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predetermined biomarkers. BA of people with T2D 
was, on average, 12.02  years higher than people 
without diabetes (p < 0.0001), while BA in T1D was 
16.32  years higher (p < 0.0001). Results were cor-
roborated using MLR and PhAge. The biomarkers 
with the strongest correlation to increased BA in T2D 
using KDM were A1c (R2 = 0.23, p < 0.0001) and sys-
tolic blood pressure (R2 = 0.21, p < 0.0001). BMI had 
a positive correlation to BA in non-diabetes subjects 
but disappeared in those with diabetes. Mortality data 
using the ACCORD trial was used to validate our 
results and showed a significant correlation between 
higher BA and decreased survival. In conclusion, BA 
is increased in people with diabetes, irrespective of 
pathophysiology, and to a lesser extent in prediabetes.
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Introduction

The rate of aging varies among species as evidenced 
by variation up to 100-fold in lifespan among mam-
mals [1]. Members of the same species also vary in 
the rate of aging, which correlates with their sus-
ceptibility to disease, impairment, and death [2]. 
Hence, individuals of identical chronological age 
(CA), defined as years lived since birth, can have 
significant variations in their biological age (BA), 
the age indicative of the body’s rate of cellular 

Abstract Chronological age (CA) is determined by 
time of birth, whereas biological age (BA) is based 
on changes on a cellular level and strongly corre-
lates with morbidity, mortality, and longevity. Type 
2 diabetes (T2D) associates with increased morbidity 
and mortality; thus, we hypothesized that BA would 
be increased and calculated it from biomarkers col-
lected at routine clinical visits. Deidentified data was 
obtained from three cohorts of patients (20–80 years 
old)—T2D, type 1 diabetes (T1D), and prediabe-
tes—and compared to gender- and age-matched non-
diabetics. Eight clinical biomarkers that correlated 
with CA in people without diabetes were used to cal-
culate BA using the Klemera and Doubal method 1 
(KDM1) and multiple linear regression (MLR). The 
phenotypic age (PhAge) formula was used with its 

Nadine Bahour and Briana Cortez contributed equally to 
this work and are co-first authors

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11357- 021- 00469-0.

N. Bahour · H. Pan · H. Shah · A. Doria · 
C. Aguayo-Mazzucato (*) 
Joslin Diabetes Center, Harvard Medical School, 1 Joslin 
Place, Boston, MA 02215, USA
e-mail: Cristina.aguayo-mazzucato@joslin.harvard.edu

B. Cortez 
University of Texas Rio Grande Valley School 
of Medicine, Edinburg, TX 78539, USA

/ Published online: 12 November 2021

GeroScience (2022) 44:415–427

http://orcid.org/0000-0001-5402-1382
http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-021-00469-0&domain=pdf
https://doi.org/10.1007/s11357-021-00469-0
https://doi.org/10.1007/s11357-021-00469-0


1 3

decline or physiological breakdown. Variations in 
the rate of BA have been shown to be a reliable pre-
dictor of mortality, performing significantly better 
than CA [2].

The concept of BA was first introduced in 1969 as 
an effort to understand variables that affect mortal-
ity and the aging process [3] and refers to quantifiable 
changes on a cellular level analyzed through biomark-
ers that can determine specific effects and intensities of 
disease. According to the National Institutes of Health’s 
biomarkers definitions, a biomarker is a characteristic 
that is objectively measured and evaluated as an indica-
tor of normal biological, pathogenic, or pharmacologi-
cal responses [4]. However, given the complex nature 
of aging and its associated pathologies, there is not a 
single biomarker that can be used to calculate BA accu-
rately. Instead, a battery of biomarkers that correlate 
with aging have shown to be useful in calculating BA 
[2, 5]. Epigenetic markers and DNA methylation levels 
are considered the gold standard to calculate BA [6–8]. 
However, these methods have proven to be expensive 
and time-consuming, impossible to perform routinely 
in large populations. Thus, the ability to calculate BA 
from routinely collected clinical biomarkers provides a 
powerful tool to predict and monitor health span as well 
as age-related illnesses such as cardiovascular disease 
[9], cancer [10], neurodegenerative diseases [11], and 
type 2 diabetes (T2D).

Over 30 million people are diagnosed with T2D in 
the USA, most of whom are over 60 years old. Their 
risk for mortality is 50% higher, and life expectancy is 
approximately 5 years shorter among men and 7 years 
shorter among women who have T2D compared to 
those who do not [12, 13]. Additionally, T2D correlates 
with significant morbidity and increased risk of serious 
health complications which further impair health span 
and lifespan in this population such as blindness, kidney 
failure, heart disease, stroke, and amputations.

