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Abstract Reactive oxygen species (ROS), inevitable
byproducts of aerobic metabolism, are known to
cause oxidative damage to cells and molecules. This,
in turn, is widely accepted as a pivotal determinant of
both lifespan and health span. While studies in a wide
range of species support the role of ROS in many age-
related diseases, its role in aging per se is questioned.
Comparative data from a wide range of endotherms
offer equivocal support for this theory, with many
exceptions and inconclusive findings as to whether or
not oxidative stress is either a correlate or a
determinant of maximum species lifespan. Available
data do not support the premise that metabolic rate
and in vivo ROS production are determinants of
lifespan, or that superior antioxidant defense contrib-
utes to species longevity. Rather, published studies
often show either a negative associate or lack of
correlation with species longevity. Furthermore, many
long-living species such as birds, bats and mole-rats
exhibit high levels of oxidative damage even at young
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ages. Similarly genetic manipulations altering expres-
sion of key antioxidants do not necessarily show an
impact on lifespan, even though oxidative damage
levels may be affected. While it is possible that these
multiple exceptions to straightforward predictions of
the free radical theory of aging all reflect species-
specific, “private” mechanisms of aging, the prepon-
derance of contrary data nevertheless present a
challenge to this august theory. Therefore, contrary
to accepted dogma, the role of oxidative stress as a
determinant of longevity is still open to question.
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Abbreviations

ATP Adenosine Triphosphate

CAT Catalase

Cu/Zn SOD  Cu/Zn superoxide dismutase

DNA Deoxyribonucleic Acid

GSH/ Reduced glutathione/oxidized

GSSG glutathione

MAPK Mitogen-activated protein kinase

MLS Maximum species lifespan

NAD" Oxidized nicotinic adenine
dinucleotide

NADH Reduced nicotinic adenine dinucleotide

NMR Naked mole-rat

ROS Reactive oxygen species

SOD Superoxide dismutase

TNF Tumor necrosis factor
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Introduction

Aging, generally regarded as an endogenous, progres-
sive, irreversible, and deleterious process (Strehler
1962), remains one of the most poorly understood
biological phenomena. In spite of considerable re-
search effort, the endogenous causes of aging remain
elusive, and it is still not known why certain mammals
(namely humans, mole-rats and bats) age more slowly
than predicted by body size compared to other
species. Aging research predominantly focuses on
two competing concepts. Firstly, certain genes control
lifespan primarily through modulation of hormone
secretions and their signalling pathways (Bartke 2008;
Finch and Ruvkun 2001). The second theory is based
upon the hypothesis that accumulation of oxidative
damage is responsible for the progressive functional
deterioration with advancing years (Harman 1956).

Oxidative stress theory of aging

This theory posits that, during aerobic metabolism, the
electron transport chain in mitochondria is not only a
source of ATP, but also of reactive oxygen species
(ROS). At moderate concentrations ROS may have
important intracellular signalling functions, particular-

Fig. 1 A schematic repre-
sentation of the oxidative
stress theory of aging as

ly for the control of ventilation, nerve transmission,
and immune regulatory processes (Chung et al. 2006).
ROS are also considered second messengers involved
in activation of NF-kappa Beta via tumor necrosis
factors (TNF) and interleukin-1 (Baud and Karin
2001), and in regulation of mitogen-activated protein
kinase (MAPK) pathways (Sun and Oberley 1996).
Through these actions, ROS affect cell function,
growth and development and are therefore considered
“absolutely essential for the regulation of the metab-
olome” (Linnane et al. 2007). Contrary to conven-
tional wisdom, ROS are not produced in an
unregulated manner, requiring immediate neutraliza-
tion. Rather, rates of production are usually extremely
low [~0.1 nM H,0, formed min ! mg71 mitochon-
drial protein, ~0.01% of metabolic rate (St-Pierre et
al. 2002)]. High levels of ROS may be incompletely
neutralized by antioxidants within the cell, resulting
in indiscriminate damage to cellular constituents
(lipids, proteins and DNA; Fig. 1). ROS levels may
increase in damaged or aged mitochondria and cause
accumulation of ROS beyond physiological levels.
Oxidative damage may be inadequately repaired or
eliminated. This can lead to physiological deteriora-
tion and phenotypic changes in the elderly and
increased incidence of age-related diseases and death,
and thus may be a key determinant of maximum

