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Abstract Motor unit (MU) expansion enables rescue of
denervated muscle fibres helping to ameliorate age-
related muscle atrophy, with evidence to suggest master
athletes are more successful at this remodelling. Elec-
trophysiological data has suggested MUs located super-
ficially are larger than those located deeper within
young muscle. However, the effects of ageing and ex-
ercise on MU heterogeneity across deep and superficial
aspects of vastus lateralis (VL) remain unclear.

Intramuscular electromyography was used to record
individual MU potentials (MUPs) and near fibre MUPs
(NFMs) from deep and superficial regions of the VL
during 25% maximum voluntary contractions, in 83
males (15 young (Y), 17 young athletes (YA), 22 old
(O) and 29 master athletes (MA)). MUP size and com-
plexity were assessed using area and number of turns,
respectively. Multilevel mixed effects linear regression
models were performed to investigate the effects of
depth in each group. MUP area was greater in deep
compared with superficial MUs in Y (p<0.001) and O
(p=0.012) but not in YA (p=0.071) or MA (p=0.653).
MUP amplitude and NF MUP area were greater, and
MUPs were more complex in deep MUPs from Y, YA
and O (all p<0.05) but did not differ across depth in MA
(all p>0.07). These data suggest MU characteristics
differ according to depth within the VL which may be
influenced by both ageing and exercise. A more homog-
enous distribution of MUP size and complexity across
muscle depths in older athletes may be a result of a
greater degree of age-related MU adaptations.
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Introduction

Sarcopenia is the loss of muscle mass and function with
age [3] and is the result of the combination of the
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atrophy and loss of individual muscle fibres [48]. It is
associated with an increased risk of falls and a greater
probability of fractures [50] and reduces the functional
independence of older individuals and their ability to
carry out activities of daily living [18]. As the proportion
of older people in the population increases, with UK
estimates of 12.2 million people over the age of 65 in
2018 [33], and with sarcopenia estimated to affect >50
million people over 60 globally [2], interventions to
maintain musculoskeletal health in older adults at great-
er risk are more pressing than ever.

Lower limb muscles such as the quadriceps are im-
portant for mobility and balance [19] but often show the
greatest reductions in muscle mass and strength with age
and inactivity compared to other muscle groups [20,
24]; therefore, declines here have a greater detrimental
functional impact. With age and inactivity, morpholog-
ical changes within muscle fibres are observed including
atrophy, reduced satellite cell number and reduced mi-
tochondrial density [27, 31]. Alongside these changes,
which contribute to the loss of strength, there are also
neuromuscular changes observed at the single motor
unit (MU) level. The term MU encompasses a motor
neuron and the muscle fibres it supplies [6]. A reduction
in MU number has been observed in multiple muscles
[12, 40, 41] alongside increases in MU size with ad-
vancing age [22, 35, 39].

Data on the effects of lifelong exercise on the pres-
ervation of MUs are equivocal, with a study showing no
difference between master athletes (MA) and
recreationally active young in the tibialis anterior (TA)
[42] but others showing no difference between MA and
age-matched recreationally active controls in the TA
[36], biceps brachii (BB) [41] and VL [37]. However,
there are multiple lines of evidence on the process of
fibre reinnervation suggesting it is more successful in
highly active older adults possibly reducing overall fibre
loss, demonstrated by intramuscular electromyography
(iEMG) [37], fibre type grouping from biopsies [29, 52]
and fewer histological markers of denervation [14, 44].

The process of axonal regeneration and synaptogen-
esis is achieved through collateral axonal sprouting and
the formation of new neuromuscular junctions with
denervated fibres, likely stimulated by neurotrophins
which are increased following exercise [5, 16]. The
increase of fibre type grouping in older human muscle,
particularly of type 1 fibres [1, 15], has also been ob-
served in animal models where it is attributed to a
preference of a slow phenotype to reinnervate local

fibres [9]. Whilst grouping indicates fibres are of
the same type, it does not indicate they belong to
the same MU and may not directly infer successful
fibre reinnervation [28].

Previous research has demonstrated that MU size
differs across muscle depth in young VL, with deeper
MUs smaller than those located in superficial regions
[17]. However, it is currently unknown if these findings
are the same in older people and if this observed hetero-
geneity can be affected by activity levels. The aims of
this study were to determine the heterogeneity of MUP
features in deep and superficial regions of the vastus
lateralis (VL) muscle and to determine the combined
effects of ageing and lifelong exercise.