Understanding the correlation between diabetes 
and BA is important. The current pandemic caused by 
SARS-CoV-2 further emphasizes the added burden that 
patients with both type 1 diabetes (T1D) and T2D face. 
In this unique situation, COVID-19 severity is tripled 
in the diabetes community [14] where advanced age is 
one of the main risk factors for complications and death 
further suggesting a correlation between BA and T2D.

Given the increased morbidity and mortality asso-
ciated with T2D in a variety of settings, we hypoth-
esized that BA would be increased in individuals with 

a T2D diagnosis and this would be reflected using 
mathematical models that employ clinically available 
biomarkers. We used six different cohorts: patients 
with T1D and T2D from Joslin Diabetes Center, 
cases with diabetes, prediabetes, or without a dia-
betes diagnosis from the National Health and Nutri-
tion Examination Survey 2017–2018 (NHANES), 
and T2D cases who were recruited in the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) 
Trial. BA was calculated using the Klemera and Dou-
bal method 1 (KDM1) due to its high predictive value 
[2] and phenotypic age (PhAge), due to its strong cor-
relation with morbidity and mortality [15]. Results 
were corroborated using multiple linear regression 
(MLR) and validated using long-term mortality data.

Herein, we show that 8 biomarkers significantly 
correlated with CA in the control population and 
were used to calculate BA in groups with T2D, pre-
diabetes, T1D. Seven biomarkers (due to the absence 
of blood urea nitrogen) were used to calculate BA in 
the ACCORD trial at the time of recruitment. BA of 
individuals with T2D, T1D, and a NHANES diabetes 
cohort was significantly increased. The prediabetes 
cohort also showed an increase but to a lesser extent. 
Additionally, we calculated the age ratio, defined as 
BA/CA, as a surrogate marker of the rate of aging 
which showed that A1c and systolic blood pressure 
had the strongest predictive value of age ratio in T2D. 
Furthermore, we found that BA significantly corre-
lated with mortality risk in longitudinal data from the 
ACCORD trial validating our results. We conclude 
that Diabetes mellitus (both type 1 and type 2) sig-
nificantly increased BA and correlated with long-term 
mortality risk.

Methods

Study population

This study was approved by the Joslin Diabetes 
Center’s Committee on Human Studies (CHS) which 
determined that it represents human subject research 
exempt human subject research under 45 CFR 46.104 
(d)(4)(ii): it involves the secondary research use of 
previously collected identifiable private information 
which was recorded in such a manner that the identity 
of the human subjects cannot be ascertained directly 
or through identifiers.
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Deidentified clinical data was obtained from 
male and female subjects, between the ages of 20 
and 80  years of age from five different groups: T2D 
(n = 686) and T1D (n = 540) from the Joslin Diabetes 
Center Clinic; diabetes (which does not distinguish 
between T1 and T2) (n = 284), prediabetes (n = 76), 
and people without diabetes (n = 873) from NHANES 
2017–2018. The NHANES population is described as 
a noninstitutionalized civilian resident population of 
the USA [16]. The study includes their socioeconomic 
status, ethnicity, private health interview, lab tests, and 
routine physical exams. Every diabetes and prediabe-
tes case was matched by age and gender with a person 
without diabetes. In the selection of the non-diabetes 
group, only cases with A1c levels lower than 5.7% were 
included, such that non-diagnosed prediabetes cases 
were excluded, as defined by the American Diabetes 
Association [17]. Additional exclusion criteria included 
(1) missing clinical values and (2) subject without gen-
der and CA information. Other chronic diseases were 
not used in the exclusion criteria because in some 
cohorts the information was not readily available and 
we wanted a representation of subjects with diabetes 
that represented comorbidities that are usually present.

The Action to Control Cardiovascular Risk in Dia-
betes (ACCORD) Trial followed 10,251 T2D adults, 
ages greater than 40, for 4–8  years with a mean of 
5.6  years [18, 19]. Deidentified clinical data was 
obtained from participants at baseline and correlated 
with mortality in the follow-up data. Those partici-
pants with incomplete clinical data for the 7 biomark-
ers used in the KDM were excluded.

Selection of biomarkers

The selection of clinical biomarkers to calculate BA 
was based in biomarkers obtained from individuals 
without a diagnosis of prediabetes or diabetes and 
with an A1c < 5.7%. The aim was to find biomark-
ers that correlated with CA and could be used to cal-
culate BA. For each clinically available biomarker, 
we performed Box–Cox transformation to achieve 
normal distribution followed by standardization. 
Box–Cox transformation could not be applied to dias-
tolic blood pressure in the NHANES cohort because 
one individual had a zero value, but it was already 
approximately normally distributed. We assessed 
whether biomarkers were redundant by examining the 

correlations between biomarkers, but no correlation 
coefficient exceeded 0.75 in absolute value; therefore, 
no biomarkers were removed. Outlying observations 
were shrunk through winsorization (i.e., shrinking 
outlying observations of biomarkers to the border of 
the main part of the data) and adequate biomarkers 
were selected using simple univariate linear regres-
sion on gender-adjusted data of non-diabetic subjects.

