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estimators of age for different species of deer mice 
based on novel DNA methylation data generated on 
highly conserved mammalian CpGs measured with 
a custom array. The multi-tissue epigenetic clock for 
deer mice was trained on 3 tissues (tail, liver, and 
brain). Two human-Peromyscus clocks accurately 
measure age and relative age, respectively. We pre-
sent CpGs and enriched pathways that relate to dif-
ferent conditions such as chronological age, high alti-
tude, and monogamous behavior. Overall, this study 
provides a first step towards studying the epigenetic 
correlates of monogamous behavior and adaptation to 
high altitude in Peromyscus. The human-Peromyscus 
epigenetic clocks are expected to provide a significant 

Abstract DNA methylation-based biomarkers of 
aging have been developed for humans and many 
other mammals and could be used to assess how stress 
factors impact aging. Deer mice (Peromyscus) are 
long-living rodents that have emerged as an informa-
tive model to study aging, adaptation to extreme envi-
ronments, and monogamous behavior. In the present 
study, we have undertaken an exhaustive, genome-
wide analysis of DNA methylation in Peromyscus, 
spanning different species, stocks, sexes, tissues, and 
age cohorts. We describe DNA methylation-based 
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boost to the attractiveness of Peromyscus as a biologi-
cal model.

Keywords Deer mouse · Aging · Epigenetic clock · 
DNA methylation

Introduction

Cytosine methylation is an epigenetic mechanism 
which plays a critical role in mammalian develop-
ment [1]. Methyl groups may help to generate a local 
chromatin configuration that renders genes inaccessi-
ble, and thus transcriptionally inactive [2]. In general, 
cytosine methylation at specific sites is influenced by 
both heritable as well as environmental factors [3]. It 
has long been recognized that age has a strong effect 
on DNA methylation (DNAm) levels [4–6]. DNA 
methylation data can be used to develop multivariate 
regression models that accurately estimate chrono-
logical age for any tissue across the entire lifespan of 
mammals [7–13]. These DNAm-based age estima-
tors, also known as epigenetic clocks, use penalized 
regression models to predict chronological age based 
on DNA methylation levels (reviewed in [13, 14]). 
Methylation stands out from other genomic data in 
that it allows one to build pan-tissue clocks that apply 
to all tissue types across the entire lifespan (from pre-
natal samples to centenarians) [11, 12, 15].

Species from the genus Peromyscus (deer mouse) 
are appealing models for addressing various biologi-
cal questions in relation to aging because they live 
up to 8 years in captivity [16], a lifespan that exceeds 
by about threefold, that of animals of the genus Mus, 
the commonly used model for biomedical research. 
They are also used to study metabolism, infectious 
diseases, adaptation at extreme environments, such 
as high altitude and the desert, monogamous behav-
ior, as well behavioral responses in response to anxi-
ety stress [16–19]. In an effort to better understand 
how methylation profiles change in relation to differ-
ent environments and genetic backgrounds, we have 
undertaken to study methylation patterns in the genus 
Peromyscus spanning different species and stocks/
populations. Peromyscus is comprised of species that 
were evolved in diverse range habitats, from deserts 
to high-altitude mountains, in environments with low-
to-high extrinsic risk of predation. Thus, each one of 
these species gained several unique features to adapt, 

reproduce, and survive in these environments. Here, 
we present a comparative epigenetic analysis of these 
interesting characteristics. We characterize CpGs that 
relate to mating behavior (e.g., monogamy) and high/
low altitude.

Further, we present six highly accurate epigenetic 
clocks for Peromyscus. Two of these clocks apply to 
humans as well.

Results

Data sets

Different species of Peromyscus are maintained as 
closed colonies of outbred, genetically diverse stocks 
at the Peromyscus Genetic Stock Center. The present 
analysis involved 36,000 CpGs that are highly con-
served across mammals in DNA and was applied to 
specimens from two Peromyscus subgenera, 5 spe-
cies and one interspecific hybrid, 3 tissues (tails, 
brain, and liver), and individuals from ages ranging 
from 2 months to about 3.6 years. The choice of tis-
sues was informed by several criteria. First, the Mam-
malian Methylation Consortium aims to collect liver 
samples and brain samples from as many species as 
possible for the sake of comparative studies. For these 
tissues, abundant methylation data are available from 
various species, allowing the cross-species evaluation 
of data generated. Second, we also aimed to profile a 
tissue that could be collected without sacrificing the 
animal (tail).

The specimens analyzed involved both males and 
females as well as individuals from two different 
closed colonies of P. maniculatus. This experimental 
setup facilitated a simultaneous, unbiased analysis of 
DNA methylation signatures in specimens differing 
across different levels of biological organization.

