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Abstract
This study aimed to develop an environmental risk score (ERS) of multiple pollutants (MP) causing kidney damage (KD) 
in Korean residents near abandoned metal mines or smelters and evaluate the association between ERS and KD by a history 
of occupational chemical exposure (OCE). Exposure to MP, consisting of nine metals, four polycyclic aromatic hydrocar-
bons, and four volatile organic compounds, was measured as urinary metabolites. The study participants were recruited 
from the Forensic Research via Omics Markers (FROM) study (n = 256). Beta-2-microglobulin (β2-MG), N-acetyl-β-D-
glucosaminidase (NAG), and estimated glomerular filtration rate (eGFR) were used as biomarkers of KD. Bayesian kernel 
machine regression (BKMR) was selected as the optimal ERS model with the best performance and stability of the predicted 
effect size among the elastic net, adaptive elastic net, weighted quantile sum regression, BKMR, Bayesian additive regression 
tree, and super learner model. Variable importance was estimated to evaluate the effects of metabolites on KD. When strati-
fied with the history of OCE after adjusting for several confounding factors, the risks for KD were higher in the OCE group 
than those in the non-OCE group; the odds ratio (OR; 95% CI) for ERS in non-OCE and OCE groups were 2.97 (2.19, 4.02) 
and 6.43 (2.85, 14.5) for β2-MG, 1.37 (1.01, 1.86) and 4.16 (1.85, 9.39) for NAG, and 4.57 (3.37, 6.19) and 6.44 (2.85, 14.5) 
for eGFR, respectively. We found that the ERS stratified history of OCE was the most suitable for evaluating the association 
between MP and KD, and the risks were higher in the OCE group than those in the non-OCE group.
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Introduction

Residents in environmentally vulnerable areas, located near 
industrial facilities, such as mines, smelters, and manufac-
turing facilities, have been chronically exposed to low con-
centrations of multiple pollutants (MP) (Herpin et al. 2009; 
Jo et al. 2021; Laney and Weissman 2014). Some residents 
may be involved in work that can expose them to MP. Occu-
pational exposure has been implicated in various diseases 
because of its high concentration and persistent exposure 
(Massachusetts 2022; Paulin et al. 2015). Therefore, it is 
crucial to consider the association between MP and multiple 
health effects to assess the influence of chronic and persis-
tent environmental hazards.

Environmental factors significantly contribute to the 
pathogenesis of chronic kidney disease (CKD) (Tsai et al. 
2017). Heavy metals, such as lead (Pb), mercury (Hg), and 
cadmium (Cd), can cause renal proximal tubular damage 
and a decline in glomeruli (Kim et al. 2015). Polycyclic 
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aromatic hydrocarbons (PAHs) may also contribute to kid-
ney dysfunction by increasing oxidative stress (Farzan et al. 
2016). The estimated glomerular filtration rate (eGFR) is 
generally accepted as the best measure of the overall kid-
ney function (Ferguson and Waikar 2012). Sustained or 
chronically decreased eGFR is generally associated with 
a decrease in other renal functional parameters, resulting 
in an altered electrolyte and volume balance, decreased red 
blood cell production, hypertension, and altered bone min-
eral metabolism (Ferguson and Waikar 2012). The National 
Kidney Foundation Kidney Disease Outcomes Quality Ini-
tiative defines the stages of CKD based on eGFR (Ferguson 
and Waikar 2012). Before developing the eGFR marker, 
β2-microglobulin (β2-MG) and N-acetyl glucosaminidase 
(NAG) were used as biomarkers for renal microtubular dam-
age. If the reabsorption rate of the renal tubule decreases, the 
amount of protein and enzyme in the urine increases, and the 
concentrations of biomarkers increase (Satarug et al. 2010).

Environmental risk score (ERS) is a useful tool to sum-
marize the risk of exposure to MP in environmental epidemi-
ological research. One previous study constructed the ERS 
of 149 environmental pollutants, including heavy metals, 
phthalates, PAHs, and dioxins (Park et al. 2014). It is pos-
sible to characterize the ERS of MP even for high degrees of 
correlation or high-dimensional data using machine learning 
methods (Fu et al. 2022; Park et al. 2017; Wang et al. 2018). 
Machine learning methods can improve model performance 
against statistical challenges, such as collinearity or failure 
of fitting. Several studies have reported the constructed ERS 
of various exposure biomarkers and health outcomes and 
have measured performance. Five helpful methods can be 
used to construct MP models of phthalates, phenols, pesti-
cides, perchlorate, and related anions (Sun et al. 2013); the 
ERS of heavy metals for cardiovascular disease (Park et al. 
2017); ERS of heavy metal mixture for obesity (Wang et al. 
2018); ERS of 24 urinary metals for heart rate (Fu et al. 
2022); ERS of 24 metals for eGFR (Rodriguez-Villamizar 
et al. 2023). Therefore, an ERS of MP, including metals, 
PAHs, and VOCs, for kidney damage (KD) in environmen-
tally vulnerable residents remains to be constructed.

This study aims to develop the ERS of the MPs that 
cause KD in residents of environmentally vulnerable areas 
in Korea and evaluate the association between ERS and KD 
caused by occupational chemical exposure (OCE).