A total of eight biomarkers were selected based on 
this criterion (Table 1) to analyze T2D, T1D, and dia-
betes in the Joslin and NHANES 2017–2018 cohorts: 
creatinine (mg/dL), Serum Albumin (g/dL), choles-
terol (mg/dL), urea nitrogen (mg/dL), systolic blood 
pressure (mmHg), diastolic blood pressure (mmHg), 
pulse (per min), and A1c (%). Additional analysis 
substituted A1c by C-reactive protein (CRP) since 
diabetes inherently affects the former. CRP was used 
as it has a strong correlation with BA [2] and is fre-
quently used in other models [20].

Due to the absence of blood urea nitrogen in the 
ACCORD Trial, a total of seven biomarkers were 
selected based on this criteria (Table 1) to analyze T2D: 
creatinine (mg/dL), albumin (g/dL), cholesterol (mg/
dL), systolic blood pressure (mmHg), diastolic blood 
pressure (mmHg), heart rate (per min), and A1c (%).

The PhAge model requires that 9 biomarkers are to 
be included: glucose (mmol/L), albumin (g/L), creati-
nine (umol/L), red cell distribution width (%), white 
blood cell count (1000 cells/L), alkaline phosphate 
(U/L), C-reactive protein (mg/dL), lymphocyte percent 
(%), and mean cell volume (fL). Due to the absence of 
biomarkers in the ACCORD and Joslin Cohorts, only 
the NHANES cohort was used for this analysis.

Table 1  Biomarkers that correlated with CA in non-diabetic 
individuals. These biomarkers were used to calculate BA in 
T1D and T2D from the Joslin Cohort

Biomarker p value R2 value

Creatinine (mg/dL) 7.0 ×  10–3 0.36
Systolic blood pressure (mmHg) 1.3 ×  10–9 0.26
Blood urea nitrogen (mg/dL) 3.9 ×  10–3 0.05
Albumin (g/dL) 1.1 ×  10–2 0.06
A1c (%) 2.0 ×  10–5 0.03
Cholesterol (mg/dL) 1.2 ×  10–10 0.07
Pulse/min 1.6 ×  10–2 0.03
Diastolic blood pressure (mmHg) 6.6 ×  10–4 0.03

417GeroScience (2022) 44:415–427



1 3

Klemera and Doubal method 1 (KDM1)

BA was calculated using KDM1 [2, 21] (INSERT REF 
21) using the selected 8 biomarkers by multiple linear 
regression in control males and females separately. Two 
thirds of the NHANES non-diabetic control subjects 
were used to train the KDM algorithm and independent 
subjects were used as controls (Suppl. Tables 1 and 2).

The KDM1 is based on 4 presumptions: 

1. Speed of aging is different among species and 
individuals;

2. BA = CA + RAB (0; S2AB); 
3. Biomarkers used must significantly correlate with 

CA;
4. X = FX  (BA) + RX  (0; S2X).  Where RAB  (0; 

S2AB), RX  (0; S2x) are random variables with 
zero mean and variance S2AB  , S2x  respectively, 
and  Fx(BA) is the governing function of a bio-
marker by BA  Detailed steps of KDM were car-
ried out by computer programming by entering the 
data of indicators such that the model was gener-
ated. KDM was run using the R package biomed 
at https:// github. com/ bjb40/ bioage.

Multiple linear regression (MLR)

We fit biological age parameters using the 8 biomark-
ers by multiple linear regression in CTRL males and 
females separately. We then use training data to calcu-
late out-of-sample biological ages in diabetic (T1D and 
T2D) males and females separately.

Using the MLR model, aging biomarkers are 
determined based on their correlation with CA [22].

Phenotypic Age (PhAge)

Phenotypic age was calculated using [23], in which used 
9 biomarkers (albumin, glucose, C-reactive protein, lym-
phocyte percent, mean cell volume, red blood cell distri-
bution width, alkaline phosphatase, and white blood cell 
count). The equation developed by Levine et al. to calcu-
late phenotypic age is as follows:

BAi = b
0
+
∑m

j=1
bjxji

where
xb = −19.907 × 0.0336 × albumin

+0.0095 × creatinine

+0.0195 × glucose

+0.0954 × ln(CRP)

−0.0120 × lymphocytepercent + 0.0268

×meancellvolume + 0.3356 × redbloodcelldistributionwidth

+0.00188 × alkalinephosphatase

+0.0554 × whitebloodcellcount

+0.0804 × chronologicalage

 

Calculation of dAge and age ratio

Delta age (dAge) was calculated as the difference 
between BA and CA (dAge = BA-CA) and reflects the 
difference in years between both.

