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Abstract
The soil–plant transfer of trace elements is a complex system in which many factors are involved such as the availability and 
bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. 
The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore depos-
its of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil–plant transfer of 
major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains 
with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and 
the Guadalmez syncline for Sb. The results have made it possible to differentiate geological domains not only in terms of 
individual elements, but also as a combination of major and trace elements using Factor Analysis. The bioconcentration 
factors have demonstrated the uptake of macronutrients and micronutrients in very high concentrations but these were barely 
dependent, or even independent of the concentrations in the soil, in addition to high values of this factor for Sb. The Factor 
Analysis allowed for the differentiation of geogenic elements from other linked to stibnite ore deposits (Sb, S, and Cu). This 
element (Sb) can be uptake by Quercus ilex via the root and from there translocating it to the leaves, showing a direct relation 
between concentrations in soil and plants. This finding opens the possibility of using Quercus ilex leaves for biogeochemical 
prospecting of geological domains or lithological types of interest to prospect for Sb deposits.

Keywords Potentially toxic elements (PTEs) · Bioavailability · Biogeochemistry · Holm oak (Quercus ilex) · 
Bioaccumulation index · Plant-soil transfer · Sb

Introduction

At present, society still depends on mineral resources 
coming from mining, influencing soil quality. In particular, 
the exploitation, processing, and transport of these metallic 
resources cause different alterations to the environment 
(Villadóniga et al. 2009). Those elements are generally 
referred to as “heavy metals” (HMs) or “potentially toxic 
elements” (PTEs) and produce highly adverse effects on 
the environment due to their persistence in soil, and their 
possible effects on its quality and on the health of living 
organisms, particularly plants (Macnicol and Beckett 1985) 
thus adding a layer of risk to the human food chain.

In recent years, the use of vegetal species as bioaccu-
mulators or bioindicators has increased, as they allow the 
monitoring of PTE pollution, in particular in derelict mining 
areas, where these elements are an active source of con-
tamination for ecosystems (Ugolini et al. 2013; Wang et al. 
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2019). Each different plant species possesses different bio-
accumulation capacities for the various elements present in 
the soil (Liu et al. 2023). Suman et al. (2018) and Baker 
(1981) defined two main strategies adopted by plants which 
grow naturally on metalliferous sites based on the strategy 
of survival: “excluders,” representing the majority of plant 
species capable of surviving in soils containing elevated 
levels of PTEs, which have adopted the survival strategy 
of maximal exclusion of metal ions from the plant, and 
“hyperaccumulators,” which are plants that when exposed 
to elevated concentrations of PTEs are able to accumulate 
them in their above-ground parts without symptoms of phy-
totoxicity (Baker 1981; Rascio and Navari-Izzo 2011; Van 
der Ent et al. 2013).

Note that not all the higher-than-normal concentrations 
of elements in soils are related to mining or other anthropo-
genic activities; in some cases, they can be related to natural 
or geogenic factors (Rodrigues et al. 2009; Reimann and 
Garrett 2005).

The bioaccumulation capacity in various plant species 
depends not only on the physiology of the plant, but also 
on the speciation of the element in the soil, controlling its 
bioavailability (Maisto et al. 2004; Rossini Oliva and Min-
gorance 2004; Nagajyoti et al. 2010; Guzmán-Morales et al. 
2011). Bioavailability of elements in the soil is a result of its 
physicochemical characteristics, such as reactivity (Bravo 
et  al. 2017), clay and organic matter content, cationic 
exchange capacity, and the biochemical properties of litter-
fall (Alloway 2012; Birani et al. 2015; Teixeira et al. 2010).

On these bases, soil can be regarded as a biochemical 
reactor in which the concentrations of chemical elements 
depend on both natural and anthropogenic factors. Further-
more, natural factors can be classified as those related to the 
nature of the lithological substrate which condition the pres-
ence and abundance of different minerals providing different 
chemical elements, and factors related to the climatology 
and weathering of the lithological substrate, producing dif-
ferent processes, including hydrolysis and dissolutions, and 
causing the lixiviation and/or differential concentration of 
certain elements. These processes produce soils with dif-
ferent elemental composition (Adriano 2003). The anthro-
pogenic activities, including spills, transferences, and the 
accumulation of residua, produce elemental changes consid-
ered to be contamination. Among them, mining and related 
activities constitute the most polluting processes, without 
being the only ones (Higueras et al. 2016).

Another concern to be taken into consideration in the 
elemental composition of soil is the chemical speciation of 
elements, which is directly related to their mobility and bio-
availability (Shtangeeva et al. 2020; Nakazato et al. 2021). 
A significant proportion of the elements present in the soil 
are part of newly formed minerals, mostly in the form of 
hydroxides, but others transform into ionic forms, soluble in 

water, and are thus highly mobile and bioavailable (Augusto 
et al. 2017; Stein et al. 2017; Gerdol et al. 2018). Further-
more, these ionic forms can join other free charges of min-
erals such as clay, or else form macromolecular complexes 
with humus present in the soil; these correspond to “labile” 
elemental forms, available to plant uptake only under certain 
environmental conditions. Thus, the capacity of elemental 
plant uptake from the soil does not directly depend on their 
abundance, but on their “bioavailability,” produced by their 
presence in the soil in ionic or bioavailable forms.