We used a custom methylation array (Horvath-
MammalMethylChip40) to generate DNA methyla-
tion data from six species of Peromyscus: Peromyscus 
californicus (n = 16), Peromyscus eremicus (n = 17), 
Peromyscus hybrid between P. polionotus and P. 
maniculatus (n = 6), Peromyscus leucopus (n = 36), 
Peromyscus maniculatus (n = 53), and Peromyscus 
polionotus (n = 16). Hierarchical clustering indicated 
the n = 6 samples were technical outliers (Fig.  1). 
These samples were subsequently removed from the 
analysis.
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These DNA samples came from three tissues/
organs: whole brain, tail, and liver as detailed in 
Table  1. The ages ranged from 0.083 to 3.6  years. 
Additionally, we used DNA methylation profiles 
from 1205 human samples, from several tissues, and 
with a large age range, to construct two dual-species 

human-Peromyscus epigenetic clocks. These human 
data were generated on the same custom methylation 
array, which was designed to facilitate cross-species 
comparisons across mammals.

Unsupervised hierarchical clustering of deer mouse 
methylation data

Unsupervised hierarchical clustering of methylation 
data was initially performed that identified the tissue 
identity as the most prominent discriminator of global 
methylation signatures (Fig.  1). Thus, the profile of 
DNA methylation is primarily guided by a function 
which, in turn, underscores the impact of this epige-
netic modification in regulating gene transcription 
and therefore guiding cellular differentiation. Within 
the same tissue, clustering occurred in a manner that 
overlapped astonishingly with the evolutionary his-
tory. Initially, two branches emerged, with the first 
including P. californicus and P. eremicus and the 
second comprised of P. leucopus, P. maniculatus, 
and P. polionotus, that signify two distinct groups 
in the evolution of Peromyscus [20]. Among them, 
the highly related P. maniculatus and P. polionotus 
clustered together, while P. leucopus has diverged 
earlier. Indeed, P. maniculatus and P. polionotus 
can form interspecific F1 hybrids that, in relation to 
their methylation patterns, are more closely related 
to the paternal strain, P. polionotus (Fig. 1) pointing 
to the impact of the parent of origin effects in guid-
ing methylation signatures [21]. Among the same 
species, genetic relevance appeared to be of signifi-
cance. Individuals from two closed P. maniculatus 
colonies were evaluated, bairdii and sonoriensis (BW 
and SM2 stocks, respectively) [16]. Individuals from 
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Fig. 1  Unsupervised hierarchical clustering of tissue samples 
from deer mice. Average linkage hierarchical clustering based 
on the interarray correlation coefficient (Pearson correlation). 
The first color band is based on cutting the branches at a height 
cutoff value of 0.03. Note that the branch colors correspond to 
tissue (second color band) and species (third color band). Tis-
sue encodes tail (brown), whole brain (turquoise), and liver 
(blue). Species encodes Peromyscus californicus (turquoise), 
eremicus (blue), leucopus (yellow), maniculatus (green), polio-
natus (red), and a hybrid between polionatus and maniculatus 
(brown). The fourth color band encodes monogamous (black) 
versus polygamous (white) behavior. The fifth color band 
encodes high altitude population (black) versus low altitude 
(white). Female (pink). Age color codes old (red) versus young 
(white)

Table 1  Description of the 
data. n = total number of 
tissues. Number of females. 
Age (in units of years): 
mean, minimum, and 
maximum age

Species/tissue n No. of females Mean age Min. age Max. age

Peromyscus californicus/tail 16 7 0.955 0.083 2.75
Peromyscus eremicus/tail 17 9 1.36 0.16 2.66
Hybrid polionotus + maniculatus/tail 6 3 0.163 0.083 0.25
Peromyscus leucopus/brain 7 7 1.58 0.583 2.33
Peromyscus leucopus/liver 8 8 1.46 0.583 2.33
Peromyscus leucopus/tail 16 8 1.13 0.083 3.58
Peromyscus maniculatus/brain 12 12 1.58 0.583 2.42
Peromyscus maniculatus/liver 13 13 1.46 0.583 2.42
Peromyscus maniculatus/tail 25 14 0.724 0.083 2.83
Peromyscus polionotus/tail 16 9 0.909 0.083 1.91
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each of these colonies clustered accurately together 
suggesting that genetic relatedness is capable of 
triggering similar patterns of DNA methylation that 
surpass those inflicted by the sex and the age of the 
individuals from which the DNA samples have been 
isolated. Within the same species and stocks, cluster-
ing occurred according to sex. The fact that the analy-
sis involved tails, whole brain, and liver samples that 
are not major target tissues for sex hormones implies 
that sex-specific patterns of methylation are inflicted 
early during development that persist at adulthood. 
Alternatively, the expression of receptors for gonadal 
steroids by these tissues may have caused modulation 
of the methylation profile and the observed cluster-
ing of the specimens according to sex; nevertheless, 
this appears to be of lesser impact as compared to the 
other variables examined.