The age ratio between BA and CA was calculated 
as age ratio = BA/CA to reflect the rate of aging of 
people with diabetes and the selected biomarkers at 
a specific moment whether a person appears older 
(value > 1) or younger (< 1) than expected based on 
their CA. It provides equivalent information as phe-
notypic age acceleration used in Levine [24, 20].

Mortality analysis

dAge was calculated at baseline using KDM for individ-
uals recruited to the ACCORD trial with seven biomark-
ers as specified above. Using SAS v.9.4 (SAS Institute, 
Cary, NC), we conducted a time-to-event analysis to 
examine the effects of dAGE, as a continuous predictor, 
on progression to total mortality in all ACCORD partici-
pants without missing biomarker data (n = 10,093). Cox-
proportional hazards regression models were applied for 
this analysis, and trial covariates (glycemic, blood pres-
sure, and lipid trial assignments) were included in the 
model. For illustration purposes, Kaplan–Meier curves 
were plotted to demonstrate the effects of dAGE above 
vs. below the median on total mortality in ACCORD.

Statistical analysis

Statistical analysis was performed using Mann–Whit-
ney-Wilcoxon Test (Wilcoxon rank sum test) in R and 
Prism.

PhAge = 141.50 +
ln[−0.0053xln(1 − xb)]

0.09165

418 GeroScience (2022) 44:415–427

https://github.com/bjb40/bioage


1 3

Results

Clinical biomarkers correlate with chronological age 
in a non-diabetic population

The NHANES 2017–2018 survey was queried for 
men and women aged 20–80 without a diabetes diag-
nosis of diabetes and an A1c < 5.7 to exclude undi-
agnosed prediabetes [17]. A total of 1798 individuals 
were included in the search of clinical biomarkers 
that significantly correlated with age. Eight biomark-
ers (Table 1) were chosen due to the limited availabil-
ity of biomarkers included in the Joslin T1D and T2D 
clinical records, and they significantly correlated with 
CA. The statistical significance of their correlation 
with CA varied between 1.2 ×  10–10 and 1.1 ×  10–2. 
The R2 value of creatinine exceeded 0.32 and there-
fore failed to mitigate the effects of the CA paradox 
[21]. These biomarkers were chosen to calculate BA 
in the T2D and T1D cohorts and NHANES 2017–18 
prediabetes and diabetes groups. BA was calculated 
in the ACCORD Trial subjects with the same bio-
markers, excluding blood urea nitrogen due to its 
absence in patient records.

A strong correlation between CA and BA was 
observed for people without diabetes (R2 = 0.65, 
p < 0.0001) (Fig.  1) validating the selected biomark-
ers and KDM1 as an adequate mathematical model to 
calculate BA in this population. The strong relation-
ship between CA and BA highlights the convenience 
of using accessible clinical biomarkers to estimate 
BA once adequate validation of their correlation with 
CA has been performed.

Diabetes mellitus correlated with increased BA

Using KDM1 and the identified biomarkers, BA was 
calculated in people diagnosed with T2D and their 
dAge (dAge = BA-CA) compared to CA. On aver-
age, dAge of people with T2D in the Joslin cohort 
was 12.02  years greater than those without diabe-
tes (p < 0.0001) (Fig. 1). However, the spread of BA 
across the population of T2D indicates a variety of 
additional factors that influence BA alongside a T2D 
diagnosis. There was a considerable proportion of 
patients within the diabetes cohort who had a BA 
lower than their CA indicating that by no means, a 
diagnosis of T2D inevitably lead to accelerated aging.

To understand whether the increased BA preceded 
the development of T2D, a population of prediabetes 
was queried for BA (Fig. 1). Prediabetes was charac-
terized by a 2.69-year significant increase in BA with 
respect to matched individuals, suggesting that the 
most significant increase in BA observed in the popu-
lation with T2D occured after the diagnosis instead 
of leading up to it. Therefore, accelerated cellular age 
did not seem to be one of the causal factors of T2D 
but rather a result of it.

