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Abstract
Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioel-
ectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron 
transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular 
electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, 
hematite  (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass,  Fe2O3 on FTO, graphite, and stainless steel) 
by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regula-
tor that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests 
were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser 
scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression 
by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, 
omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, 
which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associ-
ated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated 
with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the 
chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the 
electrochemical environment where it grows.

Keywords Geobacter sulfurreducens · c-type cytochromes · Bioelectrochemical systems (BES) · Biofilm structure · 
Electrochemical activity · Support materials

Introduction

Geobacter sulfurreducens is an anaerobic δ-proteobacterium 
that lives in the subsurface, and it participates in the biogeo-
chemical cycles of iron (Fe) and manganese (Mn) (Caccavo 
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et al. 1994; Reguera and Kashefi 2019). This microorganism 
has generated great interest for its biotechnological applica-
tions, including the degradation of organic compounds and 
the reduction of various heavy metals such as uranium (U), 
cadmium (Cd), cobalt (Co), palladium (Pd), and technetium 
(Tc) (Caccavo et al. 1994; Reguera and Kashefi 2019). The 
G. sulfurreducens genome encodes more than 100 c-type 
cytochromes (Methé et al. 2003), and it expresses conductive 
nanowires made of type IV pili and/or self-assembled c-type 
cytochromes (Wang et al. 2019; Yalcin et al. 2020; Ye et al. 
2022; Wang et al. 2022a). In nature, these two components 
(c-type cytochromes and pili) are used by G. sulfurreducens 
to extend the respiratory chain beyond the cell membranes 
at several distances to reduce the metallic oxides (Reguera 
et al. 2005).

G. sulfurreducens develops electroactive biofilms on elec-
trodes to produce electricity in bioelectrochemical systems 
(BES) (Pant et al. 2012; Steidl et al. 2016; Tabares et al. 
2019; Pinck et al. 2020). The electroactive biofilms share 
similarities with traditional biofilms, consisting of a com-
plex matrix of microorganisms and extracellular polymeric 
substances (i.e., nucleic acids, lipids, proteins, and polysac-
charides). Studies to determine the structure of the electro-
active biofilms of G. sulfurreducens have involved confocal 
laser scanning microscopy (CLSM) to observe the biofilm 
morphology, cell viability, and maximum thickness (Wen 
et al. 2022). The extracellular polymer substance (EPS) 
is important in biofilm structure, cohesion, and anchoring 
redox components.

According to studies, the EET requires the participation 
of both c-type cytochromes and type IV pili to promote elec-
tron transfer reactions in both thin (> 10 μm) and thick bio-
films (10–50 μm) (Bonanni et al. 2013; Steidl et al. 2016). 
Extensive research has focused on the multiheme c-type 
cytochromes to uncover the different pathways employed 
by G. sulfurreducens for transferring electrons from the 
quinone pool to low or high-potential final acceptors and 
to propose a mechanism for sensing the redox potential of 
the surrounding environment (Levar et al. 2014; Zacharoff 
et al. 2016; Joshi et al. 2021; Howley et al. 2023). Further-
more, the fact that this bacterium can encode more than 100 
cytochromes might explain its great versatility in terms of 
the vast number of electron acceptors it can use. The most 
studied outer membrane cytochromes are the following: 
OmcB, OmcS, OmcZ, OmcC, OmcE, OmcF, OmcT, and 
PgcA (Leang et al. 2003; Kim et al. 2005; Mehta et al. 2005; 
Inoue et al. 2010; Qian et al. 2011; Zacharoff et al. 2017).

The genes that express these important EET proteins 
(c-type cytochromes, pili structural protein type IV, and 
their assembly) are regulated by transcriptional regulators 
whose functions have been reported for G. sulfurreducens 

(Juárez et al. 2009; Leang et al. 2009; Tremblay et al. 2011; 
Summers et al. 2012; Andrade et al. 2021; Hernández-Eligio 
et al. 2022). One of these regulators is the GSU1771 protein, 
identified as a member of the Streptomyces Antibiotic Regu-
latory Protein (SARP) family (Tremblay et al. 2011). Recent 
findings have shown that the GSU1771 protein regulates the 
transcription of several genes involved in the reduction of 
Fe(III) and the transfer of extracellular electrons to support 
materials (Hernández-Eligio et al. 2022; Jaramillo-Rodríguez 
et al. 2023). Additionally, it was found that the biofilm of the 
Δgsu1771 mutant strain is thicker and with particular struc-
tures in comparison with the wild type (WT) strain and other 
phenotypic changes, like a delay in its growth rate in acetate-
fumarate, but an increase in Fe(III) oxide reduction activity. 
All these features have drawn attention since the mutation 
also generated high electroactive biofilms (i.e., enhanced 
ability to transfer electrons to electrodes more efficiently than 
the WT strain) (Hernández-Eligio et al. 2022).

In addition to biological factors influencing biofilm forma-
tion and activity, the support material can change the proper-
ties of the electroconductive biofilms (Semenec and Franks 
2015). Variations in the anode size affect the thickness of 
the biofilm in pure cultures of G. sulfurreducens (Nevin 
et al. 2008). Meanwhile, the chemical composition of the 
support material plays an important role in shaping features 
such as pores formation, surface morphology, roughness, 
and hydrophilicity (Semenec and Franks 2015). Previously, 
we conducted multidisciplinary research studies to describe 
the interaction between various support materials and the G. 
sulfurreducens WT strain; specifically, materials like fluo-
rine-doped tin oxide (FTO) and ordinary glass were found 
to enhance bacterial interaction by modifying the surfaces 
with  Fe2O3 films as observed in CLSM studies. Furthermore, 
our research proved that G. sulfurreducens exhibits different 
electroactive behaviors depending on the support material it 
interacts with. We reported that in the presence of the  Fe2O3 
film, the bacteria dissolved this compound instead of transfer-
ring the electrons to the current collector; in contrast, in the 
absence of this film, the electroactive activity of the biofilm 
was a typical turn-over response in the presence of sodium 
acetate (NaAc) (Huerta-Miranda et al. 2023).