Methods

Participants

Eighty-three healthy male volunteers gave written in-
formed consent to take part in the study approved by the
Manchester Metropolitan University Research Ethics
Committee and the National Research Ethics Service
Committee Northwest (15/NW/0426). This included 32
young: 15 controls, 7 young endurance athletes, 10
young power athletes; and 51 old: 22 controls, 18master
endurance athletes, 11 master power athletes. These
individuals were grouped into young (Y), young ath-
letes (YA), old (O) and master athletes (MA), with
characteristics summarised in Table 1. The controls
were recreationally active and were recruited from the
university population and local community. All of the
athletic participants were competing in their respective
sports at the time of testing, and all completed more than
5 h of training per week specific to their discipline.
Athletes were recruited from running clubs, two national
masters athletics competitions and from an advertise-
ment in a national athletics magazine. All young athletes
had trained specifically for their respective events for a
minimum of 5 years prior to testing. All master athletes
had trained specifically for their events since young
adulthood (>18 years), and the median number of
years of training at the point of testing was 46
years for the endurance athletes and 51 years for
the power athletes. Direct comparisons of whole
muscle function and MU potential size in these
participants have previously been published [37].
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Anthropometric measures

Body mass and height were measured using calibrated
scales and stadiometry, respectively, and body mass
index (BMI) calculated. Information on the individual
muscle cross-sectional area (CSA) and methods of re-
cording VL thickness have been previously published
[37]. In brief, VL thickness was measured in the right
leg with magnetic resonance imaging (MRI) using a T1-
weighted turbo 3D sequence on a 0.25-T G-Scan with
the participants lying supine (Esaote, Genoa, Italy).
Images were exported and analysed off-line as previ-
ously described, using Osirix imaging software (Osirix
medical imaging, Osirix, Atlanta, GA, USA; [26]). To-
tal body fat percentage was assessed by dual-energy X-
ray absorptiometry (Lunar Prodigy Advance, version
EnCore 10.50.086; GE Healthcare, UK) with legs and
arms fully extended in the supine position.

Experimental protocol

Strength assessment

Right knee extensor strength was assessed with partici-
pants sitting with hips and knees flexed at 90° and the
leg securely fastened to a force transducer 30 cm below
the centre of the knee joint. To familiarize with the
equipment and to ‘warm-up’ the muscle, participants
performed a series of submaximal contractions. They
were then instructed to perform a maximal isometric
contraction, accompanied by verbal encouragement
and visual feedback of force on a computer screen. This
was repeated three times, with 60-s rest intervals. The
best effort was taken as a maximum voluntary isometric
contraction force (MVC).

Surface EMG (sEMG)

An active recording sEMG electrode (disposable self-
adhering Ag-AgCl electrodes; 95 mm2, Ambu
Neuroline, Baltorpbakken, Ballerup, Denmark) was
placed over the motor point located around the mid-
thigh of the VL, identified using a cathode probe
(Medserve, Daventry, UK) to apply percutaneous elec-
trical stimulation at 400 V, pulse width of 50 μs and
current of around 8 mA (DS7A Digitimer, Welwyn
Garden City, Hertfordshire, UK). A self-adhesive elec-
trode (Dermatrode, Farmadomo, NL) was used as the
anode placed over the right gluteus. A reference elec-
trode was placed over the patella tendon and a common
ground electrode placed over the patella. The common
ground electrode served for both surface and intramus-
cular EMG (iEMG) measurements. Surface EMG sig-
nals were bandpass filtered between 5 and 5 kHz via
CED 1902 amplifiers (Cambridge Electronics Design
Ltd., Cambridge, UK), sampled at 10 kHz and digitized
with a CED Micro 1401 data acquisition unit (Cam-
bridge Electronic Design).

Intramuscular EMG (iEMG)

A 25-mm concentric needle electrode (Model N53153;
Teca, Hawthorne, NY) was inserted immediately adja-
cent to the recording surface electrode over the motor
point, to a depth of approximately 10 to 25 mm into the
VL, depending on muscle size. The initial depth of
insertion was based on participants’ muscle size with
deeper insertions for larger muscles and was withdrawn
superficially between contractions. At each new loca-
tion, the participant performed a low-level contraction to
ensure MUPs were of sufficient sharpness (i.e. quality).