One of the main risk factors to develop T2D is 
increased age which might suggest that the correla-
tion between the disease and increased BA might 
be an epiphenomenon brought about by increased 
CA. We therefore selected a cohort of people with 
T1D, whose onset is characteristically during child-
hood or early adolescence [25], and inquired whether 
in this population a similar change in BA would be 
observed. A cohort of 540 people with T1D were 
included and revealed a 16.61-year average increase 
of BA (p < 0.0001) when compared to age-and gen-
der-matched people without diabetes (Fig. 1). Finally, 

Fig. 1  Significant increase in BA in diabetes patients cal-
culated using KDM. a Linear correlation between CA and 
BA for non-diabetic control subject (n = 1798); b significant 
increase in BA in subjects with prediabetes (n = 66); c signifi-

cant increase in BA in people with T2D (n = 686), an average 
of 12  years greater than controls; d BA in people with T1D 
(n = 540) and e BA in people with diabetes (T1 and T2D) 
(n = 284)
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to corroborate these results in a different cohort, BA 
in NHANES diabetes reported patients was calcu-
lated and a significant increase of BA was confirmed 
when compared to a non-diabetes population (Fig. 1).

These results reveal a significant increase in BA 
with diabetes mellitus, irrespective of age of diag-
nosis and of the underlying pathophysiology of the 
disease (metabolic for T2D versus autoimmune for 
T1D).

Age ratio correlates with modifiable biomarkers

We have defined age ratio as a surrogate marker of the 
rate of aging. It determines the correlation between 
BA and CA (BA/CA) at a given point in time and pro-
vides a quantitative value between both ages. An age 
ratio of 1 indicates a perfect match between BA and 
CA whereas values > 1 correlate with faster cellular 
aging and values < 1 correlate with a slower one com-
pared to chronological aging.

To study the contribution of each of the selected 
biomarkers to BA, linear correlation between biomark-
ers and the age ratio was calculated for the population 
with T2D (Fig. 2, Suppl. Figure 1). The two biomark-
ers with the strongest correlation to age ratio using 
KDM were A1c (Fig.  2), and systolic blood pressure 
(Fig. 2); which tightly correlate with metabolic control 
and cardiovascular health. Other biomarkers that cor-
relate with age ratio using KDM were creatinine and 
blood urea nitrogen (Fig. 2) reflective of liver and renal 
function, respectively. Cholesterol, diastolic blood 
pressure, albumin, and pulse had the weakest correla-
tions to age ratio using KDM (Suppl. Figure 1).

These data underline the importance of proper 
metabolic control and blood pressure as effective 
measures to potentially counteract the accelerated BA 
observed in T2D and is a novel way to interpret and 
evaluate therapeutic strategies. Interestingly, the cor-
relation between age ratio and individual biomarkers 
in the population of T1D was much weaker than for 
T2D, except for A1c, (Suppl. Figure  2). The reason 
for this dissociation in T1D is unclear and requires 
further studies.

Multiple linear regression (MLR) confirms increased 
BA with Diabetes mellitus

Confirmation of BA results was performed using a 
complementary mathematical model to estimate its 
values in the same three populations—NHANES 
diabetics, prediabetes, and T1D—and compared to a 
non-diabetes population.

The correlation between CA and BA among 
people without diabetes using MLR (Fig.  3A) 
(R2 = 0.41, p < 0.0001, slope = 0.19) was not as 
strong as when KDM1 was used. This is consistent 
to what has been described in other studies [26, 27], 
and one of the reasons why KDM1 is preferred to 
calculate BA. Using MLR, people with T2D dis-
played a 3.94-year increase in BA compared with 
age- and gender-matched controls (Fig.  3B) while 
in prediabetes the average increase was of 5.2 years 
(Fig.  3C). In the T1D population, BA increase 
was also confirmed with a value of 10.53  years 
(Fig. 3D).

Fig. 2  Biomarkers that are strongly correlated to the BA/CA age ratio in a population of T2D. Correlation between age ratio and 
biomarkers: a aA1c (%), b systolic blood pressure (mmHg), c creatinine (mg/dL), and d urea nitrogen (n = 686)
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When comparing the two mathematical models, 
KDM-estimated BA tended to show larger differences 
from CA than MLR, which is consistent with previous 
findings that MLR estimates of BA regress towards the 
mean (e.g., people older according to BA are estimated 
too young) [21]. A main difference between these two 
methods is that MLR regresses CA on the biomarkers, 
whereas KDM1 treats CA as an independent variable 
to find the best model that estimates BA. From a math-
ematical perspective, the slope of the CA/BA correla-
tion calculated with KDM (Fig. 1) is 1 meaning that in 
the population without diabetes, a 1-year increase in CA 
will be reflected as a 1-year increase in BA. However, 
the slope of the CA/BA correlation calculated with MLR 
(Fig. 3A) is 0.19 which means that BA calculated with 
MLR underestimates BA.