Understanding how biofilms form on different surfaces 
is essential for properly developing electroactive biofilms 
and their use in bioelectrochemical devices. The influence 
of support materials on biofilm structure is also an impor-
tant parameter to consider. In this study, we analyze bio-
film structure and its bioelectrochemical properties using 
different support materials with different chemical char-
acteristics: glass as inert non-conductive material, glass 
covered with iron oxides  (Fe2O3-glass), and conductive 
materials (FTO,  Fe2O3-FTO, graphite, and stainless steel). 



Environmental Science and Pollution Research 

Typically, carbon-based materials, like graphite, are used 
for microbial anodes, but for several analyses and applica-
tions, including microscopy, a transparent support material 
like FTO is required (Scarabotti et al. 2021). Table 1 pre-
sents commonly used materials for studying electroactive 
biofilms for many applications, from energy production to 
biosensing and microbial electrolysis cells.

Additionally, our research involved a combination of 
electrochemical techniques and complemented them with 
CLSM to identify the optimal material for generating thick 
and homogeneous biofilms and to produce high currents 
in catalytic conditions in the oxidation of sodium acetate. 
Additionally, we conducted a comparative analysis of gene 
expression between the Δgsu1771 strain and the WT strain 
across all tested materials. Our results revealed that this 
mutation significantly enhances the differential expression 
of genes involved in biofilm formation and bioenergy pro-
duction, notably in genes related to c-type cytochromes 
like PgcA, OmcS, or OmcZ and others that have been less 
frequently reported like OmcF or OmcM.

Materials and methods

Bacterial strains and culture conditions

This study compares two strains of G. sulfurreducens DL1 
(WT) and the Δgsu1771 mutant strain (Hernández-Eligio 
et al. 2022). Both bacteria strains were routinely culti-
vated under anaerobic conditions in NBAF medium with 
30 mM sodium acetate (NaAc) as the electron donor and 
40 mM sodium fumarate as the electron acceptor (Coppi 
et al. 2001). We employed six different materials as sup-
port and/or electrodes: glass, glass covered with Fe(III) 
oxide  (Fe2O3-glass) (Mazón-Montijo et al. 2020), fluorine-
doped tin oxide (FTO), FTO covered with Fe(III) oxide 
 (Fe2O3-FTO) (Huerta-Miranda et al. 2023), graphite plate, 
and stainless steel. The cultures were incubated for 48 h 
in hermetically sealed test tubes at 25 °C, without agita-
tion. Before conducting any study, the strains underwent 
an “adaptation” process following established protocols in 
earlier reports (Hernández-Eligio et al. 2022).

Observation of the biofilm structure by CLSM

The dye mixture of the “LIVE/DEAD Bacterial Viability 
Kit” was prepared based on the instructions given in pre-
vious reports (Hernández-Eligio et al. 2022). The image 
analysis and biofilm parameters were performed using 
Comstat2 (version 2.1) and Fiji (version 2.9.0) software 
(Heydorn et al. 2000; Schindelin et al. 2012).

Electrochemical methods

All electrochemical studies were conducted in a conven-
tional three-electrode cell with Ag/AgCl as the reference 
electrode; 0.199 V vs. standard hydrogen electrode (SHE), 
all the potentials reported herein refer to the SHE. The 
counter electrode was a platinum plate, and the biofilms 
grown on the different support materials were the work-
ing electrodes. At 48 h of incubation time (except for 
graphite, in which the selected time was 96 h), the bio-
film/electrodes were carefully removed from the sealed 
test tubes and placed inside the electrochemical cell. The 
electrochemical cell consisted of a hermetic glass cham-
ber bubbled with a gas mixture of  N2 to  CO2 (80:20). The 
basal medium (BM) (Hernández-Eligio et al. 2020) was 
used as the electrolytic solution. Open circuit potential 
(OCP), cyclic voltammetry (CV), and square wave vol-
tammetry (SWV) were the electrochemical techniques 
used in this study. The OCP was measured for 10 min. 
The CV in non-catalytic and catalytic conditions (adding 
20 mM NaAc) was performed in different potential win-
dows depending on the support material (at 0.01 V/s scan 
rate): from − 0.93 to 0.48 V in FTO, from − 0.55 to 1.0 V 
in  Fe2O3-FTO, − 0.74 to 0.99 V in graphite, and − 0.64 to 
0.72 V in stainless steel. The SWV was performed at a 
step potential of 0.001 V, 0.01 V modulation amplitude, 
and a frequency of 30 Hz. The scan started from negative 
to positive potentials in the same potential windows as CV.

Gene expression and quantitative reverse 
transcription PCR (RT‑qPCR)

Total RNA was extracted from G. sulfurreducens bio-
films grown on all support materials in NBAF medium 
at 25  °C at 48  h. mRNA extraction was carried out 
using the RNeasy Mini Kit (Qiagen), and then residual 
DNA was removed using DNase I (Thermo Scientific). 
Complementary DNA (cDNA) synthesis was performed 
using the RevertAid H Minus First Strand cDNA Syn-
thesis kit (Thermo Scientific) and the specific reverse 
oligonucleotides (Supplementary Table S1). Afterward, 
qPCR was performed using the Maxima SYBR Green/
ROX qPCR Master Mix (Thermo Scientific) and spe-
cific oligonucleotides (Supplementary Table S1) using 
a Rotor-GeneR Q (Qiagen). The gene-specific oligonu-
cleotides used for RT-qPCR are summarized in Sup-
plementary Table S1. recA and gsu2822 were used as 
internal gene standards for PCR amplification. Normal-
ized relative expression fold changes were quantified 
via the  2−ΔΔCT method using the Rotor-Gene Q Series 
Software program. All experiments were conducted in 
triplicate, and the results were averaged.
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Results and discussion

