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mammalian class. This is exemplified by the success-
ful development of epigenetic clocks for mice and 
several other mammalian species. Here, we describe 
epigenetic clocks for the rhesus macaque (Macaca 
mulatta), the most widely used nonhuman primate in 
biological research. Using a custom methylation array 
(HorvathMammalMethylChip40), we profiled n = 281 
tissue samples (blood, skin, adipose, kidney, liver, 
lung, muscle, and cerebral cortex). From these data, 

Abstract  Methylation levels at specific CpG posi-
tions in the genome have been used to develop accu-
rate estimators of chronological age in humans, mice, 
and other species. Although epigenetic clocks are 
generally species-specific, the principles underpin-
ning them appear to be conserved at least across the 
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we generated five epigenetic clocks for macaques. 
These clocks differ with regard to applicability to 
different tissue types (pan-tissue, blood, skin), spe-
cies (macaque only or both humans and macaques), 
and measure of age (chronological age versus relative 
age). Additionally, the age-based human-macaque 
clock exhibits a high age correlation (R = 0.89) with 
the vervet monkey (Chlorocebus sabaeus), another 
Old World species. Four CpGs within the KLF14 pro-
moter were consistently altered with age in four tis-
sues (adipose, blood, cerebral cortex, skin). Future 
studies will be needed to evaluate whether these epi-
genetic clocks predict age-related conditions in the 
rhesus macaque.

Keywords  Epigenetic clock · DNA methylation · 
Rhesus monkey · Nonhuman primate

Introduction

The rising costs of healthcare have fueled a growing 
need to address the leading risk factor of most dis-
eases and health conditions—age. As such, investiga-
tions into the mechanisms and causes of aging, as well 
as interventions that might ameliorate its effects, hold 
great promise for improving health. To meet this end, 
animal models that closely recapitulate human aging 
are essential. Rhesus macaques (Macaca mulatta) are 
the most widely used nonhuman primate in biomedical 
research and share over 92% DNA sequence homol-
ogy with humans [1]. They have an average lifespan in 
captivity of approximately 27 years, maximal lifespan 
of 42  years, and experience aging processes that are 
very similar to humans. With these features, the rhesus 
macaque presents as an excellent subject for the under-
standing of aging in humans and also other closely 
related primate species [2, 3]. Despite these attractive 
features, the employment of rhesus macaques in such 
research remains modest. This is due to both the pro-
hibitive cost of maintaining a colony and the relatively 
long lifespan of these primates [4].

These challenges, however, can be effectively 
addressed if accurate and robust biomarkers of age 
can be established. Such biomarkers would change 
the experimental endpoint from longevity (measure 
of time from birth to death) to that of a surrogate 
endpoint (e.g., a molecular readout of health). The 
application of biomarkers will greatly reduce the 

duration and cost of primate studies, while generat-
ing a much more meaningful understanding of why 
we age and provide the means to evaluate anti-aging 
interventions.

Here, we report the development of DNA meth-
ylation–based biomarkers of age, known as epige-
netic clocks for the rhesus macaque. Epigenetic 
clocks combine methylation levels of multiple 
CpGs to estimate chronological age or mortality 
risk (reviewed in [5–7]). As such, we interpret 
epigenetic age as one of several indicators of bio-
logical age, recognizing that it is not the same as 
biological age. The first human clocks leveraged 
methylation array platforms that provide accurate 
quantitative measurements of methylation for thou-
sands of specific CpGs in the genome. Human and 
mouse pan-tissue DNA methylation (DNAm) age 
estimators exhibited important characteristics for 
aging studies, namely application to all sources of 
DNA (from sorted cells, tissues, and organs) and 
across the entire age spectrum (from prenatal tis-
sue to centenarians) [5, 8–10]. The discrepancy 
between DNAm age and chronological age (termed 
as “epigenetic age acceleration”) is predictive of 
all-cause mortality in humans even after adjusting 
for a variety of known risk factors [11–13]. Several 
age-related conditions are also associated with epi-
genetic age acceleration, including, but not limited 
to, cognitive and physical functioning [14], cente-
narian status [13, 15], Down syndrome [16], HIV 
infection [17], and obesity [18].