Material and methods

Study population and participants

The cross-sectional study, Forensic Research via Omics 
Markers (FROM), is being conducted in Korea (2021–2025) 
to develop biomarkers for assessing health effects and 

tracking diseases by exploring environmental pollutants that 
reflect the characteristics of vulnerable areas using biologi-
cal samples. The FROM study selected survey areas classi-
fied as environmentally vulnerable regions by the Korean 
central and local governments (Choi et al. 2023). The cen-
tral and local governments have conducted investigations to 
monitor or determine the health effects of residents due to 
environmental exposure from sources, such as abandoned 
metal mines, smelters, and industrial complexes. Recruited 
participants were residents or from another survey by the 
local or central government; they voluntarily agreed to 
participate after being given a sufficient explanation of the 
objectives of the study. A total of 298 individuals (263 from 
vulnerable areas and 35 from the control area) were recruited 
for the FROM study. Among the 298 participants, 256 indi-
viduals with normal creatinine concentrations (> 30 mg/dL 
and < 300 mg/dL) were selected for the present study.

Our study was conducted in the following four study 
areas (Fig. 1): Goseong and Sangchon as the exposure areas 
around abandoned metal mines, Janghang as the exposure 
area around the smelter, and Gimhae as the control area. In 
Goseong and Sangchon, the problem of Cd poisoning was 
first raised in 2004 (Kwon 2011). The health effects survey 
discovered that it was caused by the contamination of living 
environments, such as crops and drinking water, by pollut-
ants from abandoned metal mines (Kwon 2011). The partici-
pants in Goseong and Sangchon lived within 1.18–3.76 km 
and 4.09–5.63 km from the source of pollution. Janghang is 
situated around a copper smelter that was operational from 
1930 to 1989 (Kim et al. 2016). The smelter was built in the 
1930s and led to Korean industrialization during the 1960s 
and 70 s. Since 1989, serious heavy metal contamination 
has been found in crops and soil, and residents have suf-
fered from Cd poisoning for decades (Kim et al. 2016). The 
participants in Janghang lived within 1.33–23.60 km from 
the source of pollution. Gimhae was used as the control area.

In this study, personal and health data were collected 
using a self-reported questionnaire from July 25 to October 
26, 2021. The survey was conducted in person by survey 
assistants previously trained to ask questions to elderly par-
ticipants. This study was approved by the DONGA Univer-
sity Institutional Review Board of Korea (2–1,040,709-AB-
N-01–202105-BR-002–08). Informed consent was obtained 
from all participants, and the study followed the guide-
lines of the Declaration of Helsinki for research on human 
participants.

Metabolites

Pollutant concentrations were measured in the urine 
samples of the study population. The following seven-
teen metabolites were analyzed: nine metals (Hg, vana-
dium [V], chromium [Cr], manganese [Mn], nickel [Ni], 
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molybdenum [Mo], Cd, antimony [Sb], and Pb); four 
PAHs (2-naphthol [2-naph], 1-hydroxypyrene [1-ohp], 
2-hydroxyfluorene [2-ohf], and 1-hydroxyphenanthrene 
[1-ohph]); and four volatile organic compounds (VOCs) 
(phosphoglyceric acid [PGA]; trans, trans-muconic acid 
[t,t-MA]; methylhippuric acid [MHA]; and benzylmer-
capturic acid [BMA]). Urine samples were collected and 
stored at − 80 ℃ until analysis. The urine samples were 
analyzed for metals in March 2022 and for the other com-
pounds within 1 month of collection. A previous study 
reported that urinary concentrations of As, Cd, Pb, Tl, 
and Zn stored at − 80 °C remained stable for more than 
a decade (Beauval et al. 2022). Hg in the urine samples 
was analyzed by adding 0.1 mL of the sample to a mer-
cury analyzer (MA-3000, NIC, Japan) after the sample 
was thawed and thoroughly mixed using a vortex mixer. 
All metals, except Hg, were analyzed using inductively 
coupled plasma-mass spectrometry (Agilent 7800, Agilent, 
USA) after diluting 0.3 mL of urine sample with 2% nitric 
acid (2.7 mL). We replaced the concentrations below the 
limit of detection (LOD) with LOD/2. The concentrations 
of these metabolites were adjusted for measuring urinary 
creatinine levels.

Biomarkers for kidney damage (KD)

β2-MG, NAG, and eGFR were used as biomarkers of KD. 
β2-MG and NAG were used as biomarkers for renal micro-
tubular damage. β2-MG and NAG levels of > 300 μg/L 
(Kawai et al. 2010) and > 11.5 IU/L (Park 2020), respec-
tively, indicate acute kidney injury (AKI). The samples 
were analyzed using an automated chemistry analyzer 
(Cobas 702, Roche Diagnostics System, Switzerland) 
with a wavelength of 700 nm. Standard reagents from 
Roche Diagnostics System and Nittobo Medical Co. were 
used for β2-MG and NAG, respectively. After the samples 
were thawed and thoroughly mixed using a vortex mixer, 
0.5 mL of the sample was directly added to the analyzer. 
The concentrations were adjusted for creatinine (μg/L 
Crea or IU/L Crea.).