Oxygen consumption

outlined by Harman (1956).
The theory predicts that, as
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an inevitable byproduct of
metabolic activity, reactive
oxygen species (ROS) are
produced. If these are not
completely neutralized, oxi-
dative damage to proteins,
DNA and lipids may occur.
Oxidized lipids are them-
selves potent ROS, autoca-
talyzing this process.
Unrepaired damage accu-
mulates and results in the
typical aging phenotype
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species lifespan (MLS). Oxidative stress may also
provide a mechanism upon which other “damage”
theories of aging are based. Examples include
genomic instability as a result of DNA damage, and
accumulation of glycated crosslinks during protein
damage that can result in the pathogenesis associated
with cardiovascular and neurodegenerative disease.
ROS production plausibly fulfils the four key charac-
teristics used in defining the aging process: ROS are
endogenously produced under normal physiological
conditions; they are produced continuously through-
out life; and their deleterious effects on biological
macromolecules may cause irreversible damage,
especially in post-mitotic tissues. Given these circum-
stances, differential rates of aging among species may
be due to differences in oxidative damage accrual,
either in response to low rates of ROS production or
through enhanced antioxidant defence. Despite the
intuitive logic and vast support for this theory (Barja
et al. 1994; Beckman and Ames 1998; Droge and
Schipper 2007; Sohal et al. 2002) a causal link
between oxidative stress and the rate of aging still
has not been clearly established. Not all available data
support the oxidative stress hypothesis, begging the
question of whether or not this aging theory is, in fact,
still valid (Kregel and Zhang 2007; Muller et al.
2007a; Sanz et al. 2006).

Oxidative damage: a historical perspective

Antoinne Lavoisier suggested in 1778 that oxygen
was poisonous after noting that guinea pigs housed in
pure oxygen died before the gas was used up (cited in
Gilbert 1963). The rate of living theory of aging
(Pearl 1928) originates with these findings, as well as
studies on resting metabolic rate in various animal
species (Rubner 1908). This theory asserted that
lifetime oxygen consumption is rigidly fixed, there-
fore, metabolic rate determines longevity.

Free radicals were first regarded as the cause of
oxygen toxicity in 1954 (Gerschman et al. 1954), and
soon afterward Denham Harman integrated the “rate
of living theory” with the “free radical theory of
oxygen toxicity”, proposing that aging is due to the
harmful activities of free radicals endogenously
formed during normal metabolic processes (Harman
1956). Since then, the free radical theory has been
repeatedly modified, renamed, and constantly pro-

pounded (Beckman and Ames 1998; Harman 1972;
Hulbert 2005; Ishii 2007).

The oxidative stress and rate-of-living theories are
iterations of the same hypothesis, if one supposes that
higher levels of ROS are generated at faster metabolic
rates than at lower metabolic rates (Hulbert et al.
2007; Speakman 2005a). Animals with high mass-
specific metabolic rates ought to have short lifespans,
but this premise is not supported in all cases by
published data (Hulbert et al. 2007; Speakman
2005a): (1) species lifetime energy expenditure based
upon average daily metabolic rate is not constant, but
rather declines by more than 20% for every doubling
of body mass; (2) although dietary restriction extends
lifespan, this process is not accompanied by attenu-
ations in mass-specific metabolic rate (Hulbert et al.
2004); (3) significant species differences in MLS in
both birds and mammals cannot be explained by
divergent metabolic rates. Even within a species those
individuals with the highest metabolic rates can live
longest and those that exercise more do not necessar-
ily have shorter lives (Speakman 2005b). Not surpris-
ingly, therefore, the initial iteration of this theory,
although still often proposed (Ishii 2007), is no longer
considered plausible.

We have questioned whether data from non-
traditional animal models for aging research offer
support for the oxidative stress theory. We hypoth-
esised that species that naturally live considerably
longer than predicted by body size would (1) show
lower rates of ROS production, (2) have a better
antioxidant defence and (3) accrue less damage than
shorter-lived counterparts. Surprisingly, there are only
a handful of comparative studies that employ this
approach and most of these have focused on rodents,
bats or birds (Brunet-Rossinni and Austad 2004;
Buffenstein et al. 2007; Pamplona et al. 1998;
Pamplona et al. 2005; Perez-Campo et al. 1998).