Epigenetic clocks

Our different clocks can be distinguished along two 
dimensions (species and measure of age). The multi-
tissue clock (also referred to as pan-tissue clock) for 
Peromyscus was developed by regressing chronologi-
cal age on CpGs in all available tissue samples from 
all species. Since the regression model was fit to dif-
ferent Peromyscus species, the resulting age estima-
tors are multi-species clocks that are expected to apply 
to all Peromyscus species. To arrive at unbiased esti-
mates of our DNA methylation-based age estimators, 
we performed a cross-validation study in the train-
ing data. The cross-validation study reports unbiased 
estimates of the age correlation R (defined as Pearson 
correlation between the age estimate (DNAm age) 
and chronological age as well as the median absolute 
error. The multi-tissue clock leads to a high correla-
tion between estimated age and actual age (cross-
validation estimate of the Pearson correlation R = 0.9, 
median absolute error = 0.24  years = 3  months, 
Fig.  2a). Similarly, we developed tissue-specific 
clocks by focusing on one specific tissue type. Since 
multiple Peromyscus species were used, the result-
ing clocks should again be interpreted as multispe-
cies clocks. Cross-validation studies indicate high 
accuracy for the brain clock (cross-validation esti-
mate R = 0.78, MAE = 0.49  years, Fig.  2b), liver 
clock (R = 0.94, MAE = 0.20, Fig. 2c), and tail clock 
(R = 0.95, MAE = 0.16, Fig. 2d).

Evolutionarily speaking, primates are quite distant 
from Peromyscus. However, we managed to build 
two human-Peromyscus multi-tissue clocks. The 
first human-Peromyscus clock estimates chronologi-
cal age using a single multivariate regression model. 
We observe high correlation coefficients between age 
and its estimates across both species (cross-validation 
estimate R = 0.99, Fig.  2e) and when the analysis is 
restricted to Peromyscus samples (R = 0.79, Fig. 2f). 
The second human-Peromyscus clock estimates rela-
tive age, defined as the ratio of chronological age to 
maximum lifespan. This clock achieves a similar per-
formance (R = 0.97 and R = 0.79, Fig. 2g,h). By defi-
nition, the relative age takes values between 0 and 1 
and arguably provides a biologically more meaning-
ful comparison between species with different lifes-
pans (deer mouse and human), which is not afforded 
by mere measurement of the absolute age.

Peromyscus are long-living rodents that exhibit 
variable lifespan depending on the species [22]. 
According to the database “anAge” [23], the maxi-
mum lifespans are as follows: 7.4 years for Peromys-
cus eremicus [24], 7.9 years for Peromyscus leucopus 
[24], 8.3 years for Peromyscus maniculatus [25], and 
5.5 years for Peromyscus polionotus [24]. While the 
maximum lifespan estimates may be debatable, our 
clock is quite robust with respect to different choices 
of this mathematical parameter. Similarly, accurate 
clocks could be constructed with different parameter 
choices.

EWAS of age

In total, 29,125 probes from the mammalian chip 
(HorvathMammalMethylChip40) were aligned to 
specific loci approximate to 5048 genes in the deer 
mouse genome (Peromyscus_maniculatus_bairdii.
HU_Pman_2.1.100). These probes have high con-
servation in mammals, thus comparable among 
different species. In our epigenome-wide associa-
tion study (EWAS) of age, we correlated individual 
CpGs to chronological age. Stratified results for each 
deer mouse species and tissue type are presented in 
Supplementary Fig. 1. Significant age-related CpGs 
were located in both genic and intergenic regions 
relative to the transcriptional start site. CpGs located 
in promoters and CpG islands gained methylation 
with age.

450 GeroScience (2022) 44:447–461
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Fig. 2  Cross-validation study of epigenetic clocks for Pero-
myscus. The y-axis reports the DNA methylation estimate 
of A–F chronological age (age in units of years) or G and H 
relative age. a Epigenetic clock for multiple Peromyscus spe-
cies. Leave-one-sample-out (LOO) estimate of DNA methyla-
tion age (y-axis, in units of years) versus chronological age. 
A Multi-tissue clock for all considered Peromyscus species, 
B brain clock, C liver clock, and D tail clock. E Dual species 

human-Peromyscus clock for chronological age, F excerpt of 
panel E restricted to Peromyscus samples. G Human-Peromy-
scus clock for relative age (defined as the ratio of chronologi-
cal age to maximum lifespan). H Excerpt of panel G restricted 
to Peromyscus samples. Dots (DNA samples) are colored by 
species or tissue sample as outlined in the legend. Each panel 
reports the sample size, correlation coefficient, and median 
absolute error (MAE)