The eGFR is a marker of CKD. If the value of eGFR is < 
90, it indicates mild KD (Ferguson and Waikar 2012). eGFR 
was calculated using the following equation:

GFR = 141 ×min(Scr∕�, 1)
� ×max(Scr∕�, 1)

−1.209 × 0.993
Age

× 1.018[if female]

Fig. 1  Map of study areas as a part of the Forensic Research via Omics Marker (FROM) study in Korea. Goseong and Sangchon are exposure 
areas around abandoned metal mines, Janghang is an exposure area around the smelter, and Gimhae is the control area
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,  where Scr is the serum creatinine in mg/dL, � is 0.7 
for females and 0.9 for males, � is − 0.329 for females 
and − 0.411 for males, min indicates the minimum of 
Scr/κ or 1, and max indicates the maximum of Scr/κ or 1 
(National Institutes of Health 2022).

Covariates

Covariate data were obtained from the FROM survey and 
included the sex, age group (29–<65 years, 65–74 years, and 
≥ 75 years), medication for any disease (No and Yes), study 
area (Gimhae, Goseong, Sangchon, and Janghang), tertile of 
residence period (cutoff points 12.92 and 50.00 years), tertile 
of urinary cotinine level (cutoff points 2.09 and 6.97 μg/g 
Crea.), and the period of OCE classified by the median 
(None, < 4.5 years, or 4.5 – ≤ 60 years). A history of OCE 
was defined as being engaged in one of 15 occupations, such 
as mining, paint manufacturing/painting, battery manufac-
turing, welding, smelting/alloying, wire/cable manufactur-
ing, plating, printing industry, gas station, fluorescent lamp 
manufacturing, rubber/PVC/plastic manufacturing, pesti-
cide/insecticide manufacturing, radiation/radiation shield-
ing, plastic coloring agent/pigment work, and weaving work.

Statistical analyses

Data pertaining to the general characteristics of participants 
are presented as frequency and proportion, geometric mean 
(GM), and the 95% confidence interval (CI) according to 
each biomarker. To compare the GM among the general 
characteristics, t-test or ANOVA were performed after log-
transformation. Pairwise Spearman correlations were cal-
culated for the seventeen metabolites, and the results are 
displayed in a correlation matrix heat map.

Selection of optimal ERS model for each biomarker 
in vulnerable areas

We used original and test datasets to evaluate the stability of 
ERS algorithms. The test dataset was sampled using strati-
fied sampling from the original dataset, with consideration 
of all covariates and a sampling ratio of approximately 80% 
(n = 199) and a tenfold cross-validation process to stabilize 
the results (Mueller et al. 2016). Figure 2 shows the algo-
rithm. To explore the optimal ERS model of residents in 
vulnerable areas for each biomarker, we considered each 
metabolite and pairwise interaction of metabolites for expo-
sure (Park et al. 2017) and applied multiple regression as 
the base model and used the following six statistical models 
(Park et al. 2017): linear model elastic net (ENET), adap-
tive elastic net (AENET), weighted quantile sum regres-
sion (WQS), Bayesian kernel machine regression (BKMR), 

Bayesian additive regression tree (BART), and super learner 
(SL). All variables were base-10 logarithm transformed and 
scaled to compare the model performance. The six models 
were fitted with both crude and adjusted models, including 
all covariates except for OCE, which was used for strati-
fied analysis, and model selection was based on the adjusted 
model. Finding the tuning parameter and methods of cross-
validation followed Park et al. (2017) for ENET, AENET, 
BKMR, BART, and SL and Fu et al. (2022) and Tanner et al. 
(2019) for WQS. Optimal models for each biomarker were 
selected by comparing their performances. The performance 
measures were R2, mean-squared-prediction error (MSPE), 
root-mean-square error (RMSE), and mean absolute error 
(MAE) for risk prediction performance, and β (95% CI) 
for confirming the stability of effect size of prediction. The 
R packages are displayed in Table A1 (Bobb 2022; Polley 
et al. 2021; Hastie 2022; Chipman and McCulloch 2016; 
Stekhoven and Bühlmann 2012; Kapelner and Bleich 2016; 
Kuhn 2022; Meyer et al. 2022; Peters and Hothorn 2022; 
Renzetti et al. 2021; Simon et al. 2011; Chen et al. 2022; 
Weston and Wickham 2014; Yang et al. 2022).

To measure the effect size between each pollutant and 
the biomarkers of KD, we estimated coefficients for ENET, 
AENET, and WQS, used posterior inclusion probability 
(PIP) for BKMR and BART, and calculated variable impor-
tance (VI) for SL as follows:

, where SSE is the sum of the squared error from a fitting 
model with all exposures, and SSE(−i) is the sum of squared 
error from a fitting model that removes one metabolite (Park 
et al. 2017).

These methods have been frequently used by researchers 
to estimate the effects of mixed compounds on health and 
evaluate the best performance of models in environmental 
epidemiology (Fu et al. 2022; Park et al. 2017; Sun et al. 
2013; Wang et al. 2018; Weng et al. 2022).

Estimation of ERS stratified based on the history 
of occupational chemical exposure

The selected models were used to estimate the ERS strati-
fied based on the history of OCE (Fig. 2). We also described 
the stratified GM and 95% CI of urinary metabolite accord-
ing to the history of OCE. The ERS, according to the his-
tory of OCE, was constructed using the optimal model and 
adjusted for all covariates. We represented the distribution 
of the estimated ERS using boxplots. Odds ratios (ORs) 
were calculated to evaluate the risk of kidney damage on 
estimated ERS using simple logistic regression. In addi-
tion, we calculated the sensitivity, specificity, cutoff value 

VI = (SSE − SSE(−i))∕SSE
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of ERS, and the area under the receiver operating char-
acteristic (ROC) curve (AUC) to measure the accuracy of 
each model. ERSs were transformed to z-scores, indicating 
how far the value is from the mean, and kidney damage 
was measured using the dichotomous variable of urinary 
biomarkers.