Do long-living animals produce less ROS
than shorter-living animals?

Complex I and complex III of the electron transport
chain are the main sites of ROS production. Rates and
sites of ROS production may be determined by
manipulating substrates and chemical additives in
preparations of isolated mitochondria. Despite an
order of magnitude range in species longevity, ROS
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production at complex II, the ubiquinol pool, and
complex IIT does not correlate with MLS of birds and
mammals. Only when maximum generation of mito-
chondrial ROS is measured by using succinate as the
substrate are species differences in ROS production
observed that correlate with MLS.

Succinate oxidation results in an elevated proton
motive force and the formation of a highly reduced
ubiquinol pool that leads to reverse electron transport.
This, in turn, reduces conversion of NAD to NADH,
and leaks superoxide radicals into the mitochondrial
matrix (Lambert et al. 2007). There is considerable
debate regarding whether this “stalled” electron
transport reflects a natural physiological state. ROS
production on succinate substrates negatively correlat-
ed with MLS among a large group (n = 12) of diverse
species including rodents, bats, baboons, birds and
cattle, accounting for approximately 50% of the
observed variability (Lambert et al. 2007). Because
different laboratories have different ways of measuring
ROS production and methodology seems to impact
results, data from different studies cannot be combined
but rather observed trends within a study must be
compared. The data from Lambert et al. (2007)
support now-classical studies (Ku and Sohal 1993)
comparing hydrogen peroxide production in mito-
chondria from long-living pigeons and shorter-living
rats. However, careful scrutiny of these data as well as
those of a comparative study (Brunet-Rossinni 2004)
among long-lived little brown bats (Myotis lucifugus;
MLS 34 years), short-tailed shrews (Blarina brevi-
cauda; 2 years) and white-footed mice (Peromyscus
leuocopus; 8 years) are equivocal. In the latter study,
mitochondria isolated from bat hearts showed 0.33—
0.5 times the amount of ROS production of heart
mitochondria from shorter-living species, although
lower ROS production in bats did not correlate
precisely with the 17- or 4-fold differences in MLS
when compared to shrews and mice, respectively.
Furthermore, ROS production in mitochondria isolated
from little brown bat brains were considerably higher
than that observed in brains of shorter-living white-
footed mice. In the larger 12-species study (Lambert et
al. 2007), short-and long-lived bat species, white-
footed mice (Peromyscus leucopus), and wild derived
(early generation) house mice (Mus musculus) all
exhibited statistically similar levels of hydrogen
peroxide production, as did C57BL6 laboratory mice
and naked mole-rats (NMRs), despite a 9-fold differ-
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ence in longevity (Fig. 2). These non-significant
differences in ROS levels in species with divergent
longevity were, however, not strong enough to efface
the general trend showing a correlation between
reverse electron transport and MLS observed for all
12 species in that study (Fig. 2; Lambert et al. 2007).

It is possible that long-living NMRs, white-footed
mice and the bat species studied to date employ
“private mechanisms” (Martin et al. 1996) for slow
aging that are independent of ROS production, or that
measures of hydrogen peroxide do not accurately
reflect ROS production. However, a lack of correla-
tion between lifespan and ROS production also has
been recently reported for Drosophila (Miwa et al.
2004). These are not the only exceptions to that
predicted from the oxidative stress theory, although
there are also many studies that do provide strong
support for this theory. For instance, Ross (2000)
reported that a long-lived line of Drosophila produce
fewer free radicals when compared to a normal-lived
line, in addition to demonstrating age-specific
increases in ROS production in both lines with a
concomitant age-specific decrease in aerobic efficien-
cy. Collectively, these mixed findings should serve to
caution against definitive and conclusive support for
this theory: studies from a wider range of long-lived,
similar sized, phylogenetically matched species are
needed to resolve the role of ROS production as a
determinant of longevity.
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Fig. 2 Rates of ROS production in 12 species of birds and
mammals with disparate longevities. Although species ROS
production significantly correlates with longevity, significant
differences fail to appear between specific similar-sized
mammals, e.g., rodents (inset; NS not significant) and bats,
with divergent longevity. Data in modified figure are taken
from Lambert et al. (2007). Copyright permission was kindly
granted by Wiley-Blackwell Publishing, Oxford, UK
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Is antioxidant defense in long-living animals
superior?