The plant uptake of elements present in the soil occurs 
through the roots, being driven through the vascular sys-
tem into the leaves where they accumulate (Augusto et al. 
2017). The leaves also uptake and accumulate elements 
directly from the atmosphere, including elements contained 
in atmospheric particles (Monaci et al. 2000; Nagajyoti 
et al. 2010) and direct uptake of elements present in the 
atmosphere in vapor form, such as Hg (Barquero et al. 2019; 
Naharro et al. 2020).

Several studies (Rossini Oliva and Mingorance 2004; 
Guzmán-Morales et al. 2011; Hu et al. 2011; Zampieri et al. 
2013; Song et al. 2015; Dafre-Martineli et al. 2020) have 
demonstrated that the elemental contents in vascular plants 
from diverse forestall ecosystems show an accumulation of 
metals on their leaves from mining and metallurgical activi-
ties. On this basis, biogeochemical characterization of an 
area should include the study of the distribution of chemical 
elements on their leaves and their variations as a reflection 
of the abundance of such elements in the soils, as well as, 
and to a higher degree, of their local bioavailability (Maisto 
et al. 2004). This data can be considered of high relevance 
as it can establish a relationship between the presence of 
PTEs in the plant and polluted soils (Monaci et al. 2022). 
To render this information more meaningful, the elemen-
tal analysis of soil allows the estimation of the “biological 
transference factor” or bioaccumulation factor (BAF), the 
ratio between the concentrations of the element in the soil 
and in the plant (when BAF > 1, bioconcentration occurs in 
the plant). Different plant species show various BAFs, and 
the same plant usually shows different BAFs for disparate 
chemical elements; therefore, if a species growing in a simi-
lar substrate presents varied BAFs in different areas, there 
is an indication of varied bioavailability for the element in 
those individual areas.

Toxicological problems are produced in mining areas 
related to the presence of PTEs that usually infiltrate the 
soil, transform into bioavailable forms, and undergo uptake 
by the vegetal cover (Alloway 2013). Most plant species 
uptake the PTEs present in mining-contaminated soils, 
and these are transferred to their aerial parts (Kumar et al. 
1995).

Although plants have been used in the prospection 
of mineral deposits, the usage was based more on the 



29538 Environmental Science and Pollution Research (2024) 31:29536–29548

presence or absence of certain species, or effects of cer-
tain elements on their physiology, rather than on the bio-
accumulated multielement contents, a more important 
aspect of environmental biogeochemistry than of biogeo-
chemical prospecting. The present manuscript attempts 
to provide new data in this line of research that has been 
little studied in the literature. Therefore, the main objec-
tive of this study was to assess the influence of different 
types of lithological substrates, as well as the proximity 
of metallic mineralizations on the elemental composition 
of the leaves of Quercus ilex growing in an area intensely 
populated by this species. Moreover, an examination of 
the distribution of BAF was carried out in order to dif-
ferentiate areas characterized by the different mobility of 
selected elements. To target these objectives, an extensive 
area was selected in the southern Central Iberian Zone 
from the Iberian Massif (San José et al. 1990), and in 
particular, three major geological structures: the Alma-
dén and Guadalmez synclines and the Alcudia anticline 
(Fig. 1). Selection criteria were based on their quite heter-
ogeneous geochemical characteristics between geological 
domains, and a notable number of decommissioned metal 
mines (Hg, Sb, Pb–Zn-Ag) disseminated in the study area 
(Gumiel and Arribas 1987; Saupé 1990; Hernández et al. 
1999; Palero et al. 2003).

Description of the study area

The studied area is located between the Ciudad Real (Cas-
tilla-La Mancha region) and Córdoba (Andalucía region) 
provinces, in south-central Spain. From the geological point 
of view, the area corresponds to the southern Central Iberian 
Zone of the Iberian Massif (Julivert et al. 1980; Díez Balda 
et al. 1990), and in particular, it comprises the Almadén 
and Guadalmez synclines and the Alcudia anticline. Both 
synclines are constituted by Palaeozoic (meta)sedimentary 
sequences starting with the well-known Armorican quartz-
ite, of Lower Ordovician age, and including a very com-
plete sequence of quartzites, quartzitic sandstones, shales, 
and very scarce carbonate-rock interbeddings, ending with 
Carboniferous-aged materials. It is also important to note the 
presence of igneous rocks, mostly mafic, in these sequences; 
Higueras et al. (2013) describe those present in the Almadén 
syncline as corresponding to two magmatic events, one con-
stituted mostly by alkaline basalts (with minor differentiated 
varieties) and the other including subvolcanic diabases of 
tholeiitic affinity. In the Guadalmez syncline Lorenzo et al. 
(2005) mention the presence of diabases, most likely similar 
to the tholeiitic diabases from Almadén, as synthesized by 
Villaseca et al. (2022). These Palaeozoic (meta)sedimen-
tary materials rest on angular discordancy on the so-called 