Results

Table 1 shows the distribution of KD markers based on the 
general characteristics of 256 residents: 157 females (61.3%) 
and 99 males (38.7%). Most individuals were aged above 
65 years, with 29.3% being smokers and 12.5% having a 
history of OCE. The concentration of β2-MG showed an 
increasing trend with medication for any disease (p = 0.03), 
history of OCE (p = 0.03), and period of OCE (p = 0.01), 
and eGFR and age (p < 0.0001), whereas it exhibited a 

decreasing trend with smoking history (p < 0.0001), his-
tory of OCE (p < 0.0001), and period of OCE (p < 0.0001). 
However, no significant differences were observed between 
the other general characteristics and KD markers. The con-
centration of urinary metabolites exhibited high correlations 
among PAHs and metals (Fig A1).

We assessed the model reliability using two datasets 
(Table A2 and Fig A2). Table 2 displays the performance of 
each model adjusted for all covariates. The performances of all 
models were similar for the original and test datasets. Among 
the six models applied, BKMR demonstrated superior predic-
tive performance with the highest R2 (β2-MG 0.98, NAG 0.99, 
and eGFR 0.79) and lowest MSPE (β2-MG 0.07, NAG 0.01, 
and eGFR 0.24), RMSE (β2-MG 0.26, NAG 0.12, and eGFR 
0.49), and MAE (β2-MG 0.19, NAG 0.10, and eGFR 0.38) in 
the original dataset. The coefficients were stable across data-
sets and estimated for the original and test datasets at 1.28 and 
1.16, 1.33 and 1.08, and 0.17 and 0.13 for β2-MG, NAG, and 

Fig. 2  Process of construction of the environmental risk score (ERS). 
The following seventeen metabolites were analyzed: nine heavy met-
als in urine (Hg, V, Cr, Mn, Ni, Mo, Cd, Sb, and Pb), four polycyclic 
aromatic hydrocarbons (PAHs) (2-naphthol [2-naph], 1-hydroxypyr-
ene [1-ohp], 2-hydroxyfluorene [2-ohf], and 1-hydroxyphenanthrene 
[1-ohph]), and four volatile organic compounds (VOCs) (phospho-
glyceric acid [PGA], trans, trans-muconic acid [t,t-MA], methylhip-
puric acid [MHA], and benzylmercapturic acid [BMA]). β2-MG, 

beta-2-microglobulin; NAG, N-acetylglucosaminidase; eGFR, 
estimate glomerular filtration rate; base model is multiple linear 
regression; ENET, elastic net; AENET, adaptive elastic net; WQS, 
weighted quantile sum regression; BKMR, Bayesian kernel machine 
regression; BART, Bayesian additive regression tree; SL, super 
learner. Performance measures are MSPE, mean-squared-prediction 
error; RMSE, root-mean-squared error; and MAE, mean absolute 
error



35943Environmental Science and Pollution Research (2024) 31:35938–35951 

Ta
bl

e 
1 

 G
en

er
al

 c
ha

ra
ct

er
ist

ic
 a

nd
 d

ist
rib

ut
io

n 
of

 e
ac

h 
ki

dn
ey

 d
am

ag
e 

m
ar

ke
r

N
 (%

)
β2

-m
ic

ro
gl

ob
ul

in
 (µ

g/
L 

C
re

a.
)

N
-a

ce
ty

lg
lu

co
sa

m
in

id
as

e 
(I

U
/L

 C
re

a.
)

Es
tim

at
ed

 g
lo

m
er

ul
ar

 fi
ltr

at
io

n 
ra

te
 

(e
G

FR
)a

G
M

95
%

 C
I

p 
va

lu
e

G
M

95
%

 C
I

p 
va

lu
e

G
M

95
%

 C
I

p 
va

lu
e

A
ll

25
6 

(1
00

)
15

7.
0

(1
36

.5
1,

 1
80

.4
5)

4.
9

(4
.0

5,
 5

.8
1)

26
.7

(2
5.

07
, 2

8.
44

)
G

en
de

r
0.

59
0.

99
 <

 0.
00

01
  M

al
e

99
 (3

8.
7)

14
9.

6
(1

16
.7

1,
 1

91
.7

5)
4.

9
(4

.1
3,

 5
.6

9)
14

.1
(1

3.
90

, 1
4.

33
)

  F
em

al
e

15
7 

(6
1.

3)
16

1.
8

(1
36

.8
7,

 1
91

.2
2)

4.
9

(3
.6

7,
 6

.4
1)

39
.9

(3
9.

47
, 4

0.
36

)
A

ge
 (y

ea
rs

)
0.

10
0.

42
0.

99
  2

9–
<

 65
69

 (2
7.

0)
12

9.
9

(1
05

.1
3,

 1
60

.5
6)

3.
9

(3
.2

1,
 4

.6
8)

26
.3

(2
3.

10
, 2

9.
85

)
  6

5–
74

94
 (3

6.
7)

16
1.

7
(1

31
.6

2,
 1

98
.6

6)
5.

7
(5

.0
4,

 6
.5

5)
27

.4
(2

4.
66

, 3
0.