Antioxidant activity as a determinant of MLS is
controversial (Barja 2002a; Sohal and Weindruch
1996), with reports of positive, negative, or no
correlation between antioxidant activity and lifespan
(Andziak et al. 2005; Perez-Campo et al. 1998, 1993;
Sohal et al. 1993; Wilhelm Filho et al. 2007). Indeed,
in some comparative studies, longer-living species
appear to have superior antioxidant defenses for
efficiently mopping up and neutralizing ROS; in
other studies, longer-lived species show similar or
even lower levels of both enzymatic and non-
enzymatic antioxidant activities (Fig. 3) than do
shorter-living species (Wilhelm Filho et al. 2007). In
the case of the longest-living rodent, NMR, catalase
(CAT) activity is similar to mice, Cu/Zn superoxide
dismutase (Cu/ZnSOD) is slightly higher, whereas
glutathione peroxidase is 70-fold lower (Andziak et
al. 2005). An often-touted explanation for the nega-
tive correlation between antioxidant activities and
species longevity is that enhanced antioxidant
defenses are not the reason for extended longevity
of long-living mammals, but rather that lower
antioxidant levels in longer-living species may be
indicative of lower levels of oxidative stress (Barja

a Catalase activity
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Rat {4yr)
T8 (12yr)
NMR (28yr)
VB (29yr)
MN (34 yr)

Fig. 3 Bat and rodent catalase (a) and protein carbonyl (b)
levels do not correlate with maximum species lifespan (MLS).
LM Laboratory mouse (Mus musculus; 4 years) or rat (Rattus
norvegicus; 4 years), AGS arctic ground squirrel (Spermophilus
parryiiy; 11 years), VB vampire bat (Desmodus rotundus;
29 years), GP guinea pig (Cavia porcellus; 12 years), DMR
damara mole-rat (Fukomys damarensis; 18 years), NVR naked
mole-rat (Heterocephalus glaber; >28.3 years), MFT Mexican

(o3

Carbonyl (nmol/mg protein)

1.5
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2002b, 2007; Ferreira-Cravo et al. 2007; Pamplona
and Barja 2007; Sanz et al. 2006). Tronically, animals
in dormant, hypometabolic states (e.g., hibernation or
torpor) of low ROS production tend to have high
levels of antioxidants (Hermes-Lima and Zenteno-
Savin 2002) whereas those in hypermetabolic states
(i.e., during arousal from hibernation or activity) often
do not (Eddy et al. 2005; Hermes-Lima et al. 1998;
Osborne and Hashimoto 2006; Storey 2004). These
conflicting findings may reflect the fact that antiox-
idants are in a continuous, presumably adaptive state
of flux. Also, antioxidant defense systems are likely
to be highly complex, involving many different
antioxidants and multiple layers of interaction. Many
novel antioxidants continue to be identified and, at
this stage, we do not have a solid understanding of the
degree of redundancy, nor how the various compo-
nents of this expansive antioxidant “orchestra” work
together. Just measuring the activity of a few well-
studied key antioxidants may not tell the whole story.
An alternative explanation for the ambiguous findings
to date is that antioxidants are simply not integral
determinants of longevity.

In many species, aging results in reduced antiox-
idant capacity and leads to a progressive decline in
biochemical defenses. In others, more antioxidants are
produced in the elderly, ostensibly to neutralize age-