Table 1 Mean (SD) participant characteristics for each group

Group

Y (n=15) YA (n=17) O (n=22) MA (n=29)

Age (years) 26 (5) 27 (4) 70 (4) 70 (5)

Height (m) 1.78 (0.07) 1.80 (0.04) 1.75 (0.06) 1.74 (0.06)

Weight (kg) 72.3 (7.7) 79.7 (13.8) 73.9 (6.8) 68.9 (8.4)

BMI (kg/m2) 22.9 (2.4) 24.6 (4.0) 24.3 (1.9) 22.7 (2.5)

Y (n=15) YE (n=7) YP (n=10) O (n=22) ME (n=18) MP (n=11)

VL thickness (cm) 2.5 (0.4) 2.2 (0.2) 3.4 (0.5) 1.7 (0.4) 1.9 (0.5) 2.0 (0.4)

Body fat (%) 17.1 (6.3) 8.7 (3.6) 14.5 (4.9) 22.4 (5.4) 13.9 (5.5) 18.1 (5.9)

Young controls (Y), young athletes (YA), old controls (O), master athletes (MA), vastus lateralis (VL), young endurance athletes (YE),
young power athletes (YP), master endurance athletes (ME), master power athletes (MP)
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During intramuscular needle insertions, it is possible to
differentiate between subcutaneous fat tissue and mus-
cle based on needle resistance during insertion and
passing of the VL aponeurosis. This combined with
inspection of the signal during low-level contractions
ensures the needle tip remains within the muscle. All
needle insertions and iEMG recordings were performed
by the same investigator. The participant performed a
voluntary, low force contraction whilst the needle posi-
tion was adjusted to obtain intramuscular MUPs with
peak second derivative values >5 kV/s2, thus ensuring
the recording needle electrode was close to fibres be-
longing to the sampled MUs [34, 45]. The participant
then performed a voluntary contraction lasting 12–15 s,
aiming to hold a target line set at 25%MVC shown on a
computer monitor, and rested for approximately 30 s
between contractions. The needle electrode was then
repositioned by combinations of rotating the bevel
180° and withdrawing it by 10–25 mm, dependent on
muscle size. The procedure of needle positioning, vol-
untary contraction and signal recording was repeated
until a minimum of six recordings from varying depths
from deep to superficial had been obtained to sample
from representative sets of MUs. To clearly differentiate
the effects of depth and reduce the probability of repeat
MUP recordings from different perspectives of the same
MU, here, we report data from the deepest and most
superficial recordings only. iEMG signals were
bandpass filtered from 10 to 10 kHz and sampled at 25
kHz. The force and EMG signals were displayed in real-
time using Spike2 software (v8.01), and data were
stored for off-line analysis.

Data analysis

Deep motor units were defined as those recorded at the
first depth the needle electrode was positioned, for both
orientations (0° and 180°). Superficial MUs were those
recorded at the final depth the needle was positioned,
following needle withdrawal, for both orientations.
Again, a low force contraction was performed to exam-
ine signal quality following each change of depth and
orientation.

EMG analysis

The procedures for recording and analysing individual
MUPs and surface motor unit potentials (sMUPs) have
been described in detail previously [36, 40].

Intramuscular and surface EMG signals were analysed
using decomposition-based quantitative electromyogra-
phy (DQEMG) [46]. DQEMG was used to automatical-
ly identify MUPs and their corresponding sMUPs. In-
dividual MUPs from MU potential trains (MUPTs) of
separate MUs were identified from the iEMG signal.
MUPTs that were composed of MUPs from more than
one MU or had fewer than 40 MUPs were excluded.
Individual MUP times of occurrence were used as ‘trig-
gers’ to estimate a corresponding sMUP, thereby pro-
viding surface representations of deep and superficial
MUs sampled during the 25% MVC contractions. All
MUP and sMUP templates were visually inspected and
their markers adjusted, where required, to correspond to
the onset, negative-phase onset (sMUP only), end and
positive and negative peaks of the waveforms.

MUP amplitude was measured from the maximal
positive and negative peaks, and the area was taken as
the total area within the MUP duration (onset to end)
and is indicative of MU size. The MUP complexity was
assessed using the number of turns in theMUP template.
A ‘turn’ was defined as a change in direction of the
waveform of at least 25 μV. The number of turns in the
MUP templates indicates the level of temporal disper-
sion across individual muscle fibre contributions to a
single MUP. MUP amplitude was divided by sMUP
amplitude to give aMUP:sMUP ratio, providing a direct
comparison of MUPs measured at the skin surface and
intramuscularly across depths.