41
)

  7
5+

 
93

 (3
6.

3)
17

5.
2

(1
31

.6
6,

 2
33

.2
1)

4.
8

(3
.0

4,
 7

.6
5)

26
.4

(2
3.

77
, 2

9.
22

)
C

o-
m

or
bi

di
ty

 (h
yp

er
te

ns
io

n 
or

 d
ia

be
te

s)
0.

12
0.

82
0.

75
  N

o
11

7 
(4

5.
7)

13
9.

2
(1

16
.9

9,
 1

65
.5

5)
5.

0
(4

.2
8,

 5
.7

5)
27

.0
(2

4.
53

, 2
9.

72
)

  Y
es

13
9 

(5
4.

3)
17

3.
7

(1
40

.5
1,

 2
14

.6
7)

4.
8

(3
.4

9,
 6

.4
9)

26
.5

(2
4.

31
, 2

8.
79

)
M

ed
ic

at
io

n 
fo

r a
ny

 d
is

ea
se

0.
03

0.
74

0.
81

  N
o

49
 (1

9.
1)

11
4.

6
(8

9.
72

, 1
46

.3
2)

4.
6

(3
.6

4,
 5

.7
1)

26
.3

(2
2.

44
, 3

0.
77

)
  Y

es
20

7 
(8

0.
9)

16
9.

1
(1

43
.8

5,
 1

98
.7

7)
4.

9
(3

.9
6,

 6
.1

2)
26

.8
(2

5.
01

, 2
8.

72
)

A
re

ab
0.

20
0.

66
0.

39
  G

im
ha

e
32

 (1
2.

5)
14

4.
7

(9
7.

92
, 2

13
.7

8)
4.

9
(4

.0
2,

 6
.0

5)
28

.8
(2

3.
98

, 3
4.

52
)

  G
os

eo
ng

68
 (2

6.
6)

12
3.

6
(9

3.
50

, 1
63

.3
4)

6.
5

(5
.5

0,
 7

.6
5)

27
.1

(2
4.

03
, 3

0.
64

)
  S

an
gc

ho
n

63
 (2

4.
6)

20
1.

1
(1

45
.9

1,
 2

77
.0

3)
3.

0
(1

.5
4,

 5
.8

8)
25

.9
(2

2.
72

, 2
9.

60
)

  J
an

gh
an

g
93

 (3
6.

3)
16

2.
6

(1
32

.0
3,

 2
00

.1
3)

5.
4

(4
.6

5,
 6

.2
4)

26
.2

(2
3.

57
, 2

9.
20

)
Pe

rio
d 

of
 re

si
de

nc
e 

(y
ea

rs
)

0.
63

0.
81

0.
12

  T
1 

(<
 12

.9
2)

85
 (3

3.
2)

14
7.

4
(1

13
.7

6,
 1

91
.0

3)
4.

5
(3

.7
6,

 5
.4

5)
24

.0
(2

1.
41

, 2
6.

97
)

  T
2 

(1
2.

92
–<

 50
.0

0)
80

 (3
1.

3)
16

3.
8

(1
35

.2
6,

 1
98

.2
9)

5.
3

(4
.6

5,
 6

.0
2)

29
.2

(2
6.

22
, 3

2.
58

)
  T

3 
(5

0.
00

–9
3.

00
)

91
 (3

5.
6)

16
0.

3
(1

22
.8

0,
 2

09
.3

0)
4.

8
(2

.9
9,

 7
.6

6)
27

.2
(2

4.
53

, 3
0.

20
)

Sm
ok

in
g 

hi
sto

ry
0.

76
0.

74
 <

 0.
00

01
  N

o
18

1 
(7

0.
7)

15
4.

8
(1

31
.8

9,
 1

81
.6

3)
4.

8
(3

.7
2,

 6
.0

7)
34

.0
(3

2.
07

, 3
5.

94
)

  Y
es

75
 (2

9.
3)

16
2.

3
(1

22
.1

1,
 2

15
.8

1)
5.

1
(4

.2
3,

 6
.1

2)
15

.0
(1

4.
16

, 1
5.

80
)

U
rin

ar
y 

co
tin

in
e 

le
ve

l (
μg

/g
 C

re
a.

)
0.

12
0.

82
0.

29
  T

1 
(<

 2.
09

)
85

 (3
3.

2)
15

0.
8

(1
22

.3
2,

 1
85

.9
5)

5.
6

(4
.9

3,
 6

.4
2)

28
.0

(2
5.

07
, 3

1.
15

)
  T

2 
(2

.0
9–

 <
 6.

97
)

85
 (3

3.
2)

12
9.

5
(1

05
.4

1,
 1

59
.0

1)
3.

8
(2

.3
1,

 6
.2

6)
26

.5
(2

3.
74

, 2
9.

57
)

  T
3 

(6
.9

7–
38

51
.9

9)
86

 (3
3.

6)
19

7.
5

(1
46

.5
7,

 2
66

.0
8)

5.
3

(4
.4

5,
 6

.3
9)

25
.7

(2
2.

97
, 2

8.
80

)
H

ist
or

y 
of

 o
cc

up
at

io
na

l c
he

m
ic

al
 e

xp
os

ur
e

0.
03

0.
42

 <
 0.

00
01

  N
o

22
4 

(8
7.

5)
14

8.
3

(1
28

.9
4,

 1
70

.5
4)

4.
7

(3
.8

4,
 5

.7
8)

28
.2

(2
6.