Oxidative Damage to Protein

LM (4yr)
Rat (4yr)
AGS (11yr)
GP (12yr)
DMR (18yr)
NMR (28yr)
VB (29yr)

free-tailed bat (Tadarida brasiliensis; 12 years), LBB little
brown bat (Myotis lucifugus; 34 years). Data sources for
catalase and protein carbonyl levels: Andziak et al. 2005;
Ferreira-Cravo et al. 2007; Hermes-Lima et al. 2007; Wilhelm
Filho et al. 2007; R. Buffenstein et al. unpublished data.
Lifespan data are from Buffenstein 2005 and unpublished data
for F. damarensis; http://genomics.senescence.info and http://
www.blueplanetbiomes.org/arctic_ground squirrel.htm
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related increases in ROS production by malfunction-
ing mitochondria (Linnane et al. 2007; Sanz et al.
2006). One of the big problems in measuring
antioxidant activities is the assumption that “more is
better,” and that higher levels of antioxidants will
equate with reduced oxidative stress (Rando and
Epstein 1999). Despite many years of study of the
potential of pharmacological supplementation of
traditional antioxidants as an “anti-aging” therapy,
there is no well-authenticated study that unequivocal-
ly demonstrates a benefit of antioxidant supplemen-
tation in mammals (de Grey 2000; Linnane et al.
2007; Sanz et al. 2006). Indeed, dietary supplemen-
tation of antioxidants appears to extend lifespan only
when survival of control groups was suboptimal.
Moreover, antioxidant supplementation has not ex-
tended lifespan beyond the MLS determined for any
species (Hulbert et al. 2007). These results suggest
that while antioxidant dietary supplements can protect
against increased oxidative stress from exogenous
sources or pathological conditions, they have no
effect upon aging rate.

Technical advances in functional genomics have
facilitated in vivo modulation of antioxidant expres-
sion. In yeast, genetic deletions or overexpression of
SOD unambiguously affect lifespan (Fabrizio et al.
2004). Contradictory findings have, however, been
reported in Caenorhabditis elegans. Melov et al.
(2000) showed lifespan extension with SOD/CAT
mimetics, whereas Keaney et al. (2004) confirmed
that SOD mimetics increased SOD activity in vivo,
but found no change in lifespan. The plethora of
studies undertaken in fruit flies has also yielded

inconsistent findings (for review, see Muller et al.
2007a), and no consensus has been reached whether
antioxidant over-expression in invertebrates extends
lifespan. Other work has shown that over-expression
of SOD may be harmful and lead to more oxidative
damage (Rando and Epstein 1999). Studies in mice
have also yielded inconsistent results (Table 1). For
example, transgenic mice overexpressing catalase
showed the entire spectrum of responses: (1) a
substantial increase in lifespan (Schriner et al. 2005),
(2) no change in lifespan (Chen et al. 2004; Huang et
al. 2000), or (3) were more vulnerable to oxidative
insults (Chen et al. 2004). Overexpression of Cu/Zn
SOD in several studies did not influence lifespan
(Hulbert et al. 2007; Muller et al. 2007b). Further-
more, heterozygous knockouts for MnSOD, while
showing reduced enzyme activity, have a similar
lifespan to that exhibited by wild-type mice, even
though oxidative damage in several tissues (e.g.,
80xodG in liver, heart, brain, spleen) is significantly
elevated (Van Remmen et al. 2003).

This inability of increased antioxidant enzyme
activity to attenuate lifespan despite augmented
oxidative damage is particularly problematic for the
oxidative stress theory of aging. The absence of a
decline in lifespan, even when accompanied by
pronounced increases in oxidative damage, suggests
that a decline in antioxidant activity and the accom-
panying increases in oxidative damage play no role in
lifespan determination. While they may merely
indicate that aging is a multifaceted process and other
factors also influence lifespan, these data nonetheless
refute a key tenet of the oxidative stress theory.

Table 1 Changes in lifespan and phenotype, including oxidative damage (OD), with genetic modification of expression of the
antioxidants catalase (CAT) and superoxide dismutase (SOD) and of methionine sulfoxide reductase (MrsA) in mice

Lifespan Source

Genetic manipulation Phenotype
Overexpression
Mitochondrial CAT Delayed aging
Nuclei CAT Normal
Cu/Zn SOD Multiple pathology
Mn SOD Multiple pathology
Knockout
Mn SOD 7~ Multiple pathology

CAT Multiple pathology

Cu/Zn SOD 7 Multiple pathology
Mn SOD 7~ Increased OD
MrsA 7~ Increased OD

10-20% increase Schriner et al. 2005

None Schriner et al. 2000

None Huang et al. 2000;
Rando and Epstein 1999

None Raineri et al. 2001

Decrease Muller et al. 2007b

None Muller et al. 2007b

30% Decrease Elchuri et al. 2005

None Van Remmen et al. 2003

40% Decrease Moskovitz et al. 2001
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Is oxidative stress lower in young long-living
animals than in young shorter-living animals?