A near fibre MUP (NFM) is defined as the accelera-
tion of its corresponding MUP and calculated by apply-
ing a second-order, low-pass differentiator to the MUP
which effectively reduces the recording area of the
needle electrode to within ∼350 μm, thereby ensuring
only the closest fibres significantly contribute to the
NFM and reducing interference from distant active fi-
bres of other MUs [34, 45].

Statistical analysis

Multilevel mixed effects linear regression models were
performed in StataSE (v15.0, StataCorp LLC, TX,
USA). As no interaction effects were observed between
group and depth, separate models were performed
for each group to account for within-subject vari-
ability and test for differences with depth in MUP
features. Significance was assumed if p<0.05. Ad-
ditionally, regression coefficients and 95% confi-
dence intervals (CI) are reported.
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Results

Participant characteristics

There were no depth-related differences in MUP and
NFM features between the power and endurance ath-
letes within each age group, so these were grouped
accordingly. Participant characteristics are shown in
Table 1. The mean age-graded performance (AGP) of
the young athletes in their respective disciplines was
77.6 ± 2.3, and for master athletes, AGP was
81.2 ± 9.6, representing very high levels of athletic
ability. A total of 1414 MUs were sampled, with a total
mean of 17 ± 7 per person, comprising 10 ± 5 deepMUs
and 7 ± 5 superficial MUs.

Depth variation

Motor unit potential features

The ratio between the MUP and sMUP amplitude was
significantly greater for deep MUs in all groups (Y:
β=−1.06; CI=−1.52: −0.602; p<0.001; YA: β=−1.11;
CI=−1.55: −0.67; p<0.001; O: β=−0.695; CI=−1.34:
−0.051; p=0.034; MA: β=−0.865; CI=−1.45: −0.283;
p=0.004; Table 2), meaning that for deep MUs, the size
of an sMUP less closely matched its corresponding
MUP than for superficial MUs.

MU potential area was significantly greater for deep
MUs in the Y (β=−316; CI=−462: −170; p<0.001) and
O (β=−292; CI=−521: −62.9; p=0.012) but was not
significantly different between deep and superficial
MUPs for YA (β=−154; CI=−321: 13.4; p=0.071),
and no difference for MA (β=−45.5; CI=−244: 153;
p=0.182; Table 2; Fig. 1a). Similarly, MUP amplitude
was significantly greater for deep MUs compared to
superficial MUs in Y (β=−160; CI=−234: −85.5;
p<0.001), YA (β=−93.4; CI=−179: −8.17; p=0.032)
and O (β=−179; CI=−321: −35.9; p=0.014), but no
differences were observed between depths in MA
(β=−61.2; CI=−151: 28.6; p=0.182) (Table 2;
Fig. 1b). MUP complexity, as assessed by the number
of turns, was greater for deeper MUs compared to
superficial in Y (β=−0.588; CI=−0.975: −0.201;
p=0.003), YA (β=−0.43; CI=−0.747: −0.114;
p=0.008) and O (β=−0.696; CI=−1.19: −0.2;
p=0.006), but no differences were observed between
depths in MA (β=−0.062; CI=−0.397: 0.273; p=0.716)
(Table 2; Fig. 1c).

Near fibre motor unit features

NFM area was significantly greater for deep MUs in Y
(β=−1.03; CI=−1.64: −0.42; p=0.001), YA (β=−0.88;
CI=−1.54: −0.22; p=0.009) and O (β=−1.36; CI=−2.35:
−0.38; p=0.007) but not MA (β=−0.71; CI=−1.50:
0.078; p=0.077) (Table 2; Fig. 2).

Discussion

Here, we demonstrate that MUP features of the VL
differ according to muscle depth, and these differences
are further influenced by age and activity level. We
found that key parameters indicative of MU size and
complexity were greater in deepMUs than those located
superficially in healthy young participants. A similar
heterogeneous distribution of MUP features was also
shown in the young athletes and old control groups.
Conversely, master athletes demonstrated a more ho-
mogenous distribution of MUP features across deep and
superficial recording sites with all MUP features show-
ing no differences across depth.

Spike triggered averaging was used here to examine
the surface representation of MUPs, from deep and
superficial MUs. Our findings from the ratio of MUP
amplitude to sMUP amplitude indicate that the contri-
bution of deepMUs to the sMUP is significantly smaller
than those of superficial MUs. This finding adds further
evidence that surface EMG recording will preferentially
record from superficial MUs, and as such may not be
representative of the entire muscle pool [30]. Signals
from sEMG alone are attenuated by subcutaneous fat
and connective tissue [7, 32], and here, we demonstrate
that this occurs in all population groups (via the MUP:
sMUP amplitude ratio), inclusive of athletes who have
much lower body fat levels than age-matched controls.