Mouse epigenetic clocks accurately measure 
chronological age and have been successfully applied 
to confirm benchmark longevity interventions such 
as calorie restriction and ablation of growth hormone 
receptor [9, 10, 19–22]. While mouse clocks have not 
yet been correlated with their lifespan, it is expected 
that mortality risk prediction is not the preserve of 
human clocks but a feature that applies to several 
mammalian species. Although the human pan-tissue 
clock can be applied to chimpanzee DNA methyla-
tion profiles, its performance with profiles of other 
animals decline as a result of evolutionary genome 
sequence divergence [8]. Here, we describe the 
development and performance of several epigenetic 
clocks for rhesus macaques, two of which are dual-
species clocks that apply both to humans and rhesus 
macaques.
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Brief methods and results

DNA methylation data

All rhesus macaque DNA methylation profiles were 
generated on a custom methylation array (Horvath-
MammalMethylChip40) that measures the meth-
ylation level of 36,000 CpGs with flanking DNA 
sequences that are conserved across the mammalian 
class. We obtained 281 DNA methylation profiles 
from 8 different tissues of rhesus macaque (Macaca 
mulatta) with ages that ranged from 1.8 to 42 years 
(Table 1). An unsupervised hierarchical analysis clus-
tered the methylation profiles by tissue type (Sup-
plementary Fig.  1). DNA methylation–based age 
estimators (epigenetic clocks) were developed using 
data from n = 281 tissues, of which the most numer-
ous were blood (N = 199) and skin (N = 51). Postmor-
tem tissues (omental adipose, brain cortex, kidney, 
liver, lung, and skeletal muscle) were also available, 
but from fewer than 7 animals (Table  1). To gener-
ate dual-species epigenetic clocks that apply to both 
humans and rhesus macaques, n = 1207 human tissue 
samples were similarly profiled on the mammalian 
array platform (Methods).

Epigenetic clocks

From these datasets, we generated five epigenetic 
clocks for macaques. These clocks differ with 
regard to applicability to different tissue types 
(pan-tissue, blood, skin), species (macaque only 
or both humans and macaques), and measure of 

age (chronological age versus relative age). As 
indicated by their names, pan-tissue clocks apply 
to all tissues, while the other clocks are devel-
oped for specific tissues/organs (blood, skin). 
The macaque pan-tissue clock was trained on 
all available tissues and applies only to rhesus 
macaques. The two human-macaque pan-tissue 
clocks, on the other hand, were derived from 
DNA methylation profiles from both species and 
are distinct from each other based on the unit of 
age that is employed. One estimates chronologi-
cal age (in units of years), while the other esti-
mates relative age, which is the ratio of chrono-
logical age to maximum lifespan, with values 
between 0 and 1. This ratio allows alignment 
and biologically meaningful comparison between 
species with very different lifespans (rhesus 
macaque and human), which is not afforded by 
mere measurement of chronological age. The 
maximum recorded lifespans for rhesus macaques 
and humans are 42 years and 122.5 years, respec-
tively, according to the updated version of the 
anAge data base [23]; thus, there is an approxi-
mate 3:1 age ratio. By design, the human-rhesus 
clock for age does not account for differences in 
aging rates between species; i.e., an old macaque 
(~ 40 years old) is mathematically indistinguish-
able from a middle-aged human. By contrast, the 
human-rhesus clock for relative age implicitly 
accounts for differences in aging rates.

To arrive at unbiased estimates of the rhesus 
macaque pan-tissue clock, we carried out cross-
validation analysis of the training data, followed by 
evaluation with an independent dataset from another 
nonhuman primate species (vervet monkey). The 
cross-validation study reports unbiased estimates of 
the age correlation R (defined as Pearson correlation 
between the DNAm age estimate and chronological 
age) as well as the median absolute error.