Both PhAge and KDM correlate with increased BA 
in diabetics and prediabetics

To understand the importance of biomarkers used 
to calculate BA, we calculated BA using the PhAge 
algorithm. A strong correlation between CA and BA 
was found in non-diabetics using PhAge (R2 = 0.90, 
p < 0.0001, slope = 0.998) (Fig. 4). PhAge found that 
prediabetic subjects were 0.89  years greater than 
those without diabetes (p < 0.0001) (Fig.  4), while 
KDM noted an increase of 2.69  years (p < 0.0001). 
In the NHANES diabetic cohort, PhAge calculated 
a BA 7.57  years greater than those without dia-
betes (p < 0.0001) (Fig.  4), and KDM calculated 
a BA 5.73  years greater than nondiabetic subjects 
(p < 0.0001). The three biomarkers with the strongest 

Fig. 3  Linear model con-
firmation of increased dAge 
in diabetes and prediabetes 
cohorts. a Linear correla-
tion between CA and BA 
for non-diabetic control 
subject as calculated with 
LMR (n = 1798). b Higher 
dAge in Joslin T2D cohort 
(n = 686). c–d Significant 
increase in prediabetes 
(n = 76) and Joslin’s T1D 
cohort (n = 540), respec-
tively
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correlation to age ratio using PhAge were glucose 
(mmol/L), creatinine (umol/L), and albumin (g/L) 
(Fig. 4).

Validation of results using two independent mod-
els (MLR and PhAge) provided confidence in the 
selection of biomarkers and in using KDM as a valid 
model to estimate BA.

Persistence of effects of diabetes on BA after 
alternate selection of biomarkers

Given the confounding effect that using A1c as a 
BA biomarker has in prediabetes and diabetes, recal-
culation of BA using KDM was done by excluding 
A1c and substituting it with CRP, a commonly used 
biomarker with a high correlation to CA [2, 20]. A 

positive and strong correlation between BA and CA 
persisted (Fig. 5) as did the significant increase of BA 
in a population with prediabetes (Fig. 5) and diabetes 
(Fig. 5).

Given the strong correlation that systolic blood 
pressure (SBP) with BA in people with T2D (Fig. 2), 
BA was recalculated excluding this marker. A posi-
tive correlation between BA and CA also persisted 
(Fig.  5) as did significant increases in populations 
with prediabetes (Fig. 5) and diabetes (Fig. 5).

Effects of BMI and smoking on BA in a population 
with and without diabetes

Given the strong effects that confounding fac-
tors such as BMI and smoking can have on clini-
cal biomarkers, BA was calculated across the BMI 

Fig. 4  Significant increase in BA in prediabetics and dia-
betics calculated using PhAge algorithm. a Linear correla-
tion between CA and BA for non-diabetic control subjects 
(n = 1798). b BA in people with prediabetes (n = 514); c BA 

in subjects with diabetes (T1D and T2D (n = 749). Correlation 
between age ratio and biomarkers: d glucose (mmol/L), e cre-
atinine (umol/L), and f albumin (g/L) (n = 764)
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spectrum and in a smoker and non-smoker popula-
tion in individuals with and without diabetes. An 
increase in BMI was associated with increased BA 
(Fig. 6) in a population without diabetes. However, 
the significance of this correlation disappeared when 
diabetes was present (Fig.  6) probably because of 
the overriding effects of A1c and SBP as previously 
determined.

Unexpectedly, smoking did not influence the two 
populations involved (Fig.  6). This is probably sec-
ondary to the selection of biomarkers which did not 
include any lung capacity measures, such as  FEV1, 
which have been shown to correlate with BA [2]. This 
emphasizes the importance of biomarker selection for 
specific populations.

Association of dAge and long-term mortality data 
validates increased BA in diabetes

A limitation of the results presented so far is their 
cross-sectional nature which impairs validation of 
results. To address this, BA was calculated in 10,093 
individuals enrolled in the ACCORD trial at baseline 
and correlated with mortality data during the duration 
of the study.

Figure  7 shows the effect of dAge above and 
below median (9.85 years) in all ACCORD data. 
An increased HR of 1.23 (95% CI 1.06–1.42) was 
found when comparing individuals with a dAge equal 
or greater than 9.85 years with those with a dAge 
below that number indicating that greater differences 