451GeroScience (2022) 44:447–461



1 3

For comparative purposes, we contrasted these 
results to those from an EWAS of chronological age 
in liver and tail data from C57Bl/6 mice (Mus mus-
culus). We caution the reader that C57Bl/6 mice are 
inbred, unlike our deer mice. In general, EWAS of 
age in tails and liver from Peromyscus species were 
only weakly related to the corresponding analyses 
of the same tissues from C57Bl/6 mice. Age effects 

in liver methylation data from C57Bl/6 mice were 
only weakly correlated with those from P. manicu-
latus (R = 0.16, Supplementary Fig. 3) and P leuco-
pus (R = 0.32). Age effects in tail methylation data 
from C57Bl/6 mice were only weakly correlated 
with those from P. maniculatus (R = 0.12, Supple-
mentary Fig. 4), P leucopus (R = 0.47), P. poliono-
tus (R = 0.32).

Fig. 3  Comparative DNAm aging between P. maniculatus 
and four other Peromyscus species. Scatter plots represent the 
EWAS of age in P. maniculatus (x-axis) vs other four spe-
cies. The aging Z statistics are the Fisher Z-transformation 
of DNAm-age Pearson correlation for each CpG in the tail 
samples of each species. A positive (or decrease) of Z statis-
tics means an increase (or decrease) of DNAm by age in the 
analyzed species. Red dotted lines are the Z statistics cor-
responding to p <  10−4; blue dotted lines are the Z statistics 
corresponding to p > 0.05; red dots indicate the shared CpGs 

(i.e., The CpGs that significantly change in the same direction 
in both species) between x and y axes; black dots: the changes 
that are significant in one species but not the other. The top 
CpGs in each sector are labeled by the adjacent gene based on 
the P. maniculatus genome. Peromyscus maniculatus (lowAlt) 
is the P. maniculatus originated from the founders with a low 
altitude habitat. Sample size: Peromyscus maniculatus (low-
Alt), 40; Peromyscus leucopus, 31; Peromyscus californicus, 
16; Peromyscus polionotus, 16; Peromyscus eremicus, 17
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In a separate analysis, we compared epigenetic 
aging effects in P. maniculatus with those in four 
different Peromyscus species (Fig.  3). Pairwise cor-
relations differed within these species which prob-
ably reflects evolutionary differences of these highly 
related species. Despite these differences, there were 
numerous CpGs with consistent aging patterns in the 
Peromyscus genome. Some of the shared changes in 
these animals included a gain of methylation in Bdnf 
(promoter), Igsf9b (exon), Nkx2-9 (downstream), 
Lhfpl4 (exon), Elavl4 (intron), and Trhde (promoter).

Epigenetic profile of North American deer mouse 
change along with the altitude

The present analysis involved individuals from two 
colonies of P. maniculatus sonoriensis (SM2 stock) 
and P. maniculatus bairdii (BW stock). The original 
founders of these colonies have evolved in high- or 
low-altitude environments, respectively, and since 
then are maintained as closed colonies. We identified 
a total of 1273 CpGs that differed in their mean meth-
ylation levels at a nominal significance threshold of 
p <  10−4 (Fig. 4a).

CpGs in ENSPEMG00000020040 (downstream, 
p = 1 ×  10−26) and Madd (exon, p = 3 ×  10−17) show 
decreased methylation in the high-altitude stock 
P. maniculatus sonoriensis while CpGs in Nsd3 
(intron), Pdzd8 (exon, p = 2.9 ×  10−22), and Stc1 
(promoter, p = 5 ×  10−20) show increased methyla-
tion (Fig.  4a). Functional enrichment studies of the 
top 500 CpGs per direction (increased/decreased) 
showed that these loci tend to be located near genes 
that play a role in the development of rhombomere 3 
(p = 3.9 ×  10−10), motor neurons (p = 2 ×  10−7), mid-
dle ear (p = 5 ×  10−10), immune system functioning 
(p = 2.8 ×  10−11), antigen processing, and presentation 
(p = 9.6 ×  10−6).

Next, we examined the differences in aging pat-
terns, i.e., differences in the age correlations between 
the two colonies of P. maniculatus. Aging effects 
showed a moderately high correlation between the 
two colonies (R = 0.4, Fig.  4b,c), but several CpGs 
exhibited significant correlations only in one of the 
colonies. DNAm aging effect comparison by altitude 
was done at a nominal p <  10−3 in order to impli-
cate sufficient numbers of CpGs for our subsequent 
enrichment studies.

For example, CpGs in the promoter of Nfia, 
upstream of Htatip2, in an exon of Mapre3, and an 
exon of Cxx4 correlated significantly with age only in 
the low altitude colony of P. maniculatus. Conversely, 
CpG upstream of Dlx6, an exon of Fam160a2, an 
intron of Fam241b, and upstream of Pax2 correlated 
significantly with age only in the high-altitude colony 
(Fig. 4d,e).