Although early life influences like nutrition, toxins
and growth factors can set the stage for aging
patterns, biological capacities that allow slow aging
should be expected to persist throughout life, since
the only way to attain longevity is to employ
mechanisms that maintain low age-specific mortality
throughout life. For example, the ratio of intracellular
reduced and disulfide forms of glutathione (GSH/
GSSQG) is often used as an indicator of cellular redox
state, degree of oxidative stress and the antioxidant
capacity of cells (Griffith 1999). The oxidative stress
theory posits that this ratio ought to be attenuated in
long-living species. But studies of GSH/GSSG ratios
reveal that long-lived NMRs, vampire bats and non-
hibernating squirrels have a more pro-oxidative
cellular environment than shorter-living mice and rats
(Ferreira-Cravo et al. 2007; Hermes-Lima et al. 2007,
Yang et al. 2007). Indeed, there is no correlation
between GSH/GSSG ratios in young individuals and
MLS in a wide variety of species.

Do levels of oxidative damage correlate with MLS?

There have been many reports that accrued oxidative
damage increases substantially with age (Beckman
and Ames 1998) and is commonly associated with
age-related pathology. However, results are contin-
gent on the species or specific tissues assayed and in
many cases this relationship has not been found
(Palomero et al. 2001). This lack of consensus has
led some to conclude that progressive accrual of
oxidative damage is not an integral component of
organismal aging, but rather that species-specific
steady state levels of oxidative damage are important
determinants of aging (Rikans and Hornbrook 1997).

Some comparative studies show an inverse rela-
tionship between oxidative damage and longevity,
already evident in young adults of a species (Pamplona
et al. 1999). While data from many longer-living
species across a wide range of phyla concur with
predictions based on this theory (Barja 2002b),
exceptions have been reported; for example within
flies, the longer-lived Drosophila spp. has more
protein carbonyls than the shorter-lived blow flies
(Calliphora vicina; Sohal et al. 1995). Similarly, both

long-lived NMRs and bats have higher levels of
protein carbonyls than short-lived mice and rats when
carbonyls are measured using identical techniques
(Fig. 3b), and levels of oxidative damage in those four
mammal species does not vary inversely with life-
span. High levels of oxidative damage in both long-
living vampire bats and NMRs has been attributed to
their high intracellular iron content (Buffenstein 2005;
Ferreira-Cravo et al. 2007; R. Cheung, T. Yang and
R. Buffenstein, unpublished data). High levels of
oxidative DNA damage also have also been observed
in long-living birds (Hamilton et al. 2001). Collec-
tively, these data from phylogenetically divergent
species in different vertebrate classes differ from
predictions of the oxidative stress theory of aging.
These and other exceptions to this paradigm are often
glossed over, buried in the results sections of papers,
never published, or apologetically discussed while the
authors try and find some way to interpret data—
usually as a quirky “private mechanisms” that may
still vaguely support the theory.

Comparative studies at variance with the oxidative
stress theory generally are dismissed. Often it is
suggested that longevity records may be erroneous,
based upon too few species or simply attributed to
poor record keeping. Similarly, housing conditions
may induce higher levels of oxidative damage than
naturally encountered.