Fig. 5  Substitution of A1c for CRP  (CRP+/A1c−) and absence 
of SBP  (SBP−) in BA calculations continue to show increased 
BA in prediabetic and diabetic populations. a Linear correla-
tion between CA and BA for non-diabetic control subjects 
with KDM calculation substituting A1c by CRP. b Significant 
increase in BA in subjects with prediabetes after KDM calcu-
lation substituting A1c by CRP. c Significant increase in BA 

in subjects with diabetes after KDM calculation substituting 
A1c by CRP; d linear correlation between CA and BA for non-
diabetic control subjects after KDM calculation without SBP; 
e significant increase in BA in subjects with prediabetes after 
KDM calculation without SBP; f significant increase in BA in 
subjects with diabetes after KDM calculation without SBP
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between BA and CA carry a greater risk of death. 
Whereas dAge was calculated at time of enrollment, 
the difference in mortality becomes apparent after 
2 years of follow up and persists thereafter. Interac-
tion analysis showed no change in dAge (p = 0.25) 
after treatment of glycemia between the standard and 
intensive glycemic arms. Whereas the ACCORD trial 
followed patients for 7  years, subsequent analysis 
might find differences secondary to therapeutic inter-
ventions after longer follow up as suggested by the 
legacy effect [28, 29]. The longitudinal nature of this 
analysis validates the presented results.

In summary, our results reveal increased BA in 
people with diabetes mellitus which in turn suggests 
accelerated aging. Readily available clinical biomark-
ers were used favoring the use of KDM1 as a con-
venient model for BA calculation. The increase in BA 
seen in both T1D and T2D provide a novel insight 
into the way tissues behave along a chronological 
scale, in settings with altered glucose metabolism 
irrespective of pathophysiological mechanisms. This, 
along with the strong correlation between A1c and 
the age ratio, underlines the importance of glucose 
control in determining aging at a cellular level.

Fig. 6  Effects of BMI and smoking status on BA. a Signifi-
cant increase in BA as BMI increases in subjects without dia-
betes. b No significant increase in BA as BMI increases in sub-
jects with diabetes. c No significant increase in BA in subjects 

without diabetes as pack-years increases. d No significant dif-
ference between BA in subjects with diabetes who were smok-
ers or non-smokers

Fig. 7  Kaplan-Meier 
for the effect of dAGE 
above and below median 
in ACCORD populations. 
Effects of dAGE above the 
median (≥9.85) vs. below 
the median (<9.85) on inci-
dence of deaths in 10,093 
ACCORD participants. 
The hazard ratio (HR) and 
p-value are obtained from 
a cox-proportional hazards 
model examining the effects 
of dichotomized dAGE 
(above vs. below median) 
on total mortality, adjusted 
for glycemic, blood pressure 
and lipid trial assignments

424 GeroScience (2022) 44:415–427



1 3

Discussion

The correlation between T2D and age is complex, and 
studying the disease from an aging point of view can 
provide novel mechanisms and therapeutic targets. In 
this study, using the KDM1 model to calculate BA 
in people with T1D and T2D, we correlated for the 
first time at an epidemiological level an increased BA 
with the diagnosis of T2D and preceded by prediabe-
tes. The increased BA also observed in T1D, which is 
not age dependent, suggests that age acceleration is 
dependent on altered glucose metabolism rather than 
on peripheral insulin resistance or cell autonomous 
mechanisms that characterize T2D.

Understanding the increased BA with diabetes 
and the subsequent accelerated aging is critical to 
further our understanding of the biology of aging 
in health and disease. Multiple studies support the 
concept of accelerated aging in diabetes: increased 
telomere shortening and mitochondrial DNA deple-
tion in patients with T2D [30] and accelerated aging 
of human collagen in juvenile diabetes mellitus as 
determined experimentally by enzymatic digestion 
[31]. Particularly, cellular senescence has also been 
reported to be increased in the setting of glucose 
metabolism dysregulation. Hyperglycemia accelerates 
vascular aging by inducing senescence in endothelial 
cells, a process suggested to be mediated by ASK1 
[15] and p38MAPK [23]. Fibroblasts from skin 
biopsies underwent cellular senescence earlier if the 
donor was diagnosed with T1D or had a strong family 
history of T2D [23]. We have shown that β-cell aging 
and senescence is accelerated in islets from donors 
with T2D and higher body mass indices, a potential 
indirect marker of insulin resistance [32, 33].

The ability to measure changes in the rate of aging 
using readily available clinical biomarkers represents 
a powerful tool to track this phenomenon and to eval-
uate clinical interventions. Since the KDM1 method 
does not limit which biomarkers can be included in 
the calculation as long as they have a significant rela-
tionship with CA, BA research can be done to study 
more markers depending on availability. All of the 
8 biomarkers we used (albumin, creatinine, systolic 
blood pressure, glycated hemoglobin, diastolic blood 
pressure, pulse, cholesterol, and blood urea nitrogen) 
overlap with previous reports of biological age analy-
sis by KDM as reported by Levine et al. [2]. However, 
that list is more extensive and includes additional 

biomarkers such as forced expiratory volume, serum 
alkaline phosphatase, C-reactive protein, and cyto-
megalovirus optical density, which we were unable 
to include in our biomarkers list, since they were not 
available in our data set. It is interesting to note that 
our data did show that pulse was associated with CA 
in our non-diabetic controls, whereas the Levine M. 
E. study did not. Another interesting difference is the 
correlation between age and A1c which is lower in 
our study. We believe this is explained by our exclu-
sion of individuals with an A1c equal or greater to 
5.7%, defined as prediabetes by the American Diabe-
tes Association (ADA).