Electrode materials analyzed and biofilm structure 
analysis by CLSM

In this study, we analyze the biofilm structure and its 
bioelectrochemical properties using different electrode 
materials with different chemical characteristics: glass 
as inert non-conductive material, glass covered with iron 
oxides  (Fe2O3-glass), and conductive materials (FTO, 
 Fe2O3-FTO, graphite, and stainless steel). Figure  1 
shows the three-dimensional structure of the biofilms by 
CLSM on all the previously mentioned supports: glass, 
 Fe2O3-glass, FTO,  Fe2O3-FTO, graphite, and stainless 
steel. The parameters obtained from the image analysis 
are reported in Table 2. The biofilms formed by the WT 
strain show several differences in dependence on the sup-
port material: on glass, the biofilm is distributed homo-
geneously on the surface, and its viability was more than 
90%; however, the biofilm thickness was the lowest. When 
the glass was covered with the hematite film  (Fe2O3-glass), 
the viability and homogeneity of the WT biofilm did not 
significantly change, but it was 1.5-fold thicker than when 
it grew on bare glass. We previously reported that by using 
 Fe2O3 as an electron acceptor, which closely resembles the 
natural environments of G. sulfurreducens, the formation 
of thicker biofilms compared to the unmodified bare sur-
face is promoted (Huerta-Miranda et al. 2023).

The Δgsu1771 strain forms a non-continuous biofilm 
(areas with regular agglomerates of cells) consider-
ably thicker than the WT strain on both bare glass and 
 Fe2O3-glass (4.4- and 3.4-fold, respectively), also observ-
ing the effect of greater thickness in the glass modified 
with  Fe2O3 (a thickness increment of 1.2-fold compared 
with bare glass). The increment in thickness affected 
the viability of the biofilms, as other authors mentioned 
(Islam et al. 2017; Zhuang et al. 2022). The mutant biofilm 
exhibits patterns (see top views) related to column-like 
structures with channels, which are not present in the WT 
strain.

The results with FTO showed that the WT strain formed a 
homogeneous biofilm with viability > 80%. When FTO was 
modified with the  Fe2O3 film, the viability and thickness 
were conserved but high cell accumulation was observed. 
The Δgsu1771 biofilm on FTO shows the same localized 
growth observed on the glass; we previously reported this 
behavior in bare FTO support electrodes (Hernández-Eligio 
et al. 2022). Compared to the WT biofilm, the Δgsu1771 
strain forms 1.7-fold thicker biofilms and 2.1-fold thicker 
biofilms on bare FTO and  Fe2O3-FTO, respectively. These 
results suggest that the Δgsu1771 biofilm shows more sen-
sitivity to the modification with  Fe2O3 than the WT biofilm 
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since the thickness and the cell viability are higher. Our 
research group reported the interaction between G. sulfurre-
ducens and the  Fe2O3 (Huerta-Miranda et al. 2023) which 
agrees with other reports that highlight this iron oxide as 
a promoter of biofilm formation in many microorganisms 
(Zhou et al. 2015; Ren et al. 2017; Wen et al. 2022).

On graphite, the WT strain produces non-continuous bio-
films (many black areas in the confocal images), which are also 
observed in the side view images; structurally, graphite is not 
a flat material like glass or FTO. Also, the porosity could be 

responsible for the heterogeneous distribution of this biofilm. 
It should be noted that the Δgsu1771 strain formed a biofilm 
with similar characteristics to the other support materials. On 
the other hand, the thickness and viability values of both bio-
films were close to those obtained on other supports; in fact, on 
graphite, the greatest thickness was obtained for WT biofilm.

Finally, the biofilms formed on stainless steel were homo-
geneously distributed. The WT strain developed a biofilm 
with similar thickness values as those formed on  Fe2O3 
but with very low viability (the lowest among all the WT 

Fig. 1  CLSM analysis of DL1 (WT) and Δgsu1771 biofilms formed 
on different supports (top and lateral views). The WT and Δgsu1771 
G. sulfurreducens biofilms were grown for 48  h at 25  °C. The bio-
films were stained with the LIVE/DEAD bacterial viability kit. Liv-

ing cells stain green, and dead cells stain red. The white line indicates 
a scale of 100 μm. The materials used to grow the biofilms are indi-
cated at the top of each panel
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biofilms). The mutant strain reaches thicknesses similar to 
those on  Fe2O3, but unlike WT, the percentage of viability is 
the highest of all the tested support materials with this strain. 
Other authors have observed abundant biofilm formation of 
G. sulfurreducens over stainless steel (Dumas et al. 2008; 
Tang et al. 2021). In the literature, it has been reported that 
iron-reducing bacteria such as G. sulfurreducens promote 
the corrosion of iron oxides in the initial stages of biofilm 
formation, but in more biofilm-mature stages, it promotes 
the protection of the material, which is strongly influenced 
by environmental factors (Herrera and Videla 2009; Jin and 
Guan 2014). Our results indicate that the corrosion of the 
stainless steel is the resultant phenomenon after 40 days of 
incubation. Supplementary Fig S1 shows the SEM images 
of stainless steel electrodes after 40 days of incubation in 
NBAF media. The surface wear of stainless steel is evident 
in the biologically treated electrodes compared to the abiotic 
control. In addition, energy dispersive X-ray analysis (EDX) 
shows a decrease and an increase in the percentage of iron 
(Fe) and oxygen (O) atoms, respectively, relative to the total 
number of atoms on the surface (see Fig. S1).

These results show that the WT strain is more suscepti-
ble to changes in the support material than the Δgsu1771 
mutant. Notably, the main reason causing the Δgsu1771 
strain to form these structures is a current topic in our 
research group. Additionally, it is also important to find the 
molecular basis causing this mutant strain to develop bio-
films with similar characteristics despite the used support 
material. In a recent study, through transcriptome analysis 
by RNA-seq, we reported that 467 genes changed their rela-
tive expression in Δgsu1771 biofilms grown on glass sup-
ports, compared to WT biofilms. Among the upregulated 
genes in the Δgsu1771 strain, we found those related to the 

synthesis of exopolysaccharides, which could explain the 
increased thicknesses of biofilms in this strain compared to 
WT (Jaramillo-Rodríguez et al. 2023).