Our results show that MUs sampled from deeper
regions of VL generated larger NFM area and MUP
amplitude in Y, YA and O. One possibility is that deep
VL MUs are structurally distinct from those in superfi-
cial regions, which are similar to observations of MUPs
in the trapezius muscle [13]. However, the trapezius
muscle is structurally different from the VL, and in the
VL, individual fibres may span the entire deep to super-
ficial aponeuroses [10]. Therefore, factors other than
distinct MU pools may influence the differences in
MUP features between deep and superficial regions,
including localised intramuscular connective and/or fat
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tissue, or may be related to the heterogeneity of fibre
CSA along their full length [25].

These findings differ from previous reports where
deep MUs generated smaller MUPs [17] in healthy
young VL. Key differences in recording technique
could possibly explain these differences. At the same
contraction intensity, MUP and NFM measures provide
a more accurate view ofMU activity than those recorded
by surface methods more often used [17, 38]. This
concept is also evidenced here with the weaker relation-
ship between deep MUP and sMUP amplitude in all
groups. Although the exact depth of the detection area of
the recording electrodewithin the VLwas not measured,
we can confidently differentiate between deep and su-
perficial regions as the needle was incrementally

withdrawn between recordings. We made efforts to
ensure the needle electrode did not pass the deeper VL
aponeurosis, inserting very little of the 25-mm needle
into the smallest muscles (VL thickness ranged between
8.2 and 36.6 mm in our cohort). Findings from Knight
and Kamen [17] were applied to depths of 47 mm at an
angle perpendicular to the skin, which would exceed the
depth from even our young power athletes, and there-
fore may have been sampling from vastus intermedius.

The physiological importance of the differences we
observed in MUP features across depths are unclear;
nevertheless, they have methodological implications
when recording MUs. In seminal work from Lexell
et al. [21], autopsied sections of VL indicated a more
even distribution of fibre size across depths of old

Table 2 Regression coefficient (β) and 95% confidence intervals (CI) for all motor unit parameters

Regression coefficient (β) Confidence Interval (CI) Significance (p)

MUP features

MUP amplitude

Y −160 −234: −85.5 p<0.001

YA −93.4 −179: −8.17 p=0.032

O −179 −321: −35.9 p=0.014

MA −61.2 −151: 28.6 p=0.182

MUP area

Y −316 −462: −170 p<0.001

YA −154 −321: 13.4 p=0.071

O −292 −521: −62.9 p=0.012

MA −45.5 −244: 153 p=0.653

Turns

Y −0.588 −0.975: −0.201 p=0.003

YA −0.430 −0.747: −0.114 p=0.008

O −0.696 −1.19: −0.2 p=0.006

MA −0.062 −0.397: 0.273 p=0.716

MUP:sMUP amplitude

Y −1.06 −1.52: −0.602 p<0.001

YA −1.11 −1.55: −0.67 p<0.001

O −0.695 −1.34: −0.051 p=0.034

MA −0.865 −1.45: −0.283 p=0.004

NFM features

NFM area

Y -1.03 −1.64: −0.42 p=0.001

YA -0.88 −1.54: −0.22 p=0.009

O -1.36 −2.35: −0.379 p=0.007

MA -0.71 −1.50: 0.078 p=0.077

Multilevel mixed effects linear regression model outputs for young controls (Y), young athletes (YA), old controls (O), master athletes
(MA), motor unit potential (MUP), surface motor unit potential (sMUP), near fibre motor unit potential (NFM)
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muscle when compared to young, which could influence
the size of theMUP. The size of anMUP cannot directly
infer the size of the MU in terms of innervation ratio but
is indicative of it [34, 51]. The MUP area and amplitude
are also influenced by fibre CSA and proximity of the
MU fibres to the recording electrode and estimating the

relative contribution of each is difficult in vivo [38]. By
applying a second-order differentiator filter to all sam-
pled MUPs, we are able to assess the acceleration of
fibre de/repolarisation and ensure the electrode is close
to some fibres of anMU [45, 46], serving as an aspect of
quality control.