39
, 3

0.
10

)
  Y

es
32

 (1
2.

5)
23

3.
5

(1
35

.6
2,

 4
02

.1
6)

5.
9

(4
.6

7,
 7

.4
7)

18
.3

(1
5.

59
, 2

1.
48

)
Pe

rio
d 

of
 o

cc
up

at
io

na
l c

he
m

ic
al

 e
xp

os
ur

e 
(y

ea
rs

)
0.

01
0.

33
 <

 0.
00

01
  N

on
e

22
4 

(8
7.

50
)

14
8.

3
(1

28
.9

4,
 1

70
.5

4)
4.

7
(3

.8
4,

 5
.7

8)
28

.2
(2

6.
39

, 3
0.

10
)



35944 Environmental Science and Pollution Research (2024) 31:35938–35951

eGFR, respectively. Table A3 shows the performance of each 
model without the covariates (crude model). Thus, we selected 
BKMR as the optimal model for all markers. According to 
datasets and models, the top three most effective metabolites 
for β2-MG were identical in ENET, AENET, BKMR, and 
BART and similar for NAG and eGFR. However, there were 
slight differences in the results from SL (Fig A3).

Most of the concentrations of urinary metabolites were 
higher in residents with a history of OCE (OCE group) 
compared to those without (non-OCE group), especially for 
MHA (p = 0.038). However, Hg was statistically lower in 
the OCE group than that in the non-OCE group (Table A4).

Figure 3 and Table A5 show the distribution of ERS based 
on the BKMR and PIP according to the history of OCE and 
kidney markers. In the OCE group, the ERS value exhibited an 
increasing trend compared to the non-OCE group for all KD 
markers, although it was not statistically significant (p values: 
β2-MG 0.074, NAG 0.21, and eGFR 0.52). For β2-MG, uri-
nary V (PIP = 1.00) had the best effect in the non-OCE group 
and 2-naph (PIP = 0.92) in the OCE group. For NAG, 1-ohph 
and t,t-MA (PIP = 1.00) had the best effect in the non-OCE 
group and urinary Cd (PIP = 0.61) in the OCE group. Finally, 
for eGFR, 1-ohf (PIP = 0.99) had the best effect in the non-
OCE group and urinary Ni (PIP = 0.96) in the OCE group.

Model fitness was higher using the ERS compared to 
the base model, which was adjusted for all covariates in 
multiple logistic regression. For the non-OCE group, the 
AUC values were 0.90, 0.87, and 0.91 in the ERS model 
and 0.83, 0.48, and 0.53 in the base model for β2-MG, NAG, 
and eGFR, respectively; for the OCE group, the AUC values 
were > 0.99, 0.98, and > 0.99 in the ERS model and > 0.99, 
0.55, and 0.66 in the base model for β2-MG, NAG, and 
eGFR, respectively. The risks were higher in the OCE group 
compared to those in the non-OCE group. The OR (95% CI) 
for the ERS was 2.97 (2.19, 4.02) and 6.43 (2.85, 14.5) for 
β2-MG, 1.37 (1.01, 1.86) and 4.16 (1.85, 9.39) for NAG, 
and 4.57 (3.37, 6.19) and 6.44 (2.85, 14.5) for eGFR in the 
non-OCE and OCE group, respectively (Table 3).

Discussion

We found that the pollutant mixture model was effective 
in assessing health effects, exhibiting stability and excel-
lent performance. The main composition of the mixture and 
health effects varied depending on the history of OCE. Fur-
thermore, the OCE group was more vulnerable to environ-
mental exposure compared to the non-OCE group.

The ERS of the pollutant mixture demonstrated stability 
and outperformed. Similar results have been observed in a 
previous study (Fu et al. 2022), which found that the associa-
tion between ERS with heart rate and metabolic syndrome 
was stronger for MP compared to that of a single pollutant. Ta
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e 
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Especially, BKMR is a successful statistical method for 
considering complex mixtures (Bobb et al. 2015). Thus, we 
propose that the predictability of KD is enhanced by the 
MP model.

Notably, the effects of urinary metals in the mixture dif-
fered depending on the KD markers. In the case of NAG, 
the effect of metals was small, whereas it was increased 
in β2-MG and significantly increased in eGFR. These dif-
ferences may be owing to the mechanism by which metals 
affect AKI and CKD as they are rapidly cleared from the 
blood and sequestered in many tissues (Lentini et al. 2017). 
The first zone of the proximal tubule is the main site of 
reabsorption, and the luminal fluid can have bound and free 
forms in the early proximal tubule. AKI is induced by the 
ionized form that produces direct cellular toxicity, cellular 
membrane disruption, and uncoupling of the mitochondrial 
respiration pathway, whereas in CKD, the bound form can 
accumulate and cause chronic inflammation, fibrosis, and 
renal failure in the early proximal tubule (Lentini et al. 
2017). In particular, β2-MG and NAG, as the indicators of 
AKI, exhibited a difference between glomerular transit and 
reabsorption (Ha et al. 1992). NAG measured the degree of 
damage to proximal tubular cells without passing through 
the glomerulus, whereas β2-MG first passed through the glo-
merulus and was then reabsorbed in the proximal tubular 
cells. Therefore, measuring β2-MG may be a more sensitive 
diagnostic method than measuring NAG (Ha et al. 1992). 
The reason for this is that the heavy metal exposure may 
have a low effect size on NAG depending on the cumulative 
exposure and reabsorption. However, if reabsorption damage 
continues, it may become significant in β2-MG, and if the 
exposure is chronic, it may ultimately affect eGFR.