Fig. 1  Sampling network in the syncline areas with a geological 
scheme and holm oak vegetation cover (Q. Ilex) formations. Geology 
modified from Clariana-García et  al. (2022); mineral deposits loca-

tions taken from Gumiel and Arribas (1987), Hernández et al. (1999), 
and Palero et al. (2003); and distribution of Q. ilex formations taken 
from Villadóniga et al. (2009)
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“Complejo esquisto-grauváquico,” a thick alternation of 
shales and greywackes of Preordovician age, including two 
different successions also separated by an angular discor-
dancy. More details can be found in García Sansegundo et al. 
(1987) for the Almadén syncline and in Lorenzo et al. (2005) 
for the Guadalmez syncline.

The area is also characterized by the notable presence of 
metallic ore deposits, none of which are currently active: 
the Almadén syncline hosts the Almadén Mercury Mining 
District (AMMD), which has been the most important pro-
ducer of this element worldwide (Saupé et al. 1990; Hernán-
dez et al. 1999); the Guadalmez syncline hosts some minor 
Pb–Zn and Sb vein-type deposits (Gumiel & Arribas 1987); 
and the Valle de Alcudia anticline hosts a large number of 
medium-importance Pb–Zn-Ag vein deposits, described 
by Palero et al. (2003). The Sb deposits in the Guadalmez 
syncline are presently the target of detailed studies due to a 
renewed interest in this element by the European Union, who 
consider it to be a “critical raw material” (UE 2020), and has 
promoted a number of studies concerning this element in the 
southern Central Iberian area (Álvarez-Ayuso et al. 2022; 
Barquero et al. 2022; Esbrí et al. 2023) in the context of 
the AUREOLE (tArgeting eU cRitical mEtals (Sb, W) and 
predictibility of Sb-As-Hg envirOnmentaL issuEs) project, 
funded by the European ERA-MIN3 program.

The area is characterized by a semi-mountainous relief 
and sits 500–650 m.a.s.l., with an 850-m.a.s.l. peak, cor-
responding to the Csa Köppen-Geiger climatic area (hot-
summer Mediterranean climate); the regional hydric balance 
corresponds to rainy winters and springs, and dry summers, 
with an annual precipitation average of 518 mm, and with 
963 mm of potential evapotranspiration. Average yearly tem-
perature is 16.2 °C (Climate-Data.ORG 2022).

The forestry of the area is characterized by the con-
spicuous presence of holm oak (Quercus ilex), constituting 
dense Mediterranean forest formations with the presence of 
bush species including rosemary (Rosmarinus officinalis), 
rockrose (Cistus sp.), thyme (Thymus sp.), and lavender 
(Lavandula stoechas) (Villadóniga et al. 2009). Some areas 
correspond to the characteristic “Dehesa” landscape, charac-
terized by a lower density of Q. ilex, the absence of bushes, 
and land usage for cattle breeding. Q. ilex corresponds to the 
most frequent vegetal species in the area, as well as in most 
of the Southwest of the Iberian Peninsula (Rafii et al. 1991; 
Silva 2007); this species was chosen as a model to accom-
plish the purpose of the present study. Q. ilex is a perennial 
tree belonging to the Fagaceae family. Furthermore, Q. ilex 
has frequently been used as a biomonitor of organic and 
inorganic pollutants present in the soil (Alfani et al. 2000; 
Orecchio 2007; Higueras et al. 2017).

De Nicola et al. (2013) used this species and epiphyte 
lichens to biomonitor air contaminants in Campania 
and Tuscany (Italy); the Q. ilex leaves showed a higher 

bioconcentration capacity, in particular for low molecular 
weight PTEs. Esposito et al. (2019) and Maisto et al. (2013) 
studied the elemental composition of the leaves of this spe-
cies and soils, revealing high concentrations of Pb and Cu 
in areas affected by human activities with respect to back-
ground areas. Higueras et al. (2017) performed a similar 
study in the Pb–Zn-Ag mining district of Valle de Alcudia, 
analyzing Pb, Zn, Cu, As, Sb, Cd, and Hg, finding levels 
higher than the allowable toxicity threshold for Pb and Zn 
in Q. ilex leaves. As a general conclusion, Q. ilex has shown 
good possibilities to monitor contamination related to PTEs, 
but at issue here is if it can also be used to differentiate dif-
ferent substrates on which this species grows.