The resulting macaque pan-tissue clock is highly 
accurate in age estimation across tissues (R = 0.95, 
median absolute error (MAE) 1.4  years, Fig.  1A) 
and in individual types (R ≥ 0.93, Fig.  1B and C; 
Supplementary Fig. 2C–I), except for adipose tissue 
(R = 0.73, Supplementary Fig.  2B) for which only 
n = 5 samples were available. The human-rhesus 
macaque clock for age is highly accurate when both 
species are analyzed together (R = 0.98, Fig.  1D), 

Table 1   Description of rhesus tissues from which DNA meth-
ylation profiles were derived. N, total number of tissues. Num-
ber of females. Age: mean, minimum, and maximum in units 
of years

Tissue N No. of female Mean.Age Min.Age Max.Age

Adipose 5 2 31.3 23.5 42
Blood 199 71 17.2 1.79 42
Cortex 6 3 29 17.2 42
Kidney 4 1 28.7 23.5 33.4
Liver 5 4 25.1 17.2 42
Lung 6 3 29 17.2 42

Muscle 5 2 30.1 17.2 42
Skin 51 13 18.8 7.61 42
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Fig. 1   Cross-validation study of epigenetic clocks for rhesus 
macaques and humans. (A–C) Three epigenetic clocks that 
apply only to macaques. Leave-one-sample-out estimate of 
DNA methylation age (y-axis, in units of years) versus chron-
ological age for (A) all available macaque tissues, (B) blood, 
and (C) skin. Ten-fold cross-validation analysis of the human-
macaque monkey clocks for (D, E) chronological age and 

(F, G) relative age, respectively. (D, F) Human samples are 
colored in red and macaque samples are colored by macaque 
tissue type, and analogous in (E, G) but restricted to macaque 
samples (colored by macaque tissue type). Each panel reports 
the sample size (in parenthesis), correlation coefficient, and 
median absolute error (MAE)
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with a slight reduction when the analysis is restricted 
to rhesus macaque tissues (R = 0.95, Fig.  1E). The 
human-rhesus macaque clock for relative age exhib-
its high correlation regardless of whether the analy-
sis is done with samples from both species (R = 0.97, 
Fig.  1F) or with only rhesus macaque samples 
(R = 0.95, Fig.  1G). The employment of relative 
age circumvents the inevitable unequal distribution 
of data at the opposite ends of the age range when 
chronological age of species with very different lifes-
pans is measured using a single formula. A cross-
validation analysis reveals that both human-macaque 
clocks lead to high accuracy (R ≥ 0.97) in human 
blood and skin samples (Fig. 2).

Cross‑species performance of the rhesus macaque 
pan‑tissue clock

To determine the extent by which the rhesus macaque 
epigenetic clock can be applied to another primate, 
we used it to estimate the age of numerous tissues 
(blood, brain cortex, and liver) of the vervet monkey 
(Chlorocebus sabaeus), which is another Old World 
monkey separated 12.5 million years ago from the 
macaques. Despite this, we observed high correla-
tions between the chronological age of vervets and 
their predicted age based on the macaque pan-tissue 
clock: R = 0.96 in vervet blood, R = 0.92 in vervet 
cortex, and R = 0.98 in vervet liver (Supplementary 
Fig.  3A-C,  Fig.  3A–D). It is worth noting that the 
comparison of correlation coefficients between differ-
ent tissues is not straightforward as these values are 
dependent on the age distribution of the samples that 
are evaluated (i.e.., minimum and maximum age). 
The rhesus pan-tissue and blood clocks work well in 
vervet blood but lead to substantial offset of 9 years in 
cerebral cortex (Supplementary  Fig.  3B). Neverthe-
less, there is reasonably good concordance between 
chronological age of vervets and the estimated age 
of their blood (median error 1.9  years, Supplemen-
tary  Fig.  3A) and liver (median error 3.7  years, 
Fig. 3C) by the macaque pan-tissue clock.

