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Abstract Virtually all biomedical research makes use
of a relatively small pool of laboratory-adapted, inbred,
isogenic stocks of mice. Although the advantages of
these models are many, there are a number of dis-
advantages as well. When studying a multifaceted
process such as aging, the problems associated with
using laboratory stocks are greatly inflated. On the
other hand, wild-derived mouse stocks, loosely defined
here as either wild-caught individuals or the recent
progeny of wild-caught individuals, have much to offer
to biogerontology research. Hence, the aims of this
review are threefold: (1) to (re)acquaint readers with
the pros and cons of using a typical inbred laboratory
mouse model for aging research; (2) to reintroduce the
notion of using wild-derived mouse stocks in aging
research as championed by Austad, Miller and others
for more than a decade, and (3) to provide an overview
of recent advances in biogerontology using wild-
derived mouse stocks.
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Abbreviations

CBG Corticosteroid binding globulin

CR Caloric restriction

DC Diversity control

GC Glucocorticoid

GH/IGF  Growth hormone/insulin-like growth
factor

Ghrhr Growth hormone releasing hormone
receptor

GHRKO  Growth hormone receptor knockout

GR Glucocorticoid receptor

HPA Hypothalamic-pituitary-adrenal

HPG Hypothalamic-pituitary-gonadal

IGF-1R  Insulin-like growth factor I receptor

IGFBP Insulin-like growth factor binding protein

IR Insulin receptor

Id Idaho mouse stock

Ma Majuro mouse stock

MuLV Murine leukemia virus

PAPP-A  Pregnancy associated plasma protein A

SPF Specific pathogen free

Surfl Surfeit locus protein 1

Why use wild-derived mice in aging research?

The notion that the standard laboratory mouse may
not be an ideal model for aging research is not new
(Austad 1993a, b; Miller and Nadon 2000; Miller
et al. 1999). Nonetheless, the biogerontologist’s attitude
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toward using inbred laboratory stocks has changed
little, and these animals are still the workhorses of
modern aging research. In this review I will briefly
review the advantages and disadvantages of using
laboratory inbred versus wild-derived mouse stocks
for aging research, as well as providing a synopsis of
recent findings concerning aging and lifespan in wild-
derived mouse stocks.

The laboratory mouse: the good, the bad,
and the ugly

The good

Most laboratory stocks of the house mouse (Mus
musculus) have been around for decades, providing a
rich body of knowledge regarding their husbandry, as
well as information on their development, reproduc-
tion, physiology, behavior, and—now more important
then ever—their genetics. Other advantages include
the fact that commonly used mouse stocks are docile,
specific pathogen free (SPF), readily available from
multiple commercial sources, are relatively cheap, and
are familiar to the biomedical research community.

Another advantage of most laboratory mouse
stocks is that all individuals of a given line are
virtually genetically identical, due to tens-to-hundreds
of generations of inbreeding (i.e., brother—sister mat-
ings), and they are more or less homozygous at all
genetic loci (with the exception of F1 hybrids derived
as the product of mating two different inbred stocks;
these will be heterozygous at all loci that happen to
differ between the parental strains). As a conse-
quence, there are major advantages to using labora-
tory stocks for specific types of research, as outlined
by Miller et al. (1999), and their use will undoubtedly
continue to make important contributions to biomed-
ical science.

The bad

The fact that inbred mice are genetically identical and
homozygous at essentially all loci is not genetically
“normal,” or representative of humans and other free-
living animal populations and this translates into a
number of disadvantages for aging research (Miller
et al. 1999). Briefly: (1) each stock represents a single
genetic identity, rather than a normal, outbred popula-
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tion; (2) many stocks possess very rare combinations of
homozygous alleles capable of producing viable (and
fertile) individuals, a rather atypical condition for natural
populations where selection has filtered out these
abnormal genotypes; and (3) all laboratory rodent stocks
are the end-product of tremendous selection pressures for
successful propagation under laboratory conditions. Of
these attributes, the first is perhaps the most relevant
because it is impossible to know whether research
findings pertaining to a specific inbred stock translates
to all of mousedom, or whether it is simply a con-
sequence of the unique genetic identity of that stock.
Also note that, while F1 hybrid stocks do not harbor the
same degree of genetic homozygosity (because the
alleles fixed at specific loci will often differ between
the parental strains), and hence are often the better
choice, all individuals are still genetically uniform.