Material and methods

Sampling procedures

The sampling design was based on a soil grid with 150 sam-
pling sites, including the collection of soil samples and of 
Q. ilex leaves, if a tree was present on the site; there were 
88 leaf samples corresponding to the Almadén syncline 
(N = 29), Guadalmez syncline (N = 44), and Valle de Alcu-
dia anticline (N = 15). Figure 1 shows the distribution of the 
samples together with the regional geology (adapted from 
Clariana-García et al. 2022), the location of the largest der-
elict mines (from several sources), and the location of the 
most important Q. ilex forest formations (taken from Vil-
ladóniga et al. 2009).

Leaf samples were taken all along years 2020 and 2021. 
Between one and four trees were sampled at each site, 
always corresponding to mature specimens (trunk diam-
eter > 15–20 cm). Samples taking included some 60 leaves 
from each location, which were taken from all around the 
trees to obtain homogeneous and representative samples fol-
lowing the methodology suggested by Ernst (1995) for this 
type of survey. The leaves collected were also mature, older 
than 1 year, healthy, and not collected near the outermost 
branches. The leaves were collected using pruning shears, 
at > 2 m high above ground, and were stored in paper enve-
lopes and transported to the laboratory. At the same site, a 
composite sample of 2 kg of soil was collected from the A 
horizon (topsoil, 0–15 cm) using an Ejkelkamp soil sampler 
(see Barquero et al. 2022 for more soil sampling details).

Sample processing and chemical assay

Once in the laboratory, the leaves were washed with deion-
ized water to eliminate surficial contamination by dust, in 
order to properly analyze the contaminants and chemical 
components taken from the soil (McCrimmon 1994; Alfani 
et al. 2000). Afterward, the leaves were dried in a laboratory 
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oven prior to a trituration using a KINEMATICA mixer 
(MB800 B). A 5-g aliquot was then blended with 0.15 g of 
agglutinant (dissolution of Elvacite 2046 PANalytical and 
ACETONA PURISS  (CH3(CO)CH3), UN 1090), inserted 
in aluminum vessels (RETSCH PP25) and compressed 
using a hydraulic hand press (SPECAC 250 kN), to obtain a 
pressed pill for use in the analytical procedure. Soil samples 
were air-dried at room temperature for 15 days and were 
then disaggregated, homogenized, and sieved to discharge 
the > 2-mm fraction; two aliquots were then obtained, one 
to determine the physicochemical parameters of the soil and 
the second was milled to < 100 µm in an automatic agate 
mortar (Barquero et al. 2022).

Analytical determinations of both types of samples 
(pressed pills of leaves and milled soil) were carried out by 
means of energy-dispersive X-ray fluorescence (EDXRF) 
using a Malvern-Panalytical Epsilon One device. Total Hg 
was analyzed on the milled samples using atomic absorption 
spectrometry with Zeeman effect and a high-frequency mod-
ulation of light (ZAAS-HFM) using a Lumex RA-915 M 
device with a pyrolytic unit (PYRO-915 +); this procedure 
involves the pyrolysis of the samples (both soil and vegetal) 
at 900 °C and their transport by filtered air to the analytical 
cell (Esbrí et al. 2021).

Several CRMs of soils (NIST 2710A) and plants 
(GC7162) were analyzed to check precision and accuracy. 
PTE recovery rates were in the range of 92–115% (EDXRF) 
for trace elements considered in this study and 95–102% for 
Hg (ZAAS-HFM).

Soil to plant transfer indices

The bioaccumulation factor (BAF) was formulated (Eq. (1) 
as a simple parameter to assess the bioavailability of ele-
ments in the soil, and the capacity of the plant to uptake 
them (Inacio et al. 2014; Gruszecka-Kosowska 2019).

where [Cplant] and [Csoil] represent the concentration (in mg 
 kg−1) of a given element in the leaves and soil, respectively, 
corresponding to the same sampling site. Values of BAF > 1 
indicate a high bioaccumulation capacity, especially when 
BAFs are calculated with total concentration in soil. The 
BAFs calculated with the soluble fraction in soil are higher, 
although they more precisely express the hyperaccumulator 
condition of the plant in a certain polluted substrate.

Statistical analysis and mapping

The analytical data was statistically treated using Minitab 
19.1 software, aimed to determine both individual 

(1)(BAF) =
[Cplant]

[Csoil]

parameters (range, average, standard deviation, variation 
coefficient) and multielemental parameters (correlation coef-
ficient, clustering, factor analysis). Moreover, and to unveil 
the geographic distribution of the analytical results, Surfer 
21.1.158 (Golden Software) was employed to obtain distri-
bution maps using Inverse Distance to a power as an interpo-
lation method. Categorized maps used the 0–20%, 20–40%, 
40–60%, 60–80%, and 80–100% percentiles to distinguish 
data populations.

With the objective of understanding the elemental dis-
tribution in the different geological domains and the dif-
ferent lithological substates, clustering and Factor Analysis 
were applied, obtaining the dendrograms, corresponding to 
Euclidean distance for the proximity type, and Ward’s for 
the agglomeration method, as well as the plots of factors 1 
and 2.