Electrochemical characterization of electroactive 
biofilms

The electrochemical techniques performed to analyze the 
electroconductive biofilms of G. sulfurreducens in a bioel-
ectrochemical system were the open circuit potential (OCP), 
cyclic voltammetry (CV), and square wave voltammetry 
(SWV). These techniques describe the electrochemical 
environment at the support materials/biofilm interface, the 
electroactivity of the biofilms, and the potentials associated 
with the c-type cytochromes in contact with the electrode, 
which perform the EET reactions (Hernández-Eligio et al. 
2022). It is worth noting that the electrochemical studies 
could only be performed on the conductive supports FTO, 
 Fe2O3-FTO, graphite, and stainless steel; in the case of glass 
and  Fe2O3-glass, these studies were not possible due to the 
non-conductive nature of these materials. Furthermore, it is 
important to mention that during the incubation period with 
the graphite electrodes, we detected a delay in the growth 
time of both strains, which was reflected in the electrochemi-
cal responses of the biofilms. Supplementary Fig. S2 shows 
the electrochemical responses of WT and Δgsu1771 bio-
films on graphite electrodes at different incubation times. 
The mutant Δgsu1771 had the most significant change in 
the electrochemical response at 96 h. Based on these results, 
we selected 96 h for incubation time since the biofilm EET 
overcame the carbon material’s capacitance. It is well known 
that carbon materials have been widely used in several bioel-
ectrochemical applications, where carbon materials are the 
material of choice as anode due to their biocompatibility 
and chemical and microbiological stability (Baudler et al. 
2015; Schröder et al. 2015). In addition, carbon materials 
offer advantages such as low cost, wide potential window, 
and stability in a broad potential window (McCreery 2008). 
Depending on how carbon materials are manufactured, they 
can present different physicochemical properties that can 
influence the electrochemical responses of the biofilms. Car-
bon materials present a diverse surface area where the poros-
ity can vary enormously. For example, a large surface area 
means a large adhesion surface for the biofilm; however, this 
propriety can lead to capacitive current increases, so in this 
case, the faradaic electrochemical responses of the biofilm 
can decrease (Heijne et al. 2018).

The measurement of the OCP informs about the inter-
faces of a complex system like biofilms formed on elec-
trodes. In microbial fuel cells (MFCs), the development of 
the OCP of a cathode can be explained as the transport of 
electrons from the electrode to soluble electrochemically 
active chemical species (Renslow et al. 2011). In the case 

Table 2  Biofilm parameters of the CLSM image analysis

*The results are the average values of n > 2 samples and their stand-
ard error ( ±)

Material Strain*

WT Δgsu1771

Thickness (μm) Glass 13.2 ± 0.8 58.7 ± 6.2
Fe2O3-glass 20.2 ± 2.2 68.5 ± 18.5
FTO 22.7 ± 3.4 39.2 ± 6.1
Fe2O3-FTO 21.0 ± 2.0 45.0 ± 0.5
Graphite 39.3 ± 2.2 39.3 ± 6.4
Stainless steel 24.8 ± 2.1 44.2 ± 4.7

Cell viability (%) Glass 97.4 ± 0.8 79.5 ± 1.4
Fe2O3-glass 91.0 ± 3.5 78.9 ± 0.3
FTO 88.7 ± 2.3 92.6 ± 0.2
Fe2O3-FTO 86.7 ± 4.3 84.1 ± 2.4
Graphite 93.7 ± 0.4 92.1 ± 0.7
Stainless steel 74.3 ± 0.7 92.9 ± 1.6
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of anodes, the OCP of an electrode with G. sulfurreducens 
biofilm shifts towards negative values due to the reduction 
of bacterial electroactive molecules at the biofilm/electrode 
interface, so the more negative, the more reductive capac-
ity the biofilm will have (see Fig. 2) (Schrott et al. 2019; 
Hernández-Eligio et al. 2022). Electrochemical systems 
generally exhibit unique OCP values, which are determined 
by the physical and chemical interactions between the elec-
trode materials, the biofilm, and the electrolytic medium. 
Any perturbation in the system will cause a change in the 
OCP, indicating a change at the electrode/biofilm interface 
(Schrott et al. 2019). Ion adsorption, microorganism desorp-
tion, biofilm detachment, or electrochemical reactions could 
cause changes in this parameter (Huerta-Miranda et al. 2019; 
Yates et al. 2018). In the results presented herein, we did 

not impose an external electrical potential during biofilm 
development; additionally, the electrochemical measure-
ments were performed under conditions different from those 
of the culture media. As there was no external influence on 
biofilm development, all of our results are only attributed to 
the expressed phenotype of each strain.

Figure 3 shows the average OCP value after a 10-min 
measurement of biofilms from both strains (WT and 
Δgsu1771) in all the support materials. The electrodes 
without biofilm show different potential values among each 
other. Graphite has the widest range and the most positive 
OCP value (0.3–0.5 V). The  Fe2O3-FTO has the most nega-
tive potential (approx. 0.05 V). The stainless steel has an 
OCP of around 0.15 V. Furthermore, this could be related to 
the results observed in CLSM analysis, we observed that the 

Fig. 2  Representation of 
the physicochemical interac-
tions involved in the OCP 
values of WT and Δgsu1771 G. 
sulfurreducens biofilms devel-
oped on the support materials

Fig. 3  Open circuit potential 
(OCP) distribution of WT and 
Δgsu1771 biofilms on FTO 
(48 h),  Fe2O3-FTO (48 h), 
graphite (96 h), and stainless 
steel (48 h). In all panels, the 
gray bars represent the support 
material (without biofilms), the 
black bars represent the elec-
trochemical system without the 
addition of NaAc, and the red 
bars represent the electrochemi-
cal system after the addition 
of NaAc
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WT strain forms thicker and homogeneous biofilms in the 
most negative materials (FTO,  Fe2O3-FTO, stainless steel) 
and heterogeneous and irregular biofilms in the most posi-
tive material (graphite).