Further studies of telomere shortening, DNA 
methylation, and mitochondrial DNA depletion 
in populations with diabetes would further our 
understanding of accelerated aging and would con-
tribute to directly measure the level and extent of 
damage accumulation in the body in health and 
disease. Identification of the proper DNAm pro-
file would be crucial in these studies since correla-
tions between KDM BA and some DNAm clocks 
have been shown to be quite low [34], whereas the 
use of machine learning analysis of pace of aging 
found to have a better correlation with increased 
decline of physical function, cognitive function and 
subjective signs of aging over a 7-year period [8]. 
A recent paper [35] demonstrates that age-related 
epigenetic changes can be reverted to DNA meth-
ylation profiles characteristics of younger ages, 
speaking to the concept of BA being a dynamic, 
rather than a static, parameter.

Many of the biomarkers that strongly correlate 
to BA are known to be altered in T2D and its com-
plications, implying that disease severity is one 
of the determinants of BA. For example, evidence 
has shown that premature aging in T2D leads to an 
increased risk of cardiomyopathy [27] and our study 
found a high correlation between age ratio and sys-
tolic blood pressure, which promotes myocardial 
remodeling and is a risk factor in the development 
of cardiomyopathy [28, 29]. To further evaluate the 
effect of disease-dependent biomarkers such as A1c, 
we performed KDM analysis in prediabetes and dia-
betes population excluding A1c and including CRP. 
The increase in BA persisted suggesting that there are 
cell autonomous mechanisms that are altered in dia-
betes and are not solely dependent on blood glucose 
levels and lead to accelerated aging.
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Additionally, given the strong correlation between 
biomarkers such as systolic blood pressure and A1c 
to BA and the existence of effective clinical inter-
ventions that can modify them, the concept of BA 
becomes potentially dynamic and modifiable. Other 
studies have shown that BA is modifiable such as 
the CALERIE intervention where participants rand-
omized to caloric restriction revealed decrease in the 
rate of biological aging [36]. However, interaction 
analysis showed no change in BA due to therapeutic 
intervention in the ACCORD study analyzed in the 
current paper. This could be secondary to the legacy 
effect showing lasting changes (up to 10  years) due 
to changes in blood glucose levels [28, 29]. Since 
this ACCORD cohort was followed for an average of 
5–7  years, perhaps further follow-up or inclusion of 
additional biomarkers might reveal BA changes after 
glucose and blood pressure interventions.

Based on these concepts, we propose BA can be 
used as an additional clinical outcome to track the 
evolution of individual patients, their lifestyle, and 
influence of pharmacological interventions, in such 
a way that some biological processes of aging may 
be slowed as discussed in the geroscience hypothesis 
[37].

Significance and limitations of the study

Most patients with T2D are above the fifth decade 
of life, suggesting a correlation between cellular 
age and diabetes. This paper identified an increase 
in biological age (a reflection of aging at a cellular 
level) compared to chronological age (defined by 
time since birth) in people with diabetes mellitus. 
The significance of these findings is (1) aging at a 
cellular level is accelerated in diabetes and (2) bio-
logical age, which reflects the rate of aging, can be 
calculated using readily available clinical biomarkers 
and can guide interventions to improve health span 
and lifespan.

Although there was a very strong and consistent 
relationship between accelerated aging and diabe-
tes, there are limitations in this study that need to be 
addressed.

First, the biomarkers used were limited given the 
constraints of NHANES, ACCORD, and Joslin Dia-
betes Center patient data.

Second, the Joslin cohorts are not a nationally rep-
resentative sample. There are several genetic and envi-
ronmental factors that affect the aging process that are 
important to consider. Thus, we found a relationship 
between aging and diabetes here, but the model is yet 
to be extended to human aging in general.

Third, the NHANES cohort differentiates patients 
based on their response to the question asking 
whether they have been diagnosed with diabetes or 
prediabetes. Therefore, type 1 and type 2 diabetes 
cannot be differentiated in this cohort and the data 
relies on the subjective response of the participant, 
allowing for the possibility of information bias.

In conclusion, the development and study of aging 
beyond traditional CA constraints is vital to under-
stand the aging process and how to address conditions 
that affect it. Moving forward, integrating our theoret-
ical and cellular understanding of aging with environ-
mental, behavioral, and heritable factors is necessary 
to facilitate future development in the field of aging 
and diabetes research.
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