Results and discussion

Multielemental concentrations of Quercus ilex 
leaves

The multielemental concentration data of Quercus ilex 
leaves obtained by EDXRF has a limitation in that a large 
part of the major elements (C, H, N, O) are not detectable 
by the available equipment (EDXRF) due to being too light 
to be properly quantified using this technique. Despite this, 
the major elements quantified included Ca, K, and Si, with 
0.7, 0.4, and 0.2% on average, respectively (Table 1). A 
high content of Si can be explained by absorption from 
the siliceous soil as monosilicate acid or amorphous silica 
(Richmond and Sussman 2003) and are in the range of 
grasses and leguminous plants (< 1.2%) (Kabata-Pendias 
& Mukherjee 2007). Trace element concentrations demon-
strated high contents of S, Mn, P, Fe, and Cl, with notable 
contents of some PTEs such as Cu, As, Sb, Pb, Hg, and Co. 
A noteworthy fact is that among these trace elements there 
is a group showing high variation coefficients (Zn, Pb, Hg) 
that coincide with the elements present in the ore depos-
its from the study area (Pb–Zn-Ag and Hg-Sb sulfides). 
In geochemical prospecting, high coefficients of variation 
suggest the existence of values outside the range of aver-
age + 2 standard deviation and are therefore interesting for 
the location of prospective areas. Surely the anomalous con-
tents of these elements in the soils explains this transfer of 
non-essential elements to the Q. ilex specimens. However, 
Sb does not show high variation coefficients, probably due 
to the low mobility of this element in a semi-arid climate, 
as shown by Esbrí et al. (2023). Multielemental content data 
for holm oaks are not abundant in the scientific literature; 
thus, the works of Higueras et al. (2016) and Monaci et al 
(2022) were chosen as a comparison due to their similarities 
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in the study area in physiographic and mineralogical terms. 
After a comparison of the dataset, in this study only Sb 
and Hg exceeded the contents published by Monaci et al. 
(2022), demonstrating the ability of the plant-species to 
capture Sb through the roots, bioaccumulate, and translo-
cate to the above-ground parts of the plant, in addition to 
the Hg uptake directly from the atmosphere in gaseous form 
in an area deeply enriched for these elements, especially for 
Hg, as it has been commented in the “Introduction” sec-
tion. Data from Higueras et al. (2016) belong to a small 
derelict Pb–Zn mine into the study area of this work. It can 
be observed that only Hg contents are significantly higher 
on average than the reference values (Higueras et al. 2016; 
Monaci et al. 2022), due to the absence of cinnabar miner-
alizations in the reference areas.

Figure 2 shows the distribution of the concentrations of 
some elements of mining interest according to the geologi-
cal domain to which they belong: the Alcudia anticline 
and the Almadén and Guadalmez synclines. As described 
by Barquero et al. (2022), there are clear differences in 
terms of the presence of metallic mineralizations between 

these domains, with Hg mineralizations predominating in 
the Almadén syncline, Sb in the Guadalmez syncline, and 
Pb–Zn in the three domains, although with a greater pres-
ence in the Alcudia anticline and with high concentrations 
of Cu in the Guadalmez syncline (Higueras et al. 2016). 
It can be observed that all the elements presented have 
similar averages in the three geological domains, although 
significant differences are evident in the Hg outliers in 
the Almadén syncline (Fig. 2a) and Cu in the Guadalmez 
syncline (Fig. 2e), corresponding to samples taken near 
possible small ore deposits not outcropping. It is necessary 
to highlight the absence of notable differences between 
domains for Sb (Fig. 2d), since it is an element which has 
been mined almost exclusively in the Guadalmez syncline, 
in addition to being an element with low mobility and very 
low bioavailability (Barquero et al. 2022). The most rea-
sonable interpretation is that Sb levels in Quercus leaves 
correspond to local background levels for this element 
in these lithological units, slightly higher than the local 
background levels in the Colline Metallifere (Monaci et al. 
2022). A similar behavior can be seen in Mn geological 

Table 1  Statistical summary of 
elemental concentrations in Q. 
ilex leaves from the study area

Reference values taken from Higueras et al. (2016) and Monaci et al. (2022), while growth depression val-
ues were adapted from Kabata-Pendias and Pendias (2001)
SD: standard deviation; VC: variation coefficient

Unit Average SD VC Range Higueras 
et al. 
(2016)

Monaci 
et al. 
(2022)

Kabata-Pendias 
and Pendias 
(2001)