The ugly

Many inbred stocks carry mutations whose effects
make them unsuitable for aging research. For exam-
ple, C3H mice go blind within the first few months of
life (Chang et al. 2002), and DBA mice go deaf (Zheng
et al. 1999) and develop an eye disorder called
pigmentary glaucoma (Wong and Brown 2007) within
a year of being born. Clearly, neither of these models
would be particularly useful for assessing aging-
related changes in performance on behavioral tasks
involving visual and/or auditory cues. What’s more,
dramatic differences for a given trait may exist even
between closely related substrains. Continuing with the
hearing example, some substrains of 129 mice, the
most common source of embryonic stem cell lines
used for gene targeting studies, exhibit marked hearing
loss early in life, while others show little or no
impairment over the same period (Johnson et al.
2006). Interestingly, the pattern of age-related spiral
ganglion cell degeneration in wild caught mice
suggests that the pattern typically seen in laboratory
stocks significantly deviates from the norm (Dazert
et al. 1996). Finally, significant differences between
laboratory stocks with regard to rates of thymic
involution (Hsu et al. 2005), age-related changes in
metabolism (Goren et al. 2004; Murray et al. 1993),
and a variety of behavioral and neural parameters
(Ingram and Jucker 1999) have been described, and it
is likely that differences exist for a number of
additional measures as well.
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Aging is a multifaceted process characterized by the
progressive, and more or less parallel, decline of mul-
tiple physiological systems with time. Moreover,
multiple age-related pathologies usually manifest
themselves in a typical aging population. That is,
some individuals die of heart disease, some die of
cancer, and some die of diabetic kidney failure. Unfor-
tunately, a number of laboratory stocks deviate from
this pattern in that they develop, and may ultimately
succumb to, what can be thought of as line-specific
pathologies (Miller and Nadon 2000). Clearly, this
limits one’s ability to generalize about the effective-
ness of an anti-aging intervention when it may simply
be a reflection of how that intervention interferes with
the onset and progression of, for example, thymic
lymphoma in AKR/J mice or pulmonary adenoma in
A/He mice (Miller and Nadon 2000); although it is
notable that caloric restriction (CR) slows the onset
and progression of virtually every age-related pathol-
ogy (Masoro 2005).

Wild-derived mouse stocks: pros and cons
The pros

By and large the primary advantage to using a wild-
derived stock is that the population is composed of
genetically heterogeneous individuals (although proper
collection and husbandry practices are needed to ensure
this state) whose genetic repertoire has been shaped by
“real world” conditions. This is in stark contrast to a
standard laboratory stock, which may be important for
the reasons outlined above. However, another, often
overlooked, consequence of creating laboratory stocks
is the loss of naturally occurring alleles that may act to
slow the aging process, among other things (Harper
et al. 2006a; Miller et al. 2000a, b). For example, in a
study of feral house mice, Gardner (1993) identified an
allele involved in resistance to murine leukemia virus
(MuLV) that had never been described in laboratory
mice. Hence, by studying wild-derived populations,
biogerontologists may also (re)discover key alleles
involved in the regulation of aging.

The cons

The most obvious disadvantage to using wild-derived
mouse stocks is that the progenitor mice are derived

from populations living in barns, sheds or similar
habitats not long ago. That is, they need to be live-
trapped and transported to an animal facility for breed-
ing and/or the eventual testing for the trait(s) of interest.
And, because wild-derived lines are not maintained by
commercial breeders, they are much less familiar to
biomedical science.

In addition, real-world mice come with real-world
parasites, viruses and bacteria. Consequently, those in
charge of SPF animal facilities are justifiably appre-
hensive about letting these “dirty” animals in. However,
with the proper resources, some time and, admittedly,
expense, wild-caught animals can be made SPF (Miller
et al. 2000a, b) and will remain SPF if standard
husbandry practices are employed.

Moreover, one cannot discount the influence of
maternal effects on wild-caught individuals and their
immediate offspring. For example, fluctuations in ma-
ternal nutrition, a very pertinent issue for free-living
populations, has marked effects on the growth and
development of a female’s offspring, effects which can
persist for several generations (Liang et al. 2007). The
timing of fluctuation in maternal nutrition (e.g.
pregnancy versus lactation) is also important in that
the specific effects on the offspring can vary (Martin-
Gronert and Ozanne 2006). In addition to nutritional
variation, other types of maternal stress (e.g., social
stress) can also have lasting effects upon their offspring
(Dioro and Meany 2007). Hence, it may be necessary
to monitor a captive population for several generations
prior to conducting the actual study, either to document
a lack of maternal effects or to ensure a “wash-out” of
these effects. However, note that maternal effects are
relevant to laboratory-derived populations as well
(Dioro and Meany 2007).