Epigenome‑wide association studies (EWAS) of 
chronological age in rhesus macaque

In total, 36,733 probes from HorvathMammalMethyl-
Chip40 could be mapped to specific loci in the rhesus 
macaque (Macaca mulatta.Mmul_10.100) genome. 

These loci are located proximal to 6154 genes. It is 
expected that output from the use of these clocks 
can be extrapolated to humans and other mammals 
since the mammalian array is designed to cover the 
most conserved regions across different mammalian 
genomes. To characterize the CpGs that change with 
macaque age (age-related CpGs) in different tissues, 
epigenome-wide association studies were carried 
out, which showed clear tissue specificity of age-
related CpGs (and their proximal genes) (Fig.  4A). 
Hence, aging effects in one tissue do not appear to 
be reflected in another tissue (Supplementary Fig. 4). 
This, however, may be owed to the limited sample 
size in non-blood tissue (Table 1).

To identify CpGs whose methylation is most 
affected by age in all the tissues analyzed, DNAm 
changes were analyzed at a nominal p value < 10−4. 
The top DNAm changes and their proximal genes in 
each tissue are as follows: adipose,  CHD3  promoter 
(correlation test Z statistic z =  − 6); blood, VGF pro-
moter (z = 16); cerebral cortex, PAX6  5′UTR (z = 5); 
kidney,  AGAP3  intron (z =  − 8.7); liver,  ONE-
CUT2  exon (z = 7.9); lung, distal intergenic region 
upstream of  ZNF507  (z = 6.5), and  GRIA1  pro-
moter (z =  − 5.7); muscle,  MN1  intron (z =  − 6.5); 
and skin,  LHFPL4  intron (z = 11). Meta-analysis of 
these eight tissues showed the top DNAm changes to 
include hypermethylation in VGF promoter (z = 14.8), 
four CpGs in KLF14 promoter (z = 12.7 to 14.5), SST 
promoter (z = 12.9), and  LHFPL4  exon (z = 12.8) 
(Fig. 4A). CpGs that exhibited consistent age-associ-
ated methylation change across multiple (but not nec-
essarily all) tissues were identified with an upset plot, 
which can be interpreted as a generalization of a Venn 
diagram. The upset plot analysis highlighted four 
CpGs in the KLF14  promoter as being age-related 
in at least four tissues (adipose, blood, cortex, and 
skin, Fig. 4C). The KLF14 promoter controls expres-
sion of the KLF14 protein, which is itself a transcrip-
tional factor that regulates the expression of TGFBII 
receptor.

Age-associated CpGs in different tissues were 
found to be distributed in genic and intergenic regions 
that can be defined relative to transcriptional start 
sites (Fig.  4B). However, in tissues with sufficient 
sample numbers (blood and skin), CpGs located 
in promoters and 5′UTRs had a higher percentage 
of DNAm change than the background. Moreover, 
the DNAm changes in promoter and 5′UTR were 
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mainly hypermethylation in all tissues. This result 
paralleled prior observed patterns in DNAm aging 
in other species.  We proceeded to identify putative 

transcriptional factors whose binding motifs were 
enriched for the top CpGs located in promoter or 
5′UTR with DNAm changes, in either direction and 

Fig. 2   Human-macaque clocks applied to select human tis-
sues. Leave-one-human sample-out (LOHO) cross fold cross-
validation estimates of the human-macaque clock for (A, C) 
chronological age and (C, D) relative age, respectively. (A, 

B) Human blood samples. (C, D) Human skin samples. Each 
panel reports the sample size (in parenthesis), correlation coef-
ficient, and median absolute error (MAE)
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in each tissue (Fig.  4D). The top TF motifs were 
Zic1 and Zic2, which had five CpGs that become less 
methylated with age in muscle. For blood and lung, 
the top enriched motif is the TFAP2C (AP-2 gamma 
transcriptional factor) binding site that becomes 
increasingly hypomethylated with age.