Si % 0.2 0.1 48.8 0.1–0.6
K % 0.4 0.1 26.0 0.3–0.8 0.6
Ca % 0.7 0.2 23.7 0.4–1.4
P mg  kg−1 746.3 100.3 13.4 466.3–997.9 800.0
S mg  kg−1 1032.3 100.7 9.8 811.5–1360.0 1300.0
Cl mg  kg−1 198.4 167.0 84.2 28.9–921.2
Ti mg  kg−1 45.1 29.4 65.2 5.8–192.8
Mn mg  kg−1 833.6 464.6 55.7 180.4–2670.0
Fe mg  kg−1 322.9 163.7 50.7 78.6–1020.0 240.0
Ni mg  kg−1 3.6 1.5 40.5 1.0–7.1 3.6 10–30
Cu mg  kg−1 7.2 1.3 18.8 5.2–14.1 4.6 6.1 10–30
Zn mg  kg−1 26.4 27.5 104.3 11.7–204.2 20.6 34.6 100–500
As mg  kg−1 0.4 0.2 52.3 0.1–1.2 0.4 1–20
Br mg  kg−1 3.6 1.4 38.0 0.6–6.6
Rb mg  kg−1 2.5 1.1 42.4 0.5–7.5
Sr mg  kg−1 12.7 4.5 35.1 4.6–25.5
Zr mg  kg−1 2.2 0.9 41.2 0.5–6.5
Sn mg  kg−1 15.2 1.2 7.7 12.0–18.3
Sb mg  kg−1 3.6 0.8 23.1 1.2–5.6 0.1
Te mg  kg−1 11.4 1.1 9.2 9.5–15.0
Ba mg  kg−1 16.0 7.0 43.7 3.9–48.7 14.9
Pb mg  kg−1 0.8 2.0 246.1 0.3–13.5 1.5 3.1
Hg ng  g−1 113.9 169.6 148.9 10.6–1000.0 30 60 0.5–8
Co mg  kg−1 10.9 4.1 37.8 0.5–17.7 10–40
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domain fractionation (Fig. 2f), with a similar average and 
distribution in the anticline and synclines. This is an ele-
ment typically present in soils as oxides or oxydroxides, 
usually with a higher concentrations of soil trace elements 
but with expected differences in bioavailability depending 
on pH and redox potential (Kabata-Pendias & Mukherjee 
2007).

As displayed in Fig. 3, notable differences were found 
in the formation of clusters of elements between both syn-
clines: Almadén (Hg) and Guadalmez (Sb). No clear dif-
ferentiation has been found between major and trace ele-
ments in their transfer or incorporation from the substrate 
to the soil. In the Almadén syncline, the cluster related 
to Hg uptake also includes major elements such as Ca 
(related to volcanic activity), and other elements related 
to mineralized zones such as As, Co, or S. The lithological 
(or geogenic) cluster which includes Si, Ti, and Fe and this 
group appears to be a subgroup of some essential elements 
for plants (P, Zn, K, Rb, Zn, Cl, Br) but clearly differs from 
the group related to syncline mineralizations.

In the Guadalmez syncline, however, the geogenic clus-
ter is included as a subgroup together with that related 
to Sb mineralizations, and it is very clearly differentiated 
from another cluster made up of essential elements for 
plants, such as P, K, Mn, Rb, Zn, and Ba.

This differentiation may be due to differences in the 
mineralizations of Hg and Sb, which appear exclusively 
related to quartzites only in the Guadalmez syncline 
for Sb; meanwhile, in the Almadén syncline the “Las 
Cuevas”-type Hg deposits may appear in a wider variety 
of lithologies.

Fig. 2  Boxplots of selected element concentrations in plants by geological domain. Outliers appear as red dots

Fig. 3  Dendrograms of elemental results by syncline
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Soil to plant transfer indices

The usage of the BAF (Alloway et al. 2012) has demon-
strated a generalized low bioconcentration capacity for Q. 
ilex, this parameter being lower than unity for most of the 
elements considered: only P, S, K, Ca, Mn, Sr, Sb, and Co 
show an average BAF > 1, followed by Ti, Ni, Cu, Zn, and 
Mo, with a maximum BAF > 1 (1.3–3.9).

Table 2 shows the BAF values classified according to the 
need/ability to uptake particular elements from the soil. The 
elements with the highest BAF values are, as expected, the 
macronutrients (primary and secondary), which show aver-
ages greater than 1 in all cases and with very high maxi-
mums, especially in elements such as S and Ca, present in 
the soils of both synclines and available to the plants. In the 
group of micronutrients, only Co and Mn exhibit BAF aver-
ages greater than 1, although there are discrete values above 
this threshold for some other elements (Cu, Mo, and Zn) that 
could reach toxic concentrations for the plant. Some of these 

elements (Cu and Zn) have a variety of possible sources 
such as the background content, depending on the lithology, 
sulfide ores, and phytosanitary products. Other elements are 
common but not essential for plants, like Sr, with average 
values of BAF > 1, and Ti, with some high BAF values reach-
ing a maximum of 3.9. Finally, in the group of elements that 
can be toxic to the plant, it is necessary to mention the high 
BAF values (on average) for Sb, with maximums reaching 
5.6 in some areas. The significance of this high BAF value 
may not be relevant, since it has a very low coefficient of 
variation and the Sb contents in soil and plant are close to 
the detection limit of the EDXRF equipment. The coeffi-
cient of variation can be indicative of differences between 
the sampling points in terms of the mobility of the element, 
depending on its lithological composition and/or presence of 
ore deposits. There are several elements with coefficients of 
variation greater than 1, a micronutrient (Co), some common 
elements (Mn, V), and others that can be toxic for plants (Pb, 
Hg, Cr, and Al).