Finally, although they may be content to spend
their lives in the comparatively plush environment of
the shoebox cage, many wild-caught individuals
simply do not reproduce well in captivity. Hence, a
large founder population is needed to ensure enough
progeny for study, as well as providing for future
generations while preserving genetic heterogeneity;
but note that some genetic heterogeneity is lost which
each successive generation, regardless of the husband-
ry scheme employed. In fact, in a closed population
wild-derived mice are sure to become something very
similar to a domesticated laboratory stock given
enough time unless steps are taken to maintain
and/or monitor the heterogeneity of the population;
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for example mitochondrial genome sequencing in
conjunction with the periodic introduction of new
breeding stock, or the generation of a completely new
stock every few years. Obviously, this makes it
significantly more expensive to establish and maintain
a captive wild-derived population relative to a labora-
tory stock.

The truth about MOLF, CAST, and their ilk

One often sees references to “wild-derived” mouse
stocks in the literature (Bektas et al. 2004; Klebanov
et al. 2001; Roberts et al. 2007), and just as purported
outbred mouse lines are offered by commercial
breeders, so too are wild-derived stocks; e.g., the
MOLF/Ei and CAST/Ei. Unfortunately, similar to the
so-called outbred mouse lines (Miller et al. 1999), a
close examination of the history of these wild-derived
lines reveals that this distinction is dubious.

In particular, although these stocks were somewhat
recently derived from wild-caught individuals (but
note that al/ laboratory stocks are the descendants of
wild-caught individuals), and they are often not of the
European domesticus subspecies group (Yoshiki and
Moriwaki 2006), they are still the product of multiple
generations of brother—sister matings in the presence
of captive housing conditions. Thus, even though they
were inbred prior to being domesticated, which may
mean that “wild” alleles have been maintained within
the population (Klebanov et al. 2001), these stocks
are still highly inbred and carry the same baggage as
other inbred stocks. Hence, I feel it is more correct to
refer to them as “genetic deviants” rather than true
wild-derived stocks.

Of course, this leads to the question of how exactly
one defines a wild-derived mouse stock. Unfortunately,
no formal definition exists. Undoubtedly, wild-caught
individuals, or the recent progeny of wild-caught
individuals (e.g., offspring or grandoffspring), consti-
tute wild-derived stocks, but for later generations it
becomes more muddled. However, if the wild-derived
state is defined by reference to specific, easily measured
phenotypic ‘benchmarks’ already shown to be different
in the wild-derived versus laboratory populations, then
it could be argued that no significant deviation from
these benchmarks with time is indicative of maintained
wild-derived status. In the end, it is up to the individual
investigator to decide.
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Wild-derived mouse stocks are very different
from laboratory stocks

I have argued that laboratory mice are odd and are
expected be different from wild-derived stocks in a
number of ways, and that these differences could be a
hindrance to examining fundamental questions in the
biology of aging. Below, I review available physio-
logical data for wild-derived mouse stocks maintained
in captivity, as well as reviewing the significance of
these findings in the context of biogerontology. Most
of the data are from studies using two mouse stocks
derived from wild progenitors live-trapped in either
North-Central Idaho (“Id” mice) or the South Pacific
Island of Majuro (“Ma” mice) as described in (Miller
et al. 2000a, b); although data from other study
populations are included when available.

Lifespan

Are wild-derived mouse stocks long-lived relative to
their inbred counterparts? Unfortunately, the answer is
not simple. In two separate lifespan studies, Miller
et al. demonstrated that both the second (Miller et al.
2002a) and fifth (Harper et al. 2006a) captive-born
generations of Id and Ma mice were significantly
longer-lived than a “diversity control” (DC) stock
with equal genetic contributions from the laboratory-
inbred strains BALB/cJ, C57BL/6J, C3H/Hel, and
DBA/2]J. However, other stocks derived from progen-
itors live-trapped on two additional South Pacific
islands failed to show a difference in lifespan (Miller
et al. 2002a; J.M. Harper, R. Miller et al., unpublished).
Currently, it is not clear why this is so, although
founder effects seem like a reasonable cause.