Interestingly, these altitude-specific age-related 
changes are adjacent to genes that play a role in 
brain development (p = 2.7 ×  10−4), immune system 
functioning (p = 4.6 ×  10−5), and T-cell development 
(p = 4.6 ×  10−5). Overall, these results suggest that 
altitude affects both brain development and immune 
system functioning. Limitations of the analysis are 
discussed below.

Brain aging patterns in North American deer mouse 
species

Comparison of brain specimens between older P. leu-
copus and P. maniculatus indicated that in the latter, 
coordination of the unfolded protein response is com-
promised, and evidence of neurodegenerative pathol-
ogy was obtained [26]. Therefore, comparative analy-
sis of Peromyscus species may be relevant to the study 
of age-related alterations in the brain. Here, we com-
pared the DNAm profile of the P. maniculatus brain 
to P. leucopus and found strong differences. A total 
number of 2396 CpGs were differentially methylated 
between these two species at p <  10−4 (Fig. 5a). In P. 
maniculatus, CpGs were hypomethylated in Cadsp2 
(exon, p = 1.3 ×  10−36), Casz1 (exon, p = 3 ×  10−32) 
but hypermethylated in Grm8 (exon, p = 1.8 ×  10−35), 
Epha3 (promoter, p = 5 ×  10−33), and Lbx1 (promoter, 
p = 3.5 ×  10−31). GREAT enrichment analysis of 
the top 500 most significant CpGs in each direction 
revealed that these CpGs were adjacent to genes that 
play a role in the circadian rhythm (GREAT hyper-
geometric p = 9 ×  10−12, Supplementary Fig.  6), his-
tone H2A ubiquitination (p = 6 ×  10−8), and glucagon 
secretion (p = 2.7 ×  10−7). The latter finding surround-
ing glucagon secretion is interesting since several 
brain regions are known to be sensitive to glucagon 
by induction of cAMP signaling cascades [27], and 
insulin resistance may be related to Alzheimer’s dis-
ease [28].
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Fig. 4  Altitude difference altered epigenetic profiles of P. 
maniculatus. This study compares two colonies of P. manicu-
latus, which originated from the founders with different habi-
tats in different altitudes. a The Manhattan plot of EWAS of 
altitude in the tail of P. maniculatus species after adjusting 
for chronological age. The genome coordinates are estimated 
based on the alignment of mammalian array probes to the 
Peromyscus_maniculatus_bairdii.HU_Pman_2.1.100 genome 
assembly. The direction of associations with p <  10−4 (red dot-
ted line) is colored in red (increased methylation) and blue 
(decreased methylation). The 15 most significant CpGs are 
labeled by adjacent genes. b Sector plot of DNA methylation 
aging effects in P. maniculatus species from different alti-

tudes. The Z statistics for aging effects result from applying 
the Fisher Z-transformation to the Pearson correlation between 
age and the respective CpG in the tail samples of each colony. 
The red and blue dotted lines correspond to a p-value threshold 
of p < 0.01 and p < 0.05, respectively. Shared CpGs (i.e., the 
CpGs that significantly change in the same direction) are color-
coded in red. Black dots correspond to CpGs that are signifi-
cant in one colony but not the other. The scatter plots represent 
the CpGs that change with age in both (c), or uniquely in low 
(d) or high (e) altitude colonies. The adjacent gene region of 
each CpG is reported in the title of each plot. The shade around 
the lines is the 95% confidence interval based on the linear 
regression model. R: Pearson correlation coefficient
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Fig. 5  Brain methylation differences between P. manicula-
tus (PM) and P. leucopus (PL). a The Manhattan plot of mean 
methylation differences between P. maniculatus and P. leuco-
pus after adjusting for chronological age. Genome coordinates 
for the Peromyscus_maniculatus_bairdii.HU_Pman_2.1.100 
genome assembly. The direction of associations with p <  10−4 
(red dotted line) is colored in red (hypermethylated) or blue 
(hypomethylated). The top 15 CpGs are labeled by adjacent 
genes. b Sector plot of DNAm aging effects in P. maniculatus 
and P. leucopus. The aging Z statistics are the Fisher Z-trans-
formation of DNAm-age Pearson correlation for each CpG in 