Discussion

Human epigenetic clocks have many biomedical 
applications, including in human clinical trials [5, 
24]. The utility of these human clocks prompted 
development of similar ones for other mammalian 
species. Clocks developed for mice are particularly 

important as they allow modelling of epigenetic age 
in a widely used model organism [9, 10, 19–22]. 
Despite the many advantages of mouse models, there 
is still a large gap in translating findings to primates. 
Hence, nonhuman primates play an indispensable 
role in preclinical investigations of potential interven-
tions that might slow aging. As a case in point, both 
the National Institute on Aging and the University 
of Wisconsin have conducted longitudinal studies in 
rhesus macaques to determine if the promising anti-
aging intervention, caloric restriction, would also 
apply to nonhuman primates and hence, more plau-
sibly translate to human aging [25–27]. Indeed, these 
studies have yielded valuable information about the 

Fig. 3   Macaque clocks applied to tissues from vervet monkey 
(Chlorocebus sabaeus). Each dot corresponds to a tissue sam-
ple from vervet monkeys. Each dot is colored by tissue type: 
blood (green), cerebral cortex (red), liver (purple). Chrono-
logical age of the vervet specimens (x-axis) versus the DNAm 

age estimate of the (A) pan-tissue macaque clock, (B) blood 
macaque clocks, (C) skin macaque clock, (D) human-macaque 
clock for chronological age, and (E) human-macaque clock for 
relative age. Each panel reports the sample size (in parenthe-
sis), correlation coefficient, and median absolute error (MAE)
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role of diet composition, fasting timing, and overall 
intake on healthspan and lifespan [26–28]. Despite 
their importance, such lifespan and healthspan studies 
in nonhuman primates are time consuming and costly. 
Therefore, the development of suitable biomarkers for 
aging promises to reduce the cost and time needed for 
carrying out such studies; thus, specific epigenetic 
clocks for nonhuman primate species are necessary. 
A critical step that obviates the species barrier was 
the development of a mammalian DNA methylation 
array that profiles up to 36,000 CpGs with flanking 
DNA sequences that are conserved across multiple 
mammalian species. This allows DNA methylation 
profiling of virtually all mammalian species. The rhe-
sus macaque DNA methylation profiles detailed here 
were derived from eight tissue types and represent the 
largest dataset to date of single-base resolution meth-
ylomes in highly conserved regions across multiple 
tissues and ages.

This successful derivation of the multiple rhesus 
macaque epigenetic clocks attests to the conservation 
of epigenetic aging mechanisms across the mamma-
lian class. The macaque clock exhibits impressive age 
correlation with the vervet monkey clock, a species 
which diverged 12.5 million years ago. Moreover, 
the evolutionary conservation of epigenetic aging is 
further exemplified by demonstrating the feasibil-
ity of combining methylation profiles of humans and 

rhesus macaque. These species diverged 29 million 
years ago, yet a single mathematical formula can be 
applied to generate human-rhesus macaque clocks. 
This single formula human-macaque clock is equally 
applicable to both species, and thereby demonstrates 
conservation of aging mechanisms, which alterna-
tively could be deduced with the existence of multiple 
individual clocks for other mammals.

The significance of this unification under one 
formula has implications, which extend beyond its 
utility in directly translating age-related findings in 
rhesus macaques to humans. With this tool, one can 
consider the root contributions to aging as it affirms 
the increasing evidence that aging is a coordinated 
biological process, harmonized throughout the body. 
This ushers in the possibility that when a regula-
tor or coordinator of aging rate is identified, there is 
potential to modulate it through interventions. As this 
mechanism is conserved across species, interventions 
that successfully alter the epigenetic aging rate of rhe-
sus macaques, as measured using the human-rhesus 
macaque clock, will likely exert similar effects in 
humans.