To the best of my knowledge, these are the only
complete lifespan studies that have been done using
wild-derived mouse stocks under SPF conditions, but
it is interesting that the life table of a second, unique
population of Id mice maintained under conventional
colony conditions closely resembles that of the SPF Id
populations (Harper et al. 2006b). In addition,
examination of the survival curves clearly illustrates
that the degree of “lifespan extension” seen in each of
these wild derived stocks is rather substantial, and
provides a point of comparison to nutritional (i.e.,
CR) and genetic models of extended longevity. In
particular, maximum lifespan is roughly 20% greater
in the wild-derived stocks, which is about half of that
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seen with CR (Weindruch and Walford 1988) or in
Ames and Snell dwarf mice and growth hormone
receptor knockout (GHRKO) mice (Brown-Borg et al.
1996; Coschigano et al. 2000), but is similar to that
seen with changes in genes for growth hormone
releasing hormone receptor (Ghrhr), insulin receptor
(IR), insulin-like growth factor I receptor (IGF-1R),
pregnancy associated plasma protein A (PAPP-A), and
Surfeit locus protein 1 (Surfl) (Flurkey et al. 2001;
Bluher et al. 2003; Holzenberger et al. 2003; Conover
and Bale 2007; Dell’Agnello et al. 2007). Notably,
however, these wild-derived stocks were not exposed
to any experimental treatment with a presumptive
effect on lifespan, and the longest-lived mouse (an Id
female) reached the remarkable age of 4.1 years.

Growth and reproduction

The selection pressures imposed by laboratory adapta-
tion and selective breeding favor those mice that
reproduce the most rapidly and efficiently. Hence, mice
that have the largest litters at the earliest age will be the
most successful. It is not surprising then, that relative to
laboratory-adapted stocks, female wild-derived mice are
slower to reach sexual maturity and have significantly
smaller litters. This was first shown by Bronson (1984)
over 20 years ago, and again by Miller et al. using the
Id and Ma stocks described above (Harper et al. 2006a;
Miller et al. 2000a, b, 2002a). Moreover, since female
body mass and litter size are positively correlated in
mice (Roberts 1981), one would predict that laboratory
adapted mice would be significantly larger and grow
more rapidly than wild-derived mice. This is indeed
the case, and is true for both males and females
(Bronson 1984; Miller et al. 2000a, b). Notably, these
differences in growth and reproduction persist through
multiple captive-born generations, indicating that a
genetic, and not a nutritional, mechanism underlies this
effect. Captive populations of wild rats also exhibit
these trends when compared to laboratory rat strains
(Clark and Price 1981).

Why is this important? First, there are theoretical
reasons to believe that delayed reproduction and
reduced litter size will slow aging (Rose et al. 2007),
as illustrated by directed selection studies using
Drosophila (Hutchinson et al. 1991; Hutchinson and
Rose 1991) and in natural populations of guppies
(Reznick et al. 2001). Likewise, there are reasons to
believe that rapid growth would have deleterious

effects on lifespan (Metcalfe and Monaghan 2003).
Indeed, within species, small size portends long life,
whether it be among breeds of dogs (Greer et al. 2007,
Patronek et al. 1997), stocks of flies (Hillesheim and
Stearns 1992), stocks of mice (Miller et al. 2000a, b),
or within a population of genetically heterogeneous
mice (Harper et al. 2004; Miller et al. 2002b).
Presumably, wild-derived stocks are also dramatical-
ly different with regard to their reproductive physiology,
which could be important in the regulation of life history
traits and the aging process. Indeed, Flurkey et al.
(2007) documented that females of a stock recently
derived from live-trapped progenitors exhibit an
extended reproductive lifespan and greater reproduc-
tive potential at later ages relative to a number of other
laboratory stocks. Yet there seems to be nothing known
regarding uterine biology or the hypothalamic-pitui-
tary-gonadal (HPG) axis of wild-derived stocks,
although studies in other rodent species have docu-
mented significant changes in these systems in
domesticated versus wild populations (Blottner and
Stuermer 2006; Blottner et al. 2000; Kiinzl et al. 2003;
Kunzl and Sachser 1999; Stuermer et al. 2006).