Table 2  Statistical summary of 
BAFs in Q. ilex leaves from the 
study area

Values of BAF > 1 appear in bold in average and maximum columns
SD: standard deviation; VC: variation coefficient

Average SD VC Range Esposito 
et al. (2019)

Maisto et al. (2004) Higueras et al. (2017)

Primary macronutrients
  P 2.3 0.9 0.4 (0.4–4.6)
  K 4.3 2.4 0.5 (1.1–13.6)

Secondary macronutrients
  S 12.3 5.5 0.4 (3.4–27.2)
  Ca 8.2 6.0 0.7 (0.5–39.8)

Micronutrients
  Co 1.5 1.9 1.3 (0.0–12.2)
  Cu 0.6 0.5 0.7 (0.1–2.6) 0.10 0.12–0.18 0.10 ± 0.12
  Fe 0.0 0.0 0.7 (0.0–0.0)
  Mn 2.4 3.0 1.3 (0.1–18.9)
  Mo 1.0 0.6 0.7 (0.0–2.6)
  Zn 0.7 0.7 0.9 (0.1–3.3) 0.15 ± 0.13

Common elements in plants
  Si 0.0 0.0 0.5 (0.0–0.0)
  Ti 0.6 0.5 0.8 (0.0–3.9)
  Sr 1.2 0.6 0.5 (0.2–2.9)
  Ba 0.2 0.1 0.6 (0.0–0.5)
  V 0.0 0.0 2.2 (0.0–0.2)

Toxic elements for plants
  Ni 0.3 0.3 0.9 (0.0–1.3) 0.12
  As 0.0 0.0 0.8 (0.0–0.2)
  Pb 0.0 0.1 3.1 (0.0–0.6) 0.04 0.01–0.02 0.02 ± 0.05
  Hg 0.1 0.1 1.0 (0.0–0.9) 0.35 ± 0.90
  Cr 0.1 0.1 1.4 (0.0–0.6) 0.05 0.01–0.05
  Sb 2.2 1.5 0.7 (0.0–5.6)
  Al 0.0 0.0 2.7 (0.0–0.1)
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On the other hand, the influence of the geological 
substrate must play a role in plant uptake. Figure 4 dis-
plays this relationship to geological domain (Fig. 4A, B) 
and lithological domain (Fig. 4C, D). Elements showing 
BAF > 1 seem to have a greater capacity to bioaccumulate 
the macronutrients in the Guadalmez syncline located fur-
ther south in an area with typically Appalachian relief and 
forest-like vegetation. This trend can also be observed for 
other elements with BAFs < 1, including Ni, Ba, Hg, Cu, 
and Zn. All these higher BAFs in the Guadalmez syncline 
are probably related to the lower water stress of Quercus 
trees in this area, as according to the National Atlas of 
Spain this area is located in the southern limit of a climatic 
zone with lower maximum temperatures in summer, higher 
minimum temperatures in winter, and similar rainfall (IGN 
Clima 2022). However, the differences by lithological 
substrates are not particularly evident, although a certain 
predominance of the quartzite substrate (QS in Fig. 4 C 
and D) is observed for some elements (K, Ca, Mn, Co, 
Ni, Ba, Cu, and Zn), and notably high BAFs in the mafic 
igneous rock (IR) unit for the elements of greatest mining 
interest such as Sb, Pb, and Hg. Moreover, the acid reac-
tivity in soils developed in the quartzite units is contrast-
ingly higher, with pH significantly lower than in the rest 

of the lithologies (Fig. 5). Moreover, it is noteworthy that 
the generalized low BAFs were found on shaly substrates 
where the weathering should be more active, releasing the 
elemental composition much more easily than in quartzite-
dominated substrates.

Factor analysis of elemental composition

The Factor Analysis shown in Fig. 6a clearly distinguishes 
groups of samples by synclines, with factor 1 (strongly influ-
enced by the variations in Hg concentration) determining 
this distinction in the case of the Almadén syncline and fac-
tor 2 (dependent on Sb concentrations) determinant for the 
Guadalmez syncline. There are some more elements in both 
factors: factor 1 includes geogenic elements (Si, Ti, Fe, Zr, 
Mn), along with metals from the most ubiquitous minerali-
zations throughout the study area (Pb and Zn), and factor 
2, however, includes Sb and elements linked to the stibnite 
mineralizations (S and Cu).