Although genome- and epigenome-wide analyses 
often yield a large number of potential target genes 
and pathways related to aging, it is not immediately 
obvious which ones are actually relevant. Yet, with 
repeated analyses of age-related CpGs in different 
species within the mammalian class, the relevant can-
didates can be identified. By design, the mammalian 
array facilitates cross-species comparisons. As a case 
in point, analyses of datasets derived from this array 
revealed CpGs within the TFAP2 binding site were 
increasingly unmethylated with age across different 
mammalian species including the rhesus macaque. 
This motif is associated with genes that are involved 
in cell cycle arrest, germ cell development, and impli-
cated in several types of cancers [29, 30]. Addition-
ally, candidates such as Zic1 and Zic2, which did not 
feature in previously analyzed mammalian species, 
were uncovered and may indicate species-specific 
genes related to aging. These ZIC1 and ZIC2 tran-
scription factors are particularly interesting because 
they regulate the expression of the APOE gene, which 
is associated with longevity and is the most com-
monly identified genetic risk factor of Alzheimer’s 
disease [31]. Thus, methylation change in this motif 
might underlie age-associated expression in this pro-
tein. Evolutionary selection and adaptation would 

Fig. 4   Epigenome-wide association studies (EWAS) of chron-
ological age in adipose, blood, cerebral cortex, kidney, liver, 
lung, muscle, and skin of rhesus macaque. (A) Manhattan plots 
of the EWAS of chronological age. The coordinates are esti-
mated based on the alignment of mammalian array probes to 
Mmul_10.100 genome assembly. The direction of associations 
with p < 10−4 (red dotted line) is highlighted by red (hyper-
methylated) and blue (hypomethylated) colors. Top 30 CpGs 
were labeled by the neighboring genes. (B) Location of top 
CpGs in each tissue relative to the closest transcriptional start 
site. Top CpGs were selected at p < 10−4 and further filtering 
based on z score of association with chronological age for up to 
500 in a positive or negative direction. The number of selected 
CpGs: adipose, 62; blood, 1000; cerebral cortex, 40; kidney, 
380; liver, 230; lung, 186; muscle, 47; skin, 1000; and meta-
analysis, 1000. The gray color in the last panel represents the 
location of 36733 mammalian BeadChip array probes mapped 
to Mmul_10.100 genome. (C) Upset plot representing the over-
lap of age-associated CpGs based on meta-analysis or individ-
ual tissues. Neighboring genes of the overlapping CpGs were 
labeled in the figure. (D) Transcriptional motif enrichment for 
the top CpGs in the promoter and 5′UTR of the neighboring 
genes. The enrichment was tested using a hypergeometric test 
(Methods)

◂
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predict a divergence in genes and pathways between 
species. This is akin to other biological processes, 
such as cell cycle regulation, where a basic mecha-
nism is conserved across species, but special addi-
tions, deletions, and modifications are identified in 
only a select species or group.

Just as there are species differences, age-related 
DNA methylation changes are tissue specific. Sam-
ple size was a limitation of the current study, and thus 
we can draw only limited conclusions from our data 
presented here. This notwithstanding, it is interesting 
to note that CpGs within the KLF14 promoter were 
consistently altered with age in four tissues (adipose, 
blood, cerebral cortex, skin). KLF14 is a transcrip-
tion factor that regulates the TGFBII receptor. This 
has potential physiological significance because the 
ligand of this receptor, TGFB, exerts diverse cellular 
effects including telomere regulation, unfolded pro-
tein response, autophagy, DNA repair, cellular senes-
cence, and stem cell aging. As a consequence, TGFB 
signaling is frequently involved in age-related pathol-
ogies such as cardiovascular disease, Alzheimer’s dis-
ease, and osteoarthritis [32].