Endocrinology

Although the role of specific hormones in the aging
process is still contentious, there is no doubt that they
are important mediators of lifespan. By and large, the
growth hormone/insulin-like growth factor (GH/IGF)
system has garnered the most attention, and there is a
substantial body of work linking a reduction in GH/
IGF signaling to increased lifespan in mammals
(Bartke et al. 2003). Therefore, it is noteworthy that,
relative to DC control mice, wild-derived mouse stocks
have significantly lower levels of serum IGF-I early in
life, and that serum IGF-I is a significant predictor of
lifespan in F2 hybrid crosses between wild-derived
and C57BL/6J mice. Moreover, serum IGF-I remains
lower until at least early middle age (Harper et al.
2006a). More data on receptor levels and the activity
of downstream signaling cascades, as well as regu-
lators of GH secretion (e.g., GHRH, somatostatin,
ghrelin) and the bioavailability of IGF-I (e.g., IGFBPs)
are needed to better understand the dynamics of the
GH/IGF axis in these wild-derived stocks.

Basal glucocorticoid (GC) levels, and by extension
basal hypothalamic-pituitary-adrenal (HPA) axis ac-
tivity, are consistently elevated in wild-derived stocks
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(Harper et al. 2006a; Miller et al. 2000a, b). CR
upregulates basal HPA axis activity in rodents, and it
has been postulated that this increase in activity may,
at least in part, contribute directly to the anti-aging
effects of CR (Leakey et al. 1994; Masoro 2007).
However, the degree to which HPA activity differs in
response to stressors in wild-derived versus laboratory
stocks is currently unknown. Moreover, there is nothing
known about regulators of GC action, for example
corticosteroid binding globulin (CBG) or glucocorticoid
receptor (GR) levels, in these mice.

Wild-derived mice also show significant differ-
ences in circulating levels of the thyroid hormone
thyroxine (T,4), as well as the fat-derived hormone
leptin (Harper et al. 2005, 2006a). These differences
are not consistent, however, i.e., wild-derived mice
are not always hypothyroid or hypoleptinemic. More-
over, since the role of these hormones in modulating
lifespan is contentious; the significance of these
findings remains unclear.

Glucose homeostasis

Improved insulin sensitivity and glucose tolerance are
thought to be involved in the life-extending effects of CR
(Bartke et al. 2007). However, data from wild-derived
mouse stocks challenge the validity of this argument.
Specifically, Harper et al. (2005) showed that Ma mice
are significantly longer-lived than laboratory mice
despite being hyperglycemic, having a higher index
of glycation, performing poorly in an intraperitoneal
glucose tolerance test, and having presumed pancreatic
insufficiency. Meanwhile, long-lived Id mice were sta-
tistically indistinguishable from laboratory mice with
regard to their glucose balance and insulin sensitivity.
While more work needs to be done comparing organ-
specific insulin signaling pathways in wild versus lab-
derived mouse stocks (Argentino et al. 2005; Dominici
et al. 2002, 2003), these data, and a more recent study
of GLUT4 transgenic mice (McCarter et al. 2007),
suggest that a diminution of blood glucose and indices
of glycation may not be a prerequisite for increased
lifespan in mice, despite thinking to the contrary (Lee
and Cerami 1992).

Cell biology

Primary fibroblast cell lines derived from the ances-
tors of wild-caught mice exhibit significant differences
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in growth and proliferation and are more resistant to
changes associated with cellular senescence (Flurkey
et al. 2007). In addition, primary fibroblast cell lines
from different, unrelated wild-derived stocks are more
resistant to a variety of cytotoxic agents and meta-
bolic insults relative to cell lines derived from lab-
oratory mouse stocks (Harper et al. 2007). These data
are particularly interesting given the growing body
of evidence linking enhanced stress resistance to ex-
tended longevity (Murakami 2006). At present the
mechanistic bases for these differences remain un-
known, but telomere biology may be an important
mediator of cellular stress resistance (Rubio et al.
2004) and inbreeding has been shown to significantly
alter telomere length in rodents (Hemann and Greider
2000; Manning et al. 2002). In addition, significant
differences in membrane fatty acid composition between
wild-derived and laboratory mouse stocks (Hulbert
et al. 2006) may mediate the susceptibility of cellular
membranes to peroxidation (Hulbert et al. 2007),
although there are no differences in free radical
production by isolated heart mitochondria in wild-
derived versus laboratory mice (Lambert et al. 2007).