the tail samples of each species. The red and blue dotted lines 
correspond to a p-value threshold of p < 0.01 and p < 0.05, 
respectively. Red color codes shared CpGs (i.e., the CpGs that 
significantly change in the same direction) while black color 
code changes that are significant in one species but not the 
other. c The scatter plots represent the CpGs that change with 
age in both or uniquely in one of these species. The adjacent 
gene region of each CpG is reported in the title of each plot. 
The shade around the lines is the 95% linear regression confi-
dence interval. R: Pearson correlation coefficient
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Strikingly, age effects in brain methylation 
data from P. maniculatus were inversely corre-
lated (R =  − 0.35) with those in P. leucopus brains 
(Fig. 5b). We could only identify two CpGs (adjacent 
to Cnot4 exon, Pax2 intron) that changed with age in 
the same direction in these species (Fig. 5c). In con-
trast, several brain aging loci were identified that only 
changed in one of these species, or even diverged dur-
ing aging. Map2k5 intron was an extreme example 
that was hypermethylated in P. maniculatus but hypo-
methylated in P. leucopus (Fig. 5b,c). CpGs that were 
only significantly correlated with age in P. leucopus 
were enriched in angiogenesis-related processes 
(p = 2.3 ×  10−4) while those unique to P. maniculatus 
were enriched in gamma delta T cells (p = 9 ×  10−4). 
However, the latter findings could be false positives 
since the enrichment p-values are not significant 
after adjusting for multiple comparisons (nominal 
p-value >  10−4).

DNAm relate to pair-bonding behavior in deer mouse 
species

Relatively, few mammalian species are monogamous 
[29]. Pair bonds based on mating, that are associated 
with the development of monogamous behavior are 
estimated to occur in less than 10% of mammals, 
including humans [30, 31]. In Peromyscus, monoga-
mous behavior is fairly common and has developed 
independently at least twice in evolution [30, 32]. 
Our study involved three monogamous (P. californi-
cus, P. polionotus, and P. eremicus) and two polyg-
amous (P. maniculatus and P. leucopus) species. 
Monogamous species differed greatly from polyga-
mous species: 9411 CpGs were differentially methyl-
ated at a nominal significance threshold of p <  10−4 
(Fig.  6a). The most significant EWAS hits for 
monogamy included decreased methylation in Zeb2 
intron (p = 1.8 ×  10−153), 1700008P02Rik upstream 
(p = 6.2 ×  10−77), Cadps intron (p = 4.1 ×  10−60), and 
increased methylation in Fer exon (p = 9.2 ×  10−76), 
Rnd3 exon (p = 1.24 ×  10−76), and Srsf9 exon 
(p = 4.9 ×  10−41) (Fig.  6b). For enrichment analy-
sis, we limited the analysis to the top 500 CpGs per 
direction (increased/decreased). While, a monoga-
mous-related decrease of methylation was enriched 
with synaptic dopamine release (p = 8 ×  10−4) in the 
mouse phenotype database, the increase of methyla-
tion was associated with immune-related biological 

processes such as antigen processing and presenta-
tion by MHCII cells (p = 1 ×  10−4) (Supplementary 
Fig. 7). Dopamine seems to play a central role in pair 
bond formation, expression, and maintenance [33]. 
Zeb2 gene (p = 1.8 ×  10×153), the top monogamy-
related gene in our analysis, is also a key regulator 
of midbrain dopaminergic neuron development [34].

Discussion

We expect that the availability of the human-Peromy-
scus epigenetic clocks will provide a significant boost 
to the attractiveness of Peromyscus as a biological 
model. This study provides a first step towards study-
ing the epigenetic correlates of monogamous behav-
ior and the effects of high altitude in Peromyscus.

The development of deer mouse epigenetic clocks 
described here was based on novel DNA methyla-
tion data that were derived from 3 deer mouse tissue 
types (brain, tail, and liver). The Peromyscus DNA 
methylation profiles reported here represent the most 
comprehensive dataset thus far of single-base resolu-
tion methylomes across multiple species, tissues, and 
ages.

The multi-tissue Peromyscus clock allows one to 
accurately estimate multiple tissue types from differ-
ent Peromyscus species. This gives us confidence that 
these clocks will lead to high age correlations in new 
samples from other tissue types and from other Pero-
myscus species. However, differences in tissue type or 
species could lead to a constant offset (bias) between 
estimated age and actual age.

The two human-Peromyscus clocks estimate chron-
ological and relative age, respectively. The dual-spe-
cies clock for relative age demonstrates the feasibility 
of building epigenetic clocks for two species based 
on a single mathematical formula. These human-
Peromyscus clocks also effectively demonstrate that 
epigenetic aging mechanisms are highly conserved 
between evolutionarily distant species. The fact that 
one can build such multispecies clocks reflects the 
technical properties of the mammalian methylation 
array platform (which focuses on conserved CpGs) 
[35] and biological properties of epigenetic aging 
effects that are highly conserved across mammals. 
Similar multispecies clocks have been constructed for 
many different mammalian species [36–41].
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Our hierarchical clustering results reveal a robustly 
maintained hierarchical association of the biological 
variables (tissue, species) that can influence DNA 
methylation patterns. Tissue is a more important 
determinant of global methylation patterns than Pero-
myscus species (Fig. 1).