Fig. 1 Individual data points and
box plots (median + 25th/75th
percentile) for motor unit poten-
tial (MUP) area (a), MUP ampli-
tude (b) and discrete number of
turns (c) for young controls (Y),
young athletes (YA), old controls
(O) and master athletes (MA) for
deep (D) and superficial (S) MUs
of the vastus lateralis. *p<0.05,
**p<0.01. All MUs presented for
data visualisation however statis-
tical analyses are based on multi-
level mixed effects linear models
to account for data clustering
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Master athletes demonstrated a different relationship
ofMUP features across depth in comparison to the other
groups. MUP area and amplitude showed no significant
differences across the depth and neither did NFM area.
These findings demonstrate a more homogenous distri-
bution ofMU fibres across the VLwhichmay be a result
of a decrease in MU size in deep MUs or an increase in
size of superficial MUs, or a more homogenous distri-
bution of non-contractile material and/or fibre CSA. As
previously reported in this cohort, overall MUPs were
larger in MA [37], and this provides further evidence
that MU remodelling has occurred to a greater extent in
the life-long exercisers. Previous studies have
found increased MUP area in older people [12, 40],
but in MAs, larger MUPs were found compared to
age-matched controls [37]. The number of turns,
representing MUP complexity, also showed no differ-
ences across depth in this MA group, further indicating
MU structural and/or functional similarities across
depth. Increases in MUP complexity have been shown
to be a pathological feature in both myopathies and
neurogenic disorders [8].

Plasticity of the neuromuscular system is important
to enable regrowth and repair of motor neurons supply-
ing muscle fibres, which ultimately prevents or mini-
mises their loss. Previous histological findings have
shown a limited capacity for reinnervation in non-
athletic older people when compared to age-matched
highly active counterparts [29, 44]. In combination with
depth differences in other groups, the current findings of
a more homogenous distribution of MU fibres at a mid-
level contraction intensity in MA could also support

data findings of greater type 1 fibre remodelling and
type 1 fibre grouping observed with age [11, 15]. The
exact mechanisms responsible for this process are still to
be elucidated but axonal sprouting can be partly attrib-
uted to increased exercise-induced neurotrophins and
hormones [47, 5]. This therefore demonstrates the ben-
eficial effects of exercise particularly in an older popu-
lation, in preserving musculoskeletal structure and func-
tion, thereby promoting healthy ageing.

Limitations

Although we did not have equal numbers of power and
endurance athletes, in the YA and MA groups, we
observed no differences in depth effects on MUP fea-
tures; therefore, they were grouped for further analysis.
Previous data has shown that both master endurance and
power athletes demonstrate greater remodelling than
age-matched controls [37]. This implies that the level
of exercise is more relevant than type, particularly when
aiming to prevent fibre loss through reinnervation in
older people. However, differences between power and
endurance athletes are frequently observed in muscle
fibre type composition, size and strength [23, 49], so
there can be limitations to grouping different modalities,
especially when comparing functional measures such as
power. Despite only males participating in this study,
recent findings showed similar age-related trajectories
of TA MU remodelling in males and females, suggest-
ing the sex-based response to age is similar [35]. We
also only sampled MUs at a single contraction intensity
which does not reveal where in theMUpool changes are

Fig. 2 Individual near fibre
motor unit potential (NF MUP)
areas and box plots (median +
25th/75th percentile) for young
controls (Y), young athletes
(YA), old controls (O) and master
athletes (MA) for deep (D) and
superficial (S) MUs of the vastus
lateralis. **p<0.01. All MUs pre-
sented for data visualisation how-
ever statistical analyses are based
on multilevel mixed effects linear
models to account for data
clustering
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more prominent. It is possible that at different contrac-
tion intensities, differences in MUP features between O
and MA would be more prominent, but age-related
differences in MU properties are not affected by con-
traction intensity per se [4]. Nonetheless, 25% MVC
represents a mid-level contraction that likely recruits
from a pool similar to that commonly used during
everyday activities such as walking [43].

Conclusions

In conclusion, there is a heterogeneous distribution of
MUP features in VL with those in deeper regions being
larger and more complex when recorded during a mid-
range contraction intensity. Other than the MUP area in
YA, these are consistent across young and older
recreationally active people. However, endurance and
power master athletes show a more homogenous distri-
bution, with similar MUP features across depths in the
VL muscle. These differences may relate to MU struc-
tural differences across depth within the older active
muscle, or they may indicate that MUs in older active
muscle have undergone greater levels of remodelling
resulting in increased fibre reinnervation, thereby alter-
ing MUP features. Overall, these findings support the
notion that maintaining activity levels in older age pro-
motes MU remodelling and fibre reinnervation which
could ultimately be protective against the loss of muscle
mass observed in ageing.
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