However, grouping by lithological types (Fig. 6b) does 
not offer a clear distinction with a totally undifferentiated 
group (ASQ), the group of igneous rocks clearly depend-
ent on factor 1 (a lithological type widely represented in 
the Almadén syncline), and the other two lithological 

Fig. 4  Plots of BAFs by geological domains (A and B) and by type of geological substrate (C and D). Abbreviations: ASQ: alternations of shales 
and quartzites, IR: igneous rocks, QS: quartzites and sandstones, Sl: slates
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groups dependent on factor 2, QS being the preferential 
lithological type for Sb ore deposits, as expected, since the 
stibnite mineralization are preferently hosted in quartzitic 
units.

These results show that the multielemental composi-
tion of Q. ilex leaves cannot be differentiated in terms 
of the concentrations groups micronutrients/macronutri-
ents, since the plant uptakes what it needs from these ele-
ments, regardless of their existing concentrations in the 
soil. On the other hand, the trace elements that may be 
toxic to plants make it possible to differentiate samples 
by geological domains (synclines) and even by litho-
logical types, since the plant accumulates these elements 
depending on the amount present and availability in the 
soil. In this way, it might be possible to use the concen-
trations of trace elements in leaves to prospect over large 
areas, geological domains, or lithological types, in which 
Quercus trees have a sufficiently representative distribu-
tion. These starting conditions could allow of finding ore 

deposits, at least of Hg and Sb, the two elements studied 
in the present work. This application of vascular plants to 
the biogeochemical prospecting of ore deposits would be 
especially useful for elements with very low mobilities 
and little leachable capacity such as Sb, which makes it 
difficult to prospect in soils and sediments, but less use-
ful for elements such as Hg, highly volatile and mobile, 
prospectable in soils, sediments, waters, and even in the 
atmosphere. The application of biogeochemical prospect-
ing for Sb is of particular current interest as it is an ele-
ment which has been declared a critical raw material by 
the European Union and the prospecting of its deposits is 
a priority for the European continent (UE 2020). Given 
the low mobility of this element in the typical semi-arid 
climates of the Iberian Peninsula (Esbrí et al. 2023), the 
use of Quercus ilex leaves could delimit geological or 
lithological domains in which to focus prospecting efforts 
in other matrices (soils or sediments) or techniques (geo-
logical, geophysical, machine learning, etc.).

Fig. 5  Distribution plots of pH, electrical conductivity (EC), and soil organic matter (SOM) by lithological substrates

Fig. 6  Factor analysis plots, separating samples by synclines (a) and lithological types (b)
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Conclusions

In the studied Almadén and Guadalmez synclines, soil–plant 
transfer has been described using the leaves of Quercus ilex, 
the most ubiquitous tree in the area. The contents of major ele-
ments linked to macronutrients and micronutrients have been 
described, with high concentrations of Si, P, Ca, S, Mn, and 
Fe. The contents of trace elements (Cu, As, Sb, Pb, Hg, and 
Co) have shown significant concentrations, especially high in 
Sb and Hg (3.6 and 113.9 mg  kg−1 on average). It was pos-
sible to differentiate groups of Quercus ilex samples accord-
ing to geological domains and even lithological types. This 
differentiation was possible for some major elements linked 
to lithological types, such as Ca in the igneous rocks of the 
Almadén syncline, as well as for trace elements linked to the 
main ore deposits in the area (Hg and Sb). The results have 
also shown very high BAF values for those elements that are 
macronutrients or micronutrients for the plant, also being sig-
nificantly high for Sb (BAF = 2.2), a critical raw material of 
paramount importance for the European economy. After a fac-
tor analysis, it was possible to verify that the differentiation of 
lithological types and geological domains is highly dependent 
on the transfer of trace elements from the soil to the plant, 
being especially dependent on the Sb content in Quercus ilex 
leaves. This general conclusion opens the possibility to use of 
Quercus ilex in the biogeochemical prospecting of Sb applica-
ble to large areas, extensive geological domains, or lithologi-
cal types. The combination of these techniques as preliminary 
methods, in combination with other geochemical techniques 
in soil/sediments, geological or geophysical, may facilitate the 
location of new Sb deposits in the Iberian Peninsula. In the 
realm of ore prospecting, deriving meaningful insights from 
disjointed and contextually incomplete data poses a significant 
challenge, particularly when dealing with soil or sediment data 
lacking connection to the broader geological context. Further-
more, the utilization of evidence, albeit occasionally subtle, 
extracted from such datasets often fails to integrate with com-
plementary geophysical information, hindering the delineation 
of prospective regions. Therefore, adopting a holistic approach 
that incorporates data on bioaccumulation in vascular plants 
could enhance the identification of mineral deposits containing 
critical raw materials previously undetectable via conventional 
methodologies. This approach should be tested in nearby areas 
with lithological differences but presence of similar plant spe-
cies, such as in the Iberian pyritic belt.
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