Our EWAS analyses identified CpGs associated 
with altitude at which the original founders of these 
colonies were captivated. These findings should 
be interpreted with caution because SM2 and BW 
stocks are highly diverse and are bred in isolation for 
extended periods which may have caused the fixa-
tion of methylation profiles that are irrelevant to the 

altitude adaptation of their original ancestors. Future 
studies should aim to replicate these results with 
wild-caught animals. While, however, no apparent 
differences have been recorded between the SM2 and 
the BW stocks that could associate with rhombomere 
3 and motor neurons development, genes related to 
immune response and middle ear development may 
be of relevance. The latter may reflect adaptations 
associated with the differential atmospheric pressures 
at high altitudes. As regards the differential methyla-
tion of genes associated with immune system func-
tion, this may be relevant to the reported compromise 
of the immune system at high elevations [42–44]. To 

Fig. 6  CpGs that differ 
between monogamous and 
polygamous Peromyscus 
species. a The Manhattan 
plot of the mean DNAm 
difference between monoga-
mous and polygamous 
Peromyscus species after 
adjusting the analysis for 
chronological age in a tail 
sample of Peromyscus 
species. Monogamous 
species: P. californicus 
(N = 16), P. polionotus 
(N = 16), P. eremicus 
(N = 16). Polygamous spe-
cies: P. maniculatus (both 
altitude colonies, N = 25), P. 
leucopus (N = 16). Genome 
coordinates from Peromy-
scus_maniculatus_bairdii.
HU_Pman_2.1.100 genome 
assembly. The direction of 
associations with p <  10−3 
(red dotted line) is colored 
in red (hypermethylated) 
and blue (hypomethyl-
ated). The top 15 CpGs are 
labeled by their neighboring 
genes. b The box plot of 
the top CpGs that differed 
by dyadic relationship in 
Peromyscus species. The 
adjacent gene region of 
each CpG is reported in 
the title of each boxplot. 
The notches in the boxplots 
indicate the 95% confidence 
interval of the median 
DNAm values for each 
group
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that end, high-altitude deer mice may have engaged 
epigenetic strategies to counteract such immune sys-
tem suppression which has been linked, among oth-
ers, to hypoxia at high  elevations27. Of note is also the 
unique methylation profile of P. maniculatus in com-
parison with P. leucopus that corroborate the recently 
reported deregulation of stress response genes and the 
aberrant histological manifestations recorded in aged 
P. maniculatus [26].

Our EWAS of monogamy revealed strong meth-
ylation differences between monogamous and polyga-
mous species. The fact that these results derived from 
tail tissues suggest that inherent differences in bond-
ing behavior instruct specific epigenetic changes in 
peripheral tissues that may be translated into distinct 
physiological outcomes. Whether this is due to the 
differential regulation of specific neurohormonal cir-
cuits in response to hormones and neurotransmitters 
related to bonding, and which the exact physiological 
outputs are, remains to be determined.

Collectively, our study provided the first epigenetic 
clock for Peromyscus and illustrated the hierarchi-
cal association between various biological variables 
in determining methylation profiles across different 
scales of biological organization. Finally, it provided 
hints with regards to global differences and specific 
gene targets that are epigenetically impacted by bio-
logically and environmentally relevant conditions.

Materials and methods

Deer mice are maintained as outbred, genetically 
diverse closed colonies in the Peromyscus Genetic 
Stock Center (PGSC) of the University of South 
Carolina. The specific stocks used were Peromyscus 
leucopus (LL stock, white-footed mice), Peromyscus 
eremicus (EP stock, cactus, or desert mice), Peromys-
cus polionotus (PO stock, oldfield mice) and Peromy-
scus manisculatus (North American deer mice). For 
P. maniculatus, in particular, animals from two stocks 
were used, P. maniculatus sonoriensis (SM2, high 
altitude) and P. manisculatus bardii (BW stock, low 
altitude). F1 hybrids between BW and PO stocks were 
also used. More details about the specific stocks are 
available in ref (9) and on the PGSC website (https:// 
go. sc. edu/ pgsc). The study was approved by the Insti-
tutional Animal Care and Use Committee (IACUC) 
of the UofSC (protocol #: 2356–101,506-042,720) 

and was in accordance with the guidelines set forth by 
the National Institutes of Health. DNA was isolated 
from live animals by tail snips, or upon sacrifice from 
livers and brains by using DNeasy DNA isolation kit 
(Qiagen) using the manufacturer’s extraction. Our 
analysis is limited in that our brain data for P. leuco-
pus and P. maniculatus derived from closed popula-
tions. The animals are technically outbred and genetic 
diversity is maintained, but there still may be a selec-
tion or drift over the several decades in captivity for/
toward phenotypes that would otherwise be disadvan-
tageous in the wild. Strictly speaking, our conclusions 
are limited to these closed colonies, which have low 
effective population sizes.