The WT biofilm grown on FTO has OCP values 
between − 0.1 and − 0.2 V without the addition of NaAc to 
the electrolyte, but in the presence of this organic molecule, 
the OCP shifted to more negative values; this indicates that 
the biofilms are electroactive towards acetate oxidation and 
the subsequent electron transfer to the electrode. Our group 
has reported this behavior previously, and we suggest that 
a negative shift in the OCP value indicates that the biofilms 
are in catalytic conditions (Hernández-Eligio et al. 2022). 
The Δgsu1771 strain has more negative OCP values than 
WT in the absence and presence of acetate; we reported 
similar changes in this condition before (Hernández-Eligio 
et al. 2022). Biofilms developed on  Fe2O3-FTO presented 
OCP values that shifted to more negative potentials than 
the empty electrode. This behavior could mean that the 
 Fe2O3 film promotes reducing environments, which is 
expected because G. sulfurreducens is a Fe(III) reducing 
microorganism.

The OCP values of the WT biofilm on graphite range 
from − 0.03 to − 0.17 V without NaAc and slightly change 
to negative potentials when this molecule is added. The 

Δgsu1771 biofilm has more tendency to negative values than 
the WT biofilm. The wide range of OCP values with graph-
ite with and without biofilms could result from the material’s 
physical characteristics. Graphite, unlike flat materials such 
as FTO, may have limitations for the non-homogeneous dis-
tribution of the electrolyte and the biofilm, so the formation 
and stabilization of the interfaces; thus, the OPC could take 
a long time, resulting in the broad dispersion of OCP values 
(Madjarov et al. 2017).

In stainless steel, the OCP values of the biofilm formed 
by the WT strain range between − 0.03 and − 0.06 V with-
out NaAc and show a slight change when this compound is 
added. Meanwhile, the Δgsu1771 biofilm has more negative 
OCP values than the WT biofilm; in the presence of acetate, 
the OCP becomes slightly more negative. The OCP values 
of the WT biofilms are more variable in each support mate-
rial used than the OCP values recorded from the Δgsu1771 
biofilm, which remained in ranges of − 0.3 V independent of 
each material used. These results suggest that WT biofilms 
are more susceptible to the material surface than Δgsu1771 
biofilms.

Figure 4 shows the CV responses of the biofilms in all 
the tested support materials with and without the addition 
of NaAc. Biofilms from both strains showed an s-shaped 
voltammogram in the FTO, which indicates electroactivity 

Fig. 4  Cyclic voltammetry (CV) of G. sulfurreducens WT and 
Δgsu1771 biofilms on FTO (48  h),  Fe2O3-FTO (48  h), graph-
ite (96 h), and stainless steel (48 h) at 0.01 V/s scan rate. The gray-
dashed lines represent the support material (without biofilms), the 

black lines represent the electrochemical systemwithout NaAc, and 
the red lines represent the electrochemical system after the addition 
of NaAc. The blue arrows indicate the direction of the potential scan
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due to acetate metabolism (red line). The behavior of these 
strains with this support material is consistent and expected 
in terms of the potential at the inflection point of the curves 
reported by our work group previously (≈0.18 V) (Hernán-
dez-Eligio et al. 2022).

The  Fe2O3-FTO presents the highest currents and are very 
similar to those without biofilm, indicating that the observed 
process is the  Fe3+/Fe2+ redox pair of hematite. We observe 
a decrease in the peak currents in the presence of acetate; 
this indicates that the concentration of the electroactive spe-
cies responsible for that redox response is decreasing at the 
electrode/biofilm interface. We have previously reported and 
confirmed the degradation of the  Fe2O3 film on the  Fe2O3/
FTO support electrodes. By X-ray diffraction (XRD), we 
observed that some of the characteristic peaks of the hema-
tite phase  (Fe2O3) decreased in intensity; simultaneously, the 
tin oxide  (SnO2) planes gained intensity. Also, there were 
no additional diffraction peaks in the electrodes in contact 
with the bacteria, suggesting that the redox reactions do not 
involve the conversion of  Fe2O3 into any other iron oxide. 
Furthermore, using ferrozine assay, we quantified the total 
Fe(II) in the NBAF medium of biologically treated  Fe2O3/
FTO electrodes. The results indicated that G. sulfurreducens 
dissolved the  Fe2O3 film and formed an unknown compound, 
which was released into the NBAF culture medium. Electro-
chemically, we observed the current decrease of  Fe3+/Fe2+ 
redox pair of hematite due to concentration decrease as the 
incubation days passed. Detailed studies about these results 
are reported in Huerta-Miranda et al. (2023).

In a CV experiment, the measured current is usually the 
sum of a faradaic current (associated with the redox trans-
formations of molecules close to the electrode) and a capaci-
tive current, which is not involved in electron transfer. The 
capacitive current is a consequence of the variation of the 
electrode potential (Léger 2013). In our experiments, we 
observed that graphite is a material with high capacitance 
(Heijne et al. 2018); this is the cause of the low faradaic 
currents of the biofilms. The WT biofilms voltammograms 
show no clear redox processes, and when we add NaAc, 
there is no difference between the voltammograms. On the 
other hand, the Δgsu1771 biofilm presents a reversible redox 
peak around − 0.1 V, but the voltammogram did not change 
in the presence of NaAc.

In industrial applications, stainless steel is selected over 
other materials because of its properties, cheaper cost, and 
availability in the market. Particularly, stainless steel 316 
(like the one presented herein) is a boiler-grade steel used 
in pressure vessels. This grade has high corrosion resistance 
and can be operated at elevated temperatures. The chemical 
composition of stainless steel 316 has been reported in the 
literature (Bharath et al. 2014; Tang et al. 2021).