Calorie restriction

Laboratory mice are fat, with a body mass index (BMI)
almost 50% greater than that of same-age wild-derived
stocks (Harper et al. 2005). Their absolute fat mass is
significantly higher as well (Austad and Kristan 2003)
and, not surprisingly, laboratory mice eat more than
wild-derived stocks under captive conditions (Austad
and Kristan 2003). Thus, it may be that the life-
extending effect of CR in laboratory rodents (and
perhaps all domesticated species) is an artifact of the
domestication process whereby overfeeding goes
hand-in-hand with increased fecundity. Fortunately,
wild-derived stocks provide us with an excellent tool
to test this hypothesis (Harper et al. 2006b).

First and second captive-born generations of male
house mice exhibit changes in GC and testosterone
levels reminiscent of those seen in studies using
laboratory strains. Also important, cancer incidence
was significantly reduced in CR wild-derived mice,
consistent with studies using other rodent models (Patel
et al. 2004). Unexpectedly, however, there was no
statistically significant effect of CR on mean lifespan;
although the six longest-lived individuals in this study
were calorically restricted and there was a difference in
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the mortality rate doubling time of CR versus control
mice. Hence, it is plausible that animals not selected
under laboratory conditions (i.e., not domesticated) fail
to show the typical CR effect.

On the other hand, these data also raise the
possibility that CR-responsive alleles exist in natural
populations, and that these alleles have been inadver-
tently selected for during domestication. In fact, even
in laboratory mice, there is genetic variability for
physiologic correlates of the CR effect (Rikke et al.
2003, 2004). By using segregating populations of
(wild-derived x laboratory) F2 hybrids, we may be
able to find these, and other, genes that are important
regulators of mammalian lifespan.

Wild-derived x laboratory hybrid stocks: a source
of unknown aging genes?

As we have seen, there can be dramatic phenotypic
differences between wild-derived and laboratory
stocks, especially with regard to growth, reproduc-
tion, and lifespan. At least some, if not all, of these
differences are the result of underlying genetic vari-
ation, which can be quite substantial even among
‘typical’ laboratory mouse strains (Chia et al. 2005).
However, although inter-strain comparisons (e.g.,
wild-derived versus laboratory stocks) can indicate
whether differences in the traits of interests could be
due to genetic variation, they tell us very little about
which genes are responsible. Alternatively, compar-
ing a hybrid strain to each of its parental strains
allows us to address whether genetically based dif-
ferences exist and if they are the result of additive
allelic effects or are simply the result of directional
dominance or epistatic interactions. If reciprocal
crosses are made [i.e., (wild-derived female x labo-
ratory male) vs (laboratory female x wild-derived
male)] we can assess whether maternal effects are
important as well.

Using this approach, Dohm et al. (1994) showed
that measures of physical activity and endurance in
(wild-derived x laboratory) F1 stocks more closely
resemble those in the wild-derived parental strain,
suggesting that the wild-derived alleles were domi-
nant to the laboratory alleles. This could be a con-
sequence of relaxed selection in the laboratory setting,
where foraging, dispersal, and/or escape behavior is
not a critical component of everyday life. Meanwhile,

in the context of aging, Flurkey et al. (2007) showed
marked heterosis for female reproductive lifespan in a
(wild-derived x C57BL/6J) F1 hybrid stock, presum-
ably due to the unmasking of alleles for delayed
reproductive senescence as a result of out-crossing.
Lastly, rate of maturation, body size, hormones, and
longevity were evaluated in two [wild-derived (Id or
Ma) x C57BL6/J] F2 hybrid mouse stocks, and it was
found that the level of nearly all traits, including
lifespan, was intermediate to those in the parental
stocks, which suggests these traits are modulated by
co-dominant loci that distinguish wild-derived from
laboratory mice. The next challenge is to identify the
specific alleles involved in each of these studies using
conventional gene mapping studies.

Furthermore, despite their widely divergent pheno-
types, simple inter-strain comparisons between wild-
derived and laboratory mice do not directly address
whether differences between traits of interest, for
example body weight and lifespan, represents a coin-
cidence or is the outcome of a set of causal relation-
ships based upon pleiotropic effects of polymorphic
alleles. Instead, the construction of F2 intercross
stocks (i.e., by crossing F1 hybrids) is needed since
it results in a significant degree of genome reshuf-
fling, thereby producing offspring with variable
combinations of alleles (Jansen 2003). And, unlike
F1 hybrids, which are heterozygous at all loci (except
those that happen to be the same in each of the parental
strains), F2 intercross stocks have three possible
genotypes for each allele: (1) homozygous for parent
A; (2) heterozygous; or (3) homozygous for parent B.
In this instance, the co-occurrence of traits in the
segregating population is indicative that they are
regulated to some degree by common, and potentially
genetic, factors.