This is just one example from our extensive anal-
ysis of the rhesus epigenome that has broad tissue 
application and highlights the need for more in-depth 
empirical investigations to test and reveal the under-
lying mechanisms of epigenetic aging. Toward this 
end, the epigenetic clocks may play a pivotal role in 
uncovering potential candidates, monitoring aging 
rates, and testing putative aging interventions. The 
rhesus epigenetic clocks described here may be a key 
factor in translating such interventions to humans.

Detailed methods

Rhesus macaque

In total, we analyzed N = 281 rhesus macaque tissue 
samples from 8 different tissues (Table  1). The rhe-
sus monkeys have been housed continuously at the 
NIH Animal Center, Poolesville, MD. The animal 
center is fully accredited by the American Associa-
tion for Accreditation of Laboratory Animal Care, 
and all procedures were approved by the Animal Care 
and Use Committee of the NIA Intramural Program. 
Monkeys were of a heterogenous genetic background, 
both Chinese and Indian origin.

Monkeys were housed individually or paired 
in standard nonhuman primate caging on a 12-h 
light/12-h dark cycle, room temperature 78 ± 2° 
humidity at 60 ± 20%. Housing has been described 
previously [33]. All monkeys had extensive visual, 
auditory, and olfactory but limited tactile contact 
with monkeys housed in the same room. Monkeys 
received 2 meals per day at estimated ad libitum lev-
els throughout the study. Water was always available 
ad  libitum. Monkeys were monitored minimally 3 
times daily by trained animal care staff.

Sample collection

Monkeys were fasted overnight, approximately 
16–18  h. Monkeys were anesthetized with either 
ketamine, 7–10  mg/kg, IM or Telazol, 3–5  mg/kg, 
IM. Blood samples were obtained by venipuncture 
of the femoral vein using a vacutainer and EDTA 
tubes. Samples were immediately placed on dry ice 
and stored at − 80°. Skin samples were collected at 
the same time from an alcohol-wiped area of the back 
between the shoulder blades.

Omental fat, kidney, liver, lung, skeletal muscle, 
and brain cortex were collected during necropsies 
scheduled for other study purposes or terminal clini-
cal conditions. At that time, tissues were flash fro-
zen in liquid nitrogen following collection and stored 
at − 80°. These tissues were selected for use based on 
having matching blood samples. None of the mon-
keys was sacrificed for this study.

Vervet Monkeys

The vervet monkey data are described in a companion 
paper [34].

Human tissue samples

To build the human-rhesus macaque clock, we ana-
lyzed previously generated methylation data from 
n = 1207 human tissue samples (adipose, blood, bone 
marrow, dermis, epidermis, heart, keratinocytes, 
fibroblasts, kidney, liver, lung, lymph node, mus-
cle, pituitary, skin, spleen) from individuals whose 
ages ranged from 0 to 93  years. The tissue samples 
came from three sources: tissue and organ samples 
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from the National NeuroAIDS Tissue Consortium 
[35], blood samples from the Cape Town Adoles-
cent Antiretroviral Cohort study [36], skin and other 
primary cells provided by Kenneth Raj [37]. Eth-
ics approval (IRB#15–001,454, IRB#16–000,471, 
IRB#18–000,315, IRB#16–002,028).

DNA methylation profiling

All DNA methylation data were generated using the 
custom Infinium array “HorvathMammalMethyl-
Chip40” which uses both type I and type II infinium 
probes [38].

By design, the mammalian methylation array facili-
tates epigenetic studies across mammalian species 
(including rhesus macaques and humans) due to its 
very high coverage (over thousand-fold) of highly con-
served CpGs in mammal [38]. Each probe is designed 
to cover a certain subset of species as detailed on our 
Github page. The chip manifest file can be found at 
Gene Expression Omnibus (GEO) at NCBI as plat-
form GPL28271. Genome coordinates and other infor-
mation can be downloaded from  https://​www.​github.​
com/​shorv​ath/​Mamma​lianM​ethyl​ation​Conso​rtium/. 
The SeSaMe normalization method was used to define 
beta values for each probe [39].