The present study found that urinary Ni, Hg, and Cd and 
PAHs had a strong effect on KD in the OCE and non-OCE 
groups, respectively. Urinary Hg and Cd were the main 
exposure metabolites in the study areas (Kim et al. 2016; 
Kwon 2011). Ni is widely used in stainless steel manufactur-
ing, electroplating, foundry applications, printing inks, and 
prostheses manufacturing, which causes its internal levels 
to be significantly higher among exposed workers (Tavares 
et al. 2022). PAHs affect the kidneys by increasing reactive 
oxygen species, resulting in an increase in oxidative stress, 
inducing apoptotic signals (Farzan et al. 2016), ultimately 
causing AKI and CKD (Lentini et al. 2017).

In the present study, there was no difference in the levels 
of ERS according to the OCE, but the OCE group showed 
a higher OR for kidney damage compared to the non-OCE 
group. This is because the non-OCE group was also affected 
by the mixture of pollutants. The study areas are vulner-
able areas in Korea, and their residents have been reported 
to be exposed to environmental pollutants in the long term 
regardless of their history of OCE. A survey for health 
effects conducted in Goseong and Sangchon had reported Ta
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that the residents living around abandoned mines had higher 
Cd concentration (3.30 µg/L in blood and 2.10 µg/g Crea. in 
urine) compared to the control group (2.24 µg/L in blood and 
1.53 µg/g Crea. in urine) (Kwon 2011). Similarly, a previous 
study in Janghang reported that residents living 1–2 km from 
the smelter had higher concentrations of urinary As, blood 
Pb, and blood and urinary Cd compared to control groups, 
with a geometric mean of 9.25 and 8.36 µg/g Crea. 4.16 
and 3.13 µg/dL, 2.59 and 1.71 µg/L, and 2.71 and 1.66 µg/g 
Crea., in the exposed areas and control group, respectively 
(Kim et al. 2016). Although it is challenging to generalize 

our results, we did successfully assess the impact of MP 
on health and selected the optimal model among various 
machine learning methods and analyzed the stratification 
history of OCE.

We showed that the OCE group was more vulnerable 
to the exposure to environmental pollutants compared 
to the non-OCE group. The prevalence of diabetes in 
the OCE group (31.2%) was higher than in the non-
OCE group (16.1%) but not significant (Table A6), and 
the effect was adjusted as taking medication. Workers 
in the chemical industry are widely exposed to hazard-
ous chemicals. According to the US National Health 
and Nutrition Examination Survey, workers in chemical 
industries had the highest exposure, followed by highly 
exposed residents and the general population (Interna-
tional Labour Organization 2021). A study on welders 
identified Hg, Cr, and Mn from metal mixtures as poten-
tial hazards (Zhang et al. 2017). Previous epidemiologi-
cal studies have focused on constructing the ERS for the 
general population or specific groups (Park et al. 2017; 

Fig. 3  Distribution of ERS (A) and posterior inclusion probabil-
ity of metabolites according to the history of occupational exposure 
(B). β2-MG, beta-2-microglobulin; NAG, N-acetylglucosaminidase; 
eGFR, estimate glomerular filtration rate; PAHs, polycyclic aro-
matic hydrocarbons; 2-naphthol (2-naph), 1-hydroxypyrene (1-ohp), 
2-hydroxyfluorene (2-ohf), and 1-hydroxyphenanthrene (1-ohph); 
VOCs, volatile organic compounds; PGA, phosphoglyceric acid; t,t-
MA, trans, trans-muconic acid; MHA, methylhippuric acid; BMA, 
benzylmercapturic acid

◂

Table 3  Odds ratio (OR) and 95% confidence interval (CI) of risk for kidney damage according to each environmental risk score (ERS) of uri-
nary metabolites for biomarkers

AUC , area under the receiver operating characteristic (ROC) curve; SPE, specificity; SEN, sensitivity; Cutoff, cut-off value of ERS
GFR = 141 × min  (Scr/κ, 1)α × max  (Scr/κ, 1)−1.209 × 0.993Age × 1.018 [if female], where  Scr is serum creatinine in mg/dL, κ is 0.7 for females 
and 0.9 for males, α is − 0.329 for females and − 0.411 for males, min indicates the minimum of Scr/κ or 1, and max indicates the maximum of 
Scr/κ or 1
The ERS was estimated using the Bayesian kernel machine regression (BKMR) adjusted for sex, age group, medication, living area, distance 
from the pollution source, urinary cotinine level, and duration of occupational exposure
OR and 95% CI of the base model were estimated using multiple logistic regression model adjusted for the same covariates with BKMR, and 
those of the ERS model were estimated using a simple logistic regression model

History of occupational chemical exposure (OCE)

Non-OCE (n = 224) OCE (n = 32)

OR (95% CI) AUC SPE/SEN (cut-off) OR (95% CI) AUC SPE/SEN (cutoff)