The electrochemical responses of stainless steel are 
influenced by its composition; the observed CV response 

is typical of stainless steel 316 in the voltage range of − 0.7 
to 0.7 V, and it is associated with the formation of Fe(II), 
Fe(III), Cr(III), and Cr(VI) oxides (Minnikanti et al. 2010). 
The observed electrochemical responses of the stainless 
steel with biofilms are very similar to those without biofilm, 
indicating that the biofilm does not transfer electrons to the 
material in a similar process as FTO. However, the CSLM 
images show a high level of colonization and cell viability 
from both biofilms; thus, the stainless steel/microorganisms 
interaction is favorable for biofilm formation. Corrosion of 
the electrode explains our results obtained in this material. 
The corrosion of stainless steel by this microorganism was 
proven in culture conditions in the literature; those results 
suggested that G. sulfurreducens relied on direct electron 
uptake when grown on stainless steel, and it was found that 
the c-type cytochrome OmcS is important to carry out this 
corrosion process on this material (Tang et al. 2021). The 
corrosion phenomenon in stainless steel starts with the oxi-
dation of  Fe0 on the surface of this material,  Fe0 is oxidized 
by G. sulfurreducens through direct metal-microorganism 
electron transfer, giving  Fe2+, and part of this process gener-
ates  H+, which is consumed by hydrogenases catalytic activ-
ity (Tang et al. 2019, 2021). Thus, G. sulfurreducens uses 
stainless steel as a cathode, so it presents the phenomenon of 
microbiologically influenced corrosion (MIC) in which the 
biofilm interacts with the iron of the stainless steel (Puentes-
Cala et al. 2022; Wang et al. 2022b). This material is impor-
tant for its potential use in METs (Pocaznoi et al. 2012), so to 
know how G. sulfurreducens interacts with stainless steel in 
our working conditions, we complemented the CLSM, SEM, 
EDX, and electrochemical results on this support material 
with the relative expression of selected genes between WT 
and the Δgsu1771 mutant (see next section).

In the context of MFC, according to some authors, it 
is crucial for an electrode to have a high available surface 
area for efficient EET and biocompatibility to rely on direct 
contact with electroactive microorganisms like G. sulfurre-
ducens (Beuth et al. 2020; Frühauf et al. 2022). However, 
according to our results, having good colonization on an 
electrode surface is not sufficient to guarantee the production 
of usable current coming from the microbial metabolism 
of G. sulfurreducens; the FTO is the support material that 
promoted electroactive biofilm development and facilitated 
the EET reaction towards the oxidation of acetate in both 
biofilms WT and Δgsu1771.

SWV is an electrochemical technique capable of reduc-
ing the intrinsic capacitance of CV. The obtained voltam-
mograms usually offer an excellent resolution of successive 
electroactive species in multicomponent systems like elec-
troactive biofilms (Babauta and Beyenal 2015). Figure 5 
shows the SWV responses of the biofilms in all the tested 
support materials in the presence of NaAc. This condition 
was chosen because the peak currents of the processes are 
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better defined than in the absence of NaAc (data not shown). 
The WT biofilm in FTO shows a clear peak at − 0.12 V 
(peak A), corresponding to the bare FTO (see gray line); 
at more negative potentials, three small processes (inflec-
tions in the curve), absent in the bare FTO, appeared 
at − 0.33 V, − 0.42 V, and − 0.51 V (see arrows 1–3). In 
the Δgsu1771 biofilm, the process at − 0.33 V is better 
defined than in WT; additionally, the processes at − 0.42 V 
and − 0.51 V are also observed. The supplementary Fig. S3 
shows a magnification of the SWV response to clarify the 
mentioned processes.

In  Fe2O3-FTO, we observed the redox process of the 
 Fe2O3 film; without biofilms, the process covers a wide 
potential region, but in WT, the process is more defined, 
and it appears around 0.12 V (Peak B). We are certain of the 
identity of this process due to a previous investigation in our 
work group, in which the process corresponding to peak 4 
was also reported and attributed to the FTO current collector 
(Huerta-Miranda et al. 2023). The mutant strain presents a 
process around 0.15 V (peak 5) current higher than the WT 
response, suggesting that the mutant strain is transferring 
some of the electrons from acetate oxidation to the FTO cur-
rent collector; unlike WT, in which the EET process causes 
only the reduction and dissolution of the  Fe2O3 film. In the 
literature, there is evidence suggesting that the  Fe2O3 films 

can enhance catalytic current production in electroactive 
biofilms in the presence of NaAc (Wen et al. 2022).

In the case of graphite, the process associated with the 
support material appears at 0.31 V (peak c); this process can 
be attributed to oxidation and reduction of some graphite 
surface functional groups (Soliman et al. 2016). We observed 
a process occurring around − 0.12 V in both strains (peak 
6), which does not appear in the electrode without biofilm. 
The mutant strain presents a peak around − 0.33 V (peak 7), 
which does not appear in WT. Unlike CV, SWV allowed 
the observation of redox processes associated with G. sul-
furreducens biofilms in this graphite electrode. Our research 
group is currently investigating why this specific graphite 
plate did not exhibit similar responses to those observed in 
previous reports (Huerta-Miranda et al. 2023). However, it 
is worth noting that the biofilms’ process at − 0.12 V agrees 
with our previous CV results in another type of graphite.

In stainless steel, the process associated with the support 
materials is found at 0.01 V (peak D). Another process of 
around − 0.33 V is observed in the biofilms of both strains 
(peak 8), which is absent on the bare electrode. This process 
is more evident in the mutant strain than in WT, and the fact 
that the current of the peak D increased compared to the sup-
port material without biofilm suggests that the electroactive 
capacity of the mutant biofilm allows the current to increase 

Fig. 5  Square wave voltammetry (SWV) of G. sulfurreducens WT 
and Δgsu1771 biofilms on FTO (48 h),  Fe2O3-FTO (48 h), graphite 
(96 h) and stainless steel (48 h). The gray lines represent the support 

material (without biofilms), and the red lines represent the electro-
chemical system after the addition of NaAc
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during acetate oxidation. The current increase in electro-
chemical responses of G. sulfurreducens has been studied 
by SWV alongside CV responses, and an increase in the 
peak current in turnover conditions for SWV corresponds 
to an increase in the limiting current in CV (Babauta and 
Beyenal 2017). Nevertheless, the reason why we observed 
an increase in the current in the presence of NaAc in SWV 
but not in CV must be further investigated. The kinetics of 
the electron transfer process in stainless steel differ from that 
on FTO, which could explain why we do not observe this 
phenomenon under the same analytic conditions.

