case 
of recurrent venous thrombosis or predisposing fac-
tor, lifelong anticoagulation is recommended. With 
the accessibility of molecular technologies, the time 
is not far when point-of-care testing will become 

available to identify thrombophilic genetic disorders, 
including mutations affecting the function of cells 
in venous wall, leading to early and proper preven-
tion. Very long chain n-3 fatty acids in the diet lower 
thrombotic tendency, and flavonoids decrease platelet 
aggregation [276]. Because of the high global preva-
lence, screening and education programs for general 
practitioners have high importance [129, 277]. Mod-
erate physical exercise seems to be one of the most 
effective means of prevention [4, 67, 96].

Perspectives

There is growing evidence supporting the paradigm 
of the plasticity of vascular aging, suggesting that 
vascular aging phenotypes can be reversed by phar-
macological or dietary interventions [23, 226, 235, 
278–280]. It is predicted that in the upcoming dec-
ade, interventional strategies using combination 
treatments targeting multiple vascular aging pro-
cesses can be developed to promote vascular rejuve-
nation. These will likely also be effective in improv-
ing venous health and preventing the pathogenesis of 
venous diseases in older adults. Public health research 
should also investigate the determinants of pathologi-
cal venous aging (including the interaction of genetic, 
environmental, lifestyle, dietary, and socio-economic 
factors). Critical areas of venous aging research 
include mechanistic investigations targeting the con-
tributions of venous pathologies to age-related cogni-
tive impairment and neurodegeneration.
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