β2-Microglobulin (β2-MG) > 300 µg/L (case, non-OCE 44; OCE 11)
Base NA 0.81 0.82/0.69 (NA) NA  > 0.99  > 0.99/ > 0.99 (NA)
Kidney biomarker using ERS of urinary metabolites
  β2-MG 2.97 (2.19, 4.02) 0.90 0.93/0.72 (0.10) 6.43 (2.85, 14.5)  > 0.99  > 0.99/ > 0.99 (1.00)
  NAG 1.16 (0.85, 1.57) 0.60 0.39/0.84 (0.41) 2.50 (1.11, 5.64) 0.74  > 0.99/0.62 (0.08)
  eGFR 1.23 (0.91, 1.66) 0.57 0.43/0.73 (0.38) 2.06 (0.91, 4.65) 0.68 0.91/0.57 (− 0.64)

N-acetylglucosaminidase (NAG) > 11.5 IU/L (case, non-OCE 32; OCE 7)
Base NA 0.47 0.30/0.76 (NA) NA 0.59 0.27/0.95 (NA)
Kidney biomarker using ERS of urinary metabolites
  β2-MG 1.17 (0.86, 1.58) 0.53 0.16/0.97 (1.22) 1.29 (0.57, 2.91) 0.62 0.71/0.64 (0.36)
  NAG 1.37 (1.01, 1.86) 0.87 0.91/0.70 (0.21) 4.16 (1.85, 9.39) 0.98  > 0.99/0.92 (0.40)
  eGFR 0.95 (0.70, 1.29) 0.52 0.53/0.60 (− 0.25) 0.78 (0.34, 1.75) 0.53 0.86/0.40 (− 0.46)

Estimated glomerular rate (eGFR) < 90 (case, non-OCE 141; OCE 18)
Base NA 0.54 0.61/0.49 (NA) NA 0.65 0.91/0.57 (NA)
Kidney biomarker using ERS of urinary metabolites
  β2-MG 1.19 (0.88, 1.61) 0.55 0.80/0.35 (-0.55) 1.62 (0.72, 3.66) 0.65 0.72/0.79 (0.23)
  NAG 1.30 (0.96, 1.76) 0.55 0.83/0.30 (-0.24) 2.80 (1.24, 6.31) 0.74 0.94/0.64 (-0.23)
  eGFR 4.57 (3.37, 6.19) 0.91 0.82/0.88 (− 0.18) 6.44 (2.85, 14.51)  > 0.99  > 0.99/ > 0.99 (− 0.49)



35949Environmental Science and Pollution Research (2024) 31:35938–35951 

Sun et al. 2013), and hence, studies based on the history 
of OCE are limited. Thus, the findings of the present 
study are meaningful since the model fitness was good 
despite the small size of the OCE group. We emphasize 
the necessity for further environmental exposure research 
in the OCE group.

This study had several limitations. First, the sample 
size was small and, therefore, did not represent nation-
wide coverage; moreover, it may not accurately reflect the 
characteristics of residents in vulnerable areas. There-
fore, we performed a sensitivity analysis using data 
from the Korean National Environmental Health Survey 
(KNEHS), which provides chemical exposure informa-
tion for the general population (NIER, 2018). However, 
KNEHS only measured four heavy metals (blood Pb and 
Hg and urinary Hg and Cd), which may not be appropri-
ate for comparison with our study on various metals. For 
this reason, we measured exposure using biomarkers and 
adjusted the areas in the analysis of the models. Addition-
ally, to overcome this limitation in the future, we plan to 
collect samples from vulnerable and control areas over a 
longer term. Second, there may be unmeasured confound-
ers in our risk estimates due to the limitations of using 
the cross-sectional questionnaire. Although we investi-
gated various diseases, many missing values were present 
in the responses to the questionnaire on disease history. 
Furthermore, since chemical exposure may differ based 
on occupation, it was challenging to consider each case 
in one model. To overcome this limitation, we controlled 
all possible confounders using the limited data available. 
For example, we used medication instead of the question-
naire on disease and used the total occupational exposure 
period. We also applied a dichotomous variable for the 
urinary biomarkers. Third, we did not consider the factor 
of career change for the participants. Some studies exam-
ining retirees have observed a declining pattern in chemi-
cal exposure levels, alongside non-significant impacts on 
microcirculation abnormalities and bone health (Li et al. 
2020; Lopez et al. 2013; Platts et al. 2013). However, due 
to the limitations of the survey questions, it was not pos-
sible to trace the history of occupational exposure. There-
fore, we focused on the cumulative effects of exposure. 
Fourth, we obtained the occupational history via only a 
self-reported survey. Finally, information bias could be 
present in the data, such as interviewer, measurement, and/
or recall bias. Therefore, bias may have caused differential 
misclassification between the exposed and control areas. 
Hence, we consider the biomarkers as the exposed factors 
sufficient to overcome these misclassifications. Finally, we 
only analyzed urine samples, which is appropriate as they 
are considered indicative of long-term exposure (Vacchi-
Suzzi et al. 2016).

Despite these limitations, this study successfully con-
structed the ERS of MPs, including metals, PAHs, and 
VOCs, for KD, and considered the history of OCE in envi-
ronmentally vulnerable residents. This is unique for the field 
of environmental epidemiology because similar studies have 
often considered only the association between a single pol-
lutant and health outcome.

Conclusion

We identified the most appropriate ERS of harmful metabo-
lites for the exposure to MP that cause KD based on a history 
of OCE in environmentally vulnerable areas in Korea. In 
addition, we established that the OCE group has a higher 
risk of environmental exposure to MP that cause KD.
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