In the case of wild-derived stocks, superior lon-
gevity has been attributed to delayed maturation,
low IGF-I levels, and/or altered growth trajectories
(Harper et al. 2006a); hence one would predict the co-
segregation of these traits with lifespan in a seg-
regating F2 population. And indeed, analysis of two
(wild-derived x C57BL6/J)F2 segregating populations
indicated that serum IGF-I levels were significant
predictors of lifespan in both the IdB6F2 and the
MaB6F2 stocks (Harper et al. 2006a). Formal docu-
mentation of a genetic basis for the co-occurrence of
these traits can be done via a gene mapping study,
similar to the approach used by Klebanov et al.
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(2001) using segregating populations of four-way
Cross mice.

Natural variation in mammalian lifespan:
an untapped resource for aging research

In what has become a seminal study for comparative
biogerontologists, Austad (1993a, b) demonstrated
that a relatively brief period of adaptation to a low-
risk environment can lead to dramatic alterations in
reproductive biology and survival in populations of
wild opossums. More recently, studies utilizing nat-
ural populations of red deer have documented
patterns of senescence and the contribution of the
environment and genetics to inter-individual rates of
aging (Clutton-Brock and Isvaran 2007; Nussey et
al. 2007; Wislon et al. 2007). Using fibroblast cell
lines from seven species of wild-trapped rodents and
a single species of bat, Harper et al. (2007) saw that
longevity was associated with the degree of resis-
tance to cytotoxic and metabolic insults, consistent
with the idea that the evolution of long-lived species
may require enhanced stress resistance. And we al-
ready know that at least some populations of cap-
tive, wild-derived mice are significantly long-lived
relative to laboratory mice. Finally, the utility of
studying natural populations has also been realized
by invertebrate biogerontologists (Van Voorhies et
al. 2005; Melvin and Ballard 2006). Nonetheless,
the number of studies that use wild-derived popula-
tions is infinitesimally small relative to publications
on aging in laboratory stocks of the “big four” of
biogerontology: yeast (Saccharomyces cerevisiae),
nematode worms (Caenorhabitis elegans), fruit flies
(Drosophila melanogaster) and laboratory mice.

Unfortunately, this emphasis on a handful of inbred
laboratory species is rather short-sighted, because,
although single-gene mutations and selective breeding
can seldom increase lifespan by more than 40%
within rodents, natural selection has produced differ-
ences of much greater magnitude, upwards of 10-fold.
And the differences are more dramatic if all orders of
mammals are included. The problem now is that we
still don’t know how natural evolutionary processes
produce this variation in lifespan, or if long-lived
animals from different taxa share common genetic
pathways for slow aging.
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Future directions and concluding remarks

Are long-lived, wild-derived mice cognitively intact
at later ages than their laboratory counterparts? What
about immune function? Are there differences in the
onset and progression of specific age-related pathol-
ogies? These questions, and many others like them,
remain unanswered and are viable areas for future
research. Moreover, although we know that (some)
wild-derived stocks are long-lived, we still don’t
know why; but the repeated occurrence of specific
phenotypes in wild-derived populations, for example
low IGF-I levels or elevated antioxidant defenses,
would suggest that a detailed characterization of these
pathways could hold the key to lifespan determina-
tion. Future studies could take advantage of estab-
lished wild-derived stocks, such as Id and Ma mice,
or more ambitious investigators could establish their
own study populations.

In summary, most biomedical research on rodents
is conducted in isogenic stocks of mice that have
experienced tens-to-hundreds of generations of selec-
tive pressure for alleles that lead to high fecundity,
rapid growth, excessive food intake, and abnormal
behavior, thereby creating experimental animals that
differ dramatically from their wild ancestors (Ellegren
and Sheldon 2008). In addition to the obvious impli-
cations for a number of fields of study, there is reason
to believe that this process also leads to experimental
subjects that are particularly unsuited for biogerontol-
ogy because the selective pressures that mold fitness
traits early in life are also likely to affect the aging
process as a consequence of secondary or pleiotropic
effects on gerontologically important factors.
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