Penalized regression models

Details on the clocks (CpGs, genome coordinates) 
and R software code are provided in the Supple-
ment. Our pan-tissue clock for rhesus macaque 
is based on 71 CpGs that are present on a custom 
chip (HorvathMammalMethylChip40). Our human-
rhesus macaque epigenetic clock for chronological 
age is based on 508 CpGs. Another human-rhesus 
macaque epigenetic clock for relative age is based 
on 623 CpGs. We developed epigenetic clocks for 
rhesus macaques by regressing chronological age on 
the CpGs on the mammalian array. We used all tis-
sues for the pan-tissue clock.

Penalized regression models were created with the 
R function “glmnet” [40]. We investigated models  
produced by both “elastic net” regression (alpha = 0.5). 
The optimal penalty parameters in all cases were deter-
mined automatically by using a tenfold internal cross-
validation (cv.glmnet) on the training set. By definition, 

the alpha value for the elastic net regression was set to 
0.5 (midpoint between Ridge and Lasso type regres-
sion) and was not optimized for model performance. 
We performed a cross-validation scheme for arriving at 
unbiased (or at least less biased) estimates of the accu-
racy of the different DNAm-based age estimators. One 
type consisted of leaving out a single sample (LOOCV) 
from the regression, predicting an age for that sample, 
and iterating over all samples.

For the cross-validation procedure, the penal-
ized regression algorithm automatically selected a 
different set of CpGs from the array for each fold. 
In case of LOO cross-validation, the CpG selection 
was based on n-1 observations. A critical step is the 
transformation of chronological age (the dependent 
variable). While no transformation was used for the 
pan-tissue clock for rhesus macaque, we did use a 
log linear transformation for the dual species clock 
of chronological age (Supplementary Methods).

Relative age estimation

To introduce biological meaning into age estimates 
of rhesus macaques and humans that have very dif-
ferent lifespans, as well as to overcome the inevita-
ble skewing due to unequal distribution of data points 
from rhesus macaques and humans across age range, 
relative age estimation was made using the formula: 
Relative age = Age/maxLifespan where the maximum 
lifespan for rhesus macaques and humans were set 
to 42 years and 122.5 years, respectively. The maxi-
mum lifespan for the two species was chosen from the 
updated version of the anAge data base [23].

Epigenome‑wide association studies (EWAS) of age

EWAS was performed in each tissue separately using 
the R function “standardScreeningNumericTrait” 
from the “WGCNA” R package [41]. Next, the results 
were combined across tissues using Stouffer’s meta-
analysis method. Our epigenome-wide association 
test studies of chronological age reveal that aging 
effects in one tissue are sometimes poorly conserved 
in another tissue.

Transcription factor enrichment and chromatin states

In our enrichment tests, we used the appropriate 
background comprised of CpGs that are represented 
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on the mammalian array and that map to rhesus. Fur-
thermore, we used an enrichment analysis software 
(GREAT) that properly adjusts for these and other 
potential sources of bias [42]. We evaluated our bio-
informatics pipeline by uploading random sets of 
CpGs that did not result in significant enrichments 
[38].

The FIMO (Find Individual Motif Occurrences) 
program scans a set of sequences for matches of 
known motifs, treating each motif independently 
[43]. We ran TF motif (FIMO) scans of all probes 
on the HorvathMammalMethyl40 chip using motif 
models from TRANSFAC, UniPROBE, Taipale, 
Taipaledimer, and JASPAR data bases. A FIMO scan 
p-value of 1E-4 was chosen as cutoff (lower FIMO 
p-values reflect a higher probability for the local 
DNA sequence matching a given TF motif model). 
This cutoff implies that we find almost all TF motif 
matches that could possibly be associated with each 
site, resulting in an abundance of TF motif matches. 
We caution the reader that our hypergeometric test 
enrichment analysis did not adjust for CG content.
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