Perhaps one of the strongest challenges to the
oxidative stress theory comes from studies of oxida-
tive damage in transgenic laboratory mice. Transgenic
heterozygous mice in which mitochondrial SOD
activity is compromised show high levels of oxidative
damage without any deleterious effect on lifespan
(Van Remmen et al. 2003). Many factors have the
potential to shorten lifespan without necessarily
revealing insights into the aging process. Nonetheless,
these findings, like those showing high steady-state
levels of oxidative damage in NMRs and bats,
considered in light of the lack of correlation between
oxidative stress or accrued oxidative damage with
lifespan, strengthen the argument that oxidants may
not be the key determinants of aging. While oxidative
damage may indeed be a by-product of aging, other
mechanisms, such as specific cell and molecular
properties (e.g., DNA integrity, protein stability, and
epigenetics) and their concomitant influences on cell
signaling pathways and gene regulation, seem more
likely to serve as pacemakers of the aging process.
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Multi-species studies and transgenic studies of
whole-cell responses to oxidative and chemical insults
do provide some support for the oxidative stress
theory of aging (Ogburn et al. 1998, 2001; Mele et al.
2006; Harper et al. 2006; Kapahi et al. 1999; Salmon
et al. 2005; 2008). Fibroblasts from long-living
mammals and birds have shown considerable resis-
tance to oxidative stressors (e.g., paraquat and
cadmium), requiring higher doses of oxidative insult
to kill 50% of the cells (Ogburn et al. 1998, 2001;
Harper et al. 2006; Kapahi et al. 1999; Salmon et al.
2005; 2008). Cell membrane composition may be an
important component of this cellular oxidative resis-
tance (Mitchell et al. 2007). Membrane polyunsatu-
rated fatty acid composition varies in a predictable
manner with species lifespan, and this may influence
peroxidation susceptibility as well as membrane
permeability (Hulbert et al. 2006).

Fibroblasts from both NMRs and long-lived dwarf
mice are more sensitive to drugs that disrupted the
function of the endoplasmic reticulum and protein
degradation pathways than cells from shorter-lived
animals (Salmon et al. 2008). These findings suggest
that slow-aging species may employ exquisitely
sensitive biodegradation and repair pathways in
vulnerable tissues, yet also be tolerant of oxidative
damage in others. We previously showed that certain
proteins in NMR tissues carry the brunt of oxidative
damage (Andziak et al. 2006). One of these proteins
has been identified as triosphosphate isomerase, an
important glycolytic enzyme. Despite extremely high
levels of damage in NMR cells, activity of this
enzyme is not compromised. It is not known why
species regulate sustained amounts of damage at
different levels, but most likely this reflects the
evolution of tradeoffs between costs and benefits
associated with damage accrual and repair.

Although NMR acquire more oxidative damage at
a young age (2 years) than physiologically age-
matched (7% MLS ~4 months) shorter-lived rodents,
they appear tolerant of this level of damage and
maintain these levels of damage at a steady state over
a 20-year period. Based upon the lack of additional
age-related damage accumulation shown in NMRs,
we infer that efficient repair processes allow NMRs to
maintain the same, albeit high, steady state levels of
oxidative damage acquired during the first 2 years of
life. Lack of age-related increase in oxidative damage
provides some peripheral support for the oxidative
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stress theory of aging. Enhanced macroautophagy,
lysosomal degradation and proteosome activity occur
with caloric-restriction (CR)-induced lifespan exten-
sion (Bergamini et al. 2003), and also may play an
integral role in the prolonged healthy lifespan of
slow-aging organisms. This is yet to be investigated;
however, there is some evidence that the role of
oxidative stress in slow, successful aging is secondary
to that of enhanced autophagic degradation and
efficient regulation of apoptosis and repair. Once
activated, repair processes may facilitate the mainte-
nance of steady-state levels of damage below a critical
threshold where functionality is impaired, and thereby
enable slow and successful aging.

Conclusions

Given the many exceptions to straightforward pre-
dictions of the oxidative stress theory of aging we
cannot categorically accept that aging results simply
from an imbalance between ROS production, antiox-
idant defense and damage accrual. While, if left
unchecked, ROS may cause life-threatening patholo-
gy, there is no conclusive evidence that under normal
conditions oxidative damage directly limits lifespan.
In some long-living mammals, high levels of oxida-
tive damage accumulate at a young age (Andziak and
Buffenstein 2006) with no ill effects. Similarly, in
short lived mice, even if antioxidants were experi-
mentally depleted and oxidative damage increased
there is no associated change in lifespan (Van Remmen
et al. 2003). These results strongly suggest that
longevity is unrelated to any of the diverse range of
oxidative stress parameters currently being measured.
In summary, considerable data now exist to
challenge the embattled oxidative stress theory.
Indeed, research into aging would be better served if
we stopped ignoring data that do not support this
theory. Instead, we suggest that this august mecha-
nistic theory of aging be reexamined in light of a
plethora of contradictory data, and alternative mech-
anisms influencing aging (such as autophagy, ge-
nomic and protein stability) be further investigated.
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