Human tissue samples

To build the human-Peromyscus clock, we ana-
lyzed previously generated methylation data from 
n = 1205 human tissue samples (adipose, blood, 
bone marrow, dermis, epidermis, heart, keratino-
cytes, fibroblasts, kidney, liver, lung, lymph node, 
muscle, pituitary, skin, spleen) from individuals 
whose ages ranged from 0 to 93. These human tis-
sue samples came from multiple sources: tissue and 
organ samples from the National NeuroAIDS Tis-
sue Consortium [45], blood samples from the Cape 
Town Adolescent Antiretroviral Cohort study [46], 
and blood, skin, and other primary cells provided 
by Kenneth Raj [47] and blood samples from the 
PEG study [48]. Ethics approval was provided for 
all studies (IRB#15–001,454, IRB#16–000,471, 
IRB#18–000,315, IRB#16–002,028).

DNA methylation data

The DNA methylation data were generated using the 
mammalian methylation array (HorvathMammal-
MethylChip40) based on 37,492 CpG sites [35]. Not 
all of these CpGs apply to deer mice. In our analy-
sis, we focused on 29,125 CpGs that are located near 
5048 genes in the deer mouse genome (Peromyscus_
maniculatus_bairdii.HU_Pman_2.1.100).

Genome coordinates for each CpG are provided on 
the GitHub page of the Mammalian Methylation Con-
sortium, see the section on data availability. The man-
ifest file of the mammalian methylation array can be 
found at Gene Expression Omnibus (GEO) at NCBI 
as platform GPL28271. The SeSAMe normalization 
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method was used to define beta values for each probe 
[49].

We caution the reader that small differences in 
sequences across species could have an effect on 
methylation levels.

To find technical outliers, we applied unsuper-
vised hierarchical clustering (average linkage), which 
used 1 minus the interarray Pearson correlation as 
a dissimilarity measure. This analysis implicated 
five putative outliers which were severely outlying 
(i.e., that did not correlate with other samples from 
the same group). To err on the side of caution, we 
removed these samples from our analysis.

Penalized regression models

Details on the clocks (CpGs, genome coordinates) 
and R software code are provided in the Supplement. 
Penalized regression models were created with glm-
net [50]. We investigated models produced by both 
“elastic net” regression (alpha = 0.5). The optimal 
penalty parameters in all cases were determined auto-
matically by using tenfold internal cross-validation 
(cv.glmnet) on the training set. By definition, the 
alpha value for the elastic net regression was set to 
0.5 (midpoint between Ridge and Lasso type regres-
sion) and was not optimized for model performance.

We performed a cross-validation scheme for arriv-
ing at unbiased (or at least less biased) estimates of 
the accuracy of the different DNAm-based age esti-
mators. One type consisted of leaving out a single 
sample (LOOCV) from the regression, predicting an 
age for that sample, and iterating over all samples. A 
critical step is the transformation of chronological age 
(the dependent variable).

Details on the clocks (CpGs, genome coordinates), 
coefficient values, and age transformations are pro-
vided in the Supplement.

To introduce biological meaning into age estimates 
of deer mice and humans that have a very different 
lifespan, as well as to overcome the inevitable skew-
ing due to unequal distribution of data points from 
deer mice and humans across the age range, relative 
age estimation was made using the formula: relative 
age = age/maxlifespan where the maximum lifespan 
for the two species was chosen from the an age data 
base [23]. We used the following maximum lifespans 
Peromyscus californicus (5.5 years), Peromyscus ere-
micus (7.4  years), Peromyscus leucopus (7.9  years), 

Peromyscus maniculatus (8.3  years), Peromyscus 
polionotus (5.5  years), and humans (122.5  years), 
respectively.

Epigenome-wide association studies of age

EWAS was performed in each tissue separately 
using the R function "standardScreeningNumeric-
Trait" from the "WGCNA" R package [51]. We used 
Stouffer’s meta-analysis method to combine aging 
effects across different tissue types. Stouffer’s method 
forms a linear combination of the Z-scores which are 
calculated in each stratum (e.g., based on tissue type) 
[52]. We chose the same weight for each tissue type.

GREAT analysis

We analyzed gene set enrichments using GREAT 
[53]. The GREAT enrichment analysis automatically 
conditioned out (removed) any bias resulting from 
the design of the mammalian array by using a back-
ground set of CpGs that map to horses and are located 
on the mammalian array. The GREAT software per-
forms both a binomial test (over genomic regions) 
and a hypergeometric test over genes.

We performed the enrichment based on default 
settings (proximal: 50.0  kb upstream, 1.0  kb 
downstream, plus distal: up to 1000  kb) for gene 
sets implemented in GREAT. To avoid large num-
bers of multiple comparisons, we restricted the 
analysis to the gene sets with between 10 and 
3000 genes. We report nominal p-values and two 
adjustments for multiple comparisons: Bonferroni 
correction and the Benjamini–Hochberg false dis-
covery rate.
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