Gene expression analysis of selected genes

With the aim of knowing more about the expression of 
some genes identified for their role in EET, Fig. 6 shows 
the gene expression of selected genes (pilA, omcZ, omcS, 
omcB, omcC, omcE, omcM, omcF, pgcA, acnA, dcuB, epsH, 
and ftsX) involved in EET and biofilm formation. Some of 
those genes were analyzed previously by our working group 
in the biofilm transcriptome of the Δgsu1771 mutant strain 
compared to the WT train. Both biofilms developed on glass 
supports, an inert and non-conductive material, thus avoid-
ing the possibility that the electrode material was seen as an 
electron acceptor (Jaramillo-Rodríguez et al. 2023). In this 
work, in addition to glass, we also compared other support 
materials used for biofilm formation to study their influ-
ence not only on the structure of the biofilm but also on 
the expression of different c-type cytochromes, and other 
important components for metabolism and biofilm formation 
using RT-qPCR.

The c-type outer membrane cytochromes have been 
extensively studied in G. sulfurreducens for their role in EET 
(Ueki 2021). We found a higher expression of the follow-
ing genes that encode c-type cytochromes in the Δgsu1771 
biofilms compared to the WT biofilms on each of the mate-
rials used (Fig. 6): omcF, omcM, omcS, and pgcA. OmcF 
is a c-type monoheme outer membrane cytochrome that is 
required for Fe(III) reduction and current production on 

electrodes (Kim et al. 2005; Dantas et al. 2017); genetic 
studies show that OmcF has a key role in regulating genes 
encoding proteins necessary for Fe(III) reduction with 
OmcB (Kim et al. 2005) and electricity production in micro-
bial fuel cells (OmcE and OmcS) (Kim et al. 2008). OmcM 
is a c-type tetraheme outer membrane cytochrome that is 
expressed during the Fe(III) and Pd(II) reduction (Aklujkar 
et al. 2013; Hernández-Eligio et al. 2020). OmcS is a c-type 
hexaheme outer membrane cytochrome essential for the 
reduction of insoluble Fe(III) and Mn(IV) oxides (Leang 
et al. 2010; Qian et al. 2011), and a recent report indicates 
that OmcS could form nanowires involved in long-range 
EET (Filman et al. 2019). PgcA is a c-type triheme extra-
cellular cytochrome that facilitates the reduction of Fe(III) 
and Mn(IV) oxides (Zacharoff et al. 2017), which was the 
cytochrome with the highest expression of those selected 
in this work, which could be due that this cytochrome con-
tributes to the reduction of several electron acceptors for its 
structural and biochemical characteristics (Fernandes et al. 
2023), where it presents a greater expression in materials 
that contain Fe, which are stainless steel and hematite lay-
ers (Fig. 6).

Other c-type outer membrane cytochrome genes that were 
found differentially expressed on all materials were omcB, 
omcC, omcE, and omcZ. OmcB is a c-type dodecaheme 
outer membrane cytochrome involved in the reduction of 
soluble Fe(III) and which, together with two other proteins, 
forms a porin-cytochrome complex that transfers electrons 
across the electrode/biofilm interface (Leang et al. 2003; 
Liu et al. 2014). OmcC is a c-type dodecaheme outer mem-
brane cytochrome homologous to OmcB, probably the result 
of genetic duplication (Leang and Lovley 2005). OmcE is 
a c-type tetraheme outer membrane cytochrome involved 
in the reduction of Fe(III) oxides (Mehta et al. 2005), and 
a recent report indicates that OmcE could form nanowires 
involved in long-distance EET (Wang et al. 2022a).

In this work, it is observed that omcB, omcC, and omcE 
are more expressed in materials covered by hematite, 
FTO, and stainless steel, but they are less expressed in 

Fig. 6  Heat map of the gene 
expression analysis of the pilA, 
omcZ, omcS, omcB, omcC, 
omcE, omcM, omcF, pgcA, 
acnA, dcuB, epsH, and ftsX 
genes in the Δgsu1771 biofilms 
compared to the WT biofilms. 
The biofilms were grown on dif-
ferent support materials at 48 h
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glass and graphite in Δgsu1771 biofilms compared to WT 
biofilms. On the other hand, OmcZ is a c-type octaheme 
outer membrane cytochrome necessary for the transfer of 
electrons to electrodes and throughout the biofilm (Rich-
ter et al. 2009) and a recent report indicates that OmcZ 
could form nanowires essential for the formation of high 
current density biofilms that require long distance (Gu 
et al. 2023). In this work, it was found that omcZ is mostly 
expressed in conductive materials (Nevin et  al. 2009; 
Franks et al. 2012) and covered by hematite, confirming 
that this cytochrome is necessary for the conductivity of 
biofilms grown on electrodes, but it was found that it is 
less expressed on glass, and this may be because it is a 
non-conductive material in Δgsu1771 biofilms compared 
to WT biofilms (Fig. 6).

In addition, the pili have also been extensively studied in 
G. sulfurreducens for their role in EET (Reguera et al. 2005; 
Reardon and Mueller 2013; Feliciano et al. 2015; Steidl et al. 
2016). In this work, we found that there is a lower expression 
of the pilA gene (structural gene of the pili) in the Δgsu1771 
biofilm compared to the WT biofilm on each of the materials 
used (Fig. 6).

On the other hand, the epsH gene belongs to the eps gene 
group, which controls the biosynthesis of extracellular poly-
saccharides in bacteria (Zhao et al. 2023). Through bioin-
formatic analysis, it was found that the epsH gene encodes a 
putative membrane protein that could be involved in the pro-
teolysis (transpeptidation) of proteins with the signal peptide 
PEP-CTERM, similar to a sortase (Haft et al. 2006). In this 
way, it is identified that the epsH gene of G. sulfurreducens 
codes for a putative exopolysaccharide synthesis membrane 
protein H (exosortase). In this work, a higher expression of 
the epsH gene can be highlighted in the Δgsu1771 biofilm 
on all the materials, suggesting that this gene is related to 
the development of a thicker biofilm in Δgsu1771 compared 
to the WT strain (Fig. 6).

Another gene group that was found differentially 
expressed in biofilms of the Δgsu1771 biofilms are those 
involved in transport systems: dcuB and ftsX. The dcuB 
gene encodes a fumarate/succinate exchanger (C4 dicarbo-
xylate transporter) (Butler et al. 2006), which allows the 
bacteria to take up fumarate and export succinate, making it 
essential for cell growth with fumarate as electron acceptor 
(Leang et al. 2009). In the analysis expression, we detected 
that dcuB is overexpressed in Δgsu1771 biofilms that grow 
on stainless steel, graphite,  Fe2O3-glass, and  Fe2O3-FTO 
(Fig. 6), which could indicate that the Δgsu1771 biofilms 
are consuming fumarate to be used as a final electron accep-
tor, in addition to these support materials, compared to the 
WT biofilms.

The ftsX gene encodes a cell division ABC transporter 
membrane protein FtsX (Schmidt et al. 2004). We detected 
that ftsX is overexpressed in the Δgsu1771 biofilms that 

are grown on stainless steel,  Fe2O3-glass, and  Fe2O3-FTO 
(Fig. 6), which could indicate that greater cell division 
would be occurring and there would be more cells within 
these biofilms on these materials compared to those on the 
WT biofilms.

Furthermore, the acnA gene encodes an aconitase that 
catalyzes the reversible isomerization of citrate and isoci-
trate by cis-aconitate in the citric acid and glyoxylate cycles 
shown transcriptional changes (Gruer and Guest 1994). On 
glass, the Δgsu1771 biofilm does not change its expression 
but is overexpressed in Δgsu1771 biofilms grown on stain-
less steel and  Fe2O3-FTO (Fig. 6), which could indicate a 
positive effect on the tricarboxylic acid metabolism of the 
Δgsu1771 biofilm in the presence of extracellular electron 
iron-based acceptors or donors, increasing its growth com-
pared to the WT biofilm.

It is possible that the use of different conductive materi-
als, especially those containing metals (FTO, hematite lay-
ers, and stainless steel), could be promoting the expression 
of some c-type cytochromes in Δgsu1771 biofilms compared 
to WT biofilms because these bacteria could evaluate the 
redox potential of the surfaces of each material and deter-
mine the precise EET pathway (Levar et al. 2014; Zacharoff 
et al. 2016; Joshi et al. 2021), which could be reflected in 
the different redox processes obtained by voltammetry of 
the biofilms grown on each support material. So G. sulfurre-
ducens could reduce the Fe(III) contained in the hematite 
layers through outer membrane c-type cytochromes (Leang 
et al. 2003, 2010; Kim et al. 2005; Aklujkar et al. 2013; 
Zacharoff et al. 2017). And stainless steel contains several 
metals (iron, nickel, chromium, and molybdenum, among 
others) with which these bacteria could interact and favor 
their growth (Tang et al. 2019, 2021).

Table 3 shows the main characteristics of the biofilms 
developed on the different support electrodes; the influence 
of the chemical environment where G. sulfurreducens grows 
is more evident in the WT strain. It has been hypothesized 
that the long-range electron transfer in G. sulfurreducens 
could be explained by the combination of pili and associ-
ated cytochromes like OmcZ, OmcS, or OmcE because the 
recent cryo-electron microscopy studies have shown that 
nanowires in G. sulfurreducens are expressed differently in 
dependence of strains and the electron acceptor (Gralnick 
and Bond 2023).

Additionally, elements at the inner membrane were found 
to be necessary for G. sulfurreducens to respire at determined 
potentials, regardless of the electron acceptor used (Levar 
et al. 2014; Zacharoff et al. 2016; Joshi et al. 2021). To date, 
it is unclear how the electron pathways switch and which 
other proteins are involved in each pathway. Nevertheless, 
our studies have contributed to the perspective on how G. 
sulfurreducens behave depending on the support electrodes. 
Other authors suggest that the modulation of the electrode 
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potential may be another alternative to understanding the elec-
tron pathway selected (Levar et al. 2017; Howley et al. 2023). 
According to their results, the differences in the multi-heme 
cytochrome differential expression and the electrochemi-
cal data suggest that the potential modulation modifies the 
EET pathways and induces the expression of different genes 
depending on the growth conditions, as we did in this work.

Conclusion

The use of different support materials to study G. sulfurre-
ducens biofilms of two strains, wild type and Δgsu1771, 
allowed us to confirm the intrinsic characteristic of 
Δgsu1771 for developing a thicker biofilm on all tested 
materials, both non-conductive and conductive. In addi-
tion, the overexpression of some genes (RT-qPCR results) 
that are involved in the extracellular electron transfer, such 
as pgcA, omcS, omcM, and omcF, as well as the over-
expression of exopolysaccharides (epsH) was confirmed. 
Both strains presented different redox processes (voltam-
metry results) associated with each conductive material 
(FTO,  Fe2O3-FTO, graphite, and stainless steel). Further-
more, we observed a substantial overexpression of pgcA 
and omcF, mainly in materials with Fe, suggesting some 
protein–metal interaction that these cytochromes could 
carry out. The results here open new perspectives for the 
study and application of G. sulfurreducens biofilms for 
developing hybrid biosystems like biosensors or bioan-
odes in BES. For the Δgsu1771 mutant strain, our results 
show this mutant as a viable option for applications, tak-
ing advantage of its rapid extracellular electron transfer 
(EET) to final acceptors reflected by the high electric cur-
rent that benefits bioelectrochemical processes required in 
the energy/environment and energy/health fields.
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