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Abstract
The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic 
ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and 
are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved 
to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often 
involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate 
the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture 
of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the 
impact of  H2O2 dose (3.6–13.4 mg  L−1), magnetite load (2–8 g), inlet flow rate (0.25–1 mL  min−1), and initial micropol-
lutant concentration (100–1000 µg  L−1) over 300 h of continuous operation. Azole pesticide conversion values above 80% 
were achieved under selected operating conditions (WFe3O4 = 8 g,  [H2O2]0 = 6.7 mg  L−1, flow rate = 0.5 mL  min−1,  pH0 = 5, 
T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg 
 L−1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) 
effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as 
a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.
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Introduction

The worldwide occurrence of micropollutants in water 
resources represents a potential threat for aquatic ecosys-
tems and human health (Figuière et al. 2022; Miyawaki 
et al. 2021). This vast array of anthropogenic compounds 
including pesticides, hormones, pharmaceuticals, personal 
care products, and industrial chemicals (Ahmed et al. 2017) 
is mainly introduced into the aquatic environment through 
wastewater treatment plants (WWTPs), which cannot war-
rant their complete elimination (Ben et al. 2018; García et al. 
2021). With the aim to protect nature and human health 
from the most relevant micropollutants based on up-to-date 
scientific insights, the European Union (EU) has launched 
their control in EU water basins, urging its Member States 
to analyze the occurrence of the micropollutants included 
in the EU Watch Lists since 2015 (Decisions 2015/495, 
2018/840, 2020/1161, and 2022/1307). These Watch Lists 
will be the basis for the upcoming review of the Urban 
Wastewater Treatment Directive, which will certainly limit 
the discharge of the most harmful substances. A particular 
case of hazardous micropollutants is the family of azole pes-
ticides, included in the most recent EU Watch Lists (Deci-
sions 2020/1161 and 2022/1307). These substances are 
increasingly applied as fungicides to control plant diseases, 
with a value share of 20–25% of the global fungicide vol-
ume market (Jørgensen & Heick 2021). Once in the aquatic 
environment, azole pesticides cause toxic effects on different 
living organisms like algae and fish (Chen & Ying 2015; 
Pesce et al. 2016; Poulsen et al. 2015; Storck et al. 2018).

The development of innovative but also highly effective, 
sustainable, inexpensive, and technically feasible water 
treatment systems that allow to create an absolute barrier 
to micropollutant emission at WWTPs represents a task 
of high priority nowadays. Advanced oxidation processes 
(AOPs), based on the in situ generation of strong and non-
selective oxidizing radicals, appear as promising alternatives 
for such goal (Saravanan et al. 2021). Heterogeneous Fenton 
oxidation, also known as catalytic wet peroxide oxidation 
(CWPO), is particularly attractive as it combines the advan-
tages of conventional homogeneous Fenton, i.e., inexpen-
sive chemicals, simple implementation, and mild conditions, 
with those of heterogeneous catalysis, i.e., catalyst reusabil-
ity and limited formation of iron sludge. In our previous 
contributions, we found that natural magnetite  (Fe3O4), an 
inexpensive, sustainable, and highly available mineral, is 
an outstanding CWPO catalyst for the removal of a wide 
range of micropollutants included in the EU Watch Lists like 
macrolide antibiotics, hormones, diclofenac, neonicotinoid 
pesticides, and, very recently, azole pesticides (Lopez-Arago 
et al. 2023; Serrano et al. 2019, 2020). The latter were the 
lowest reactive towards CWPO, and thus, they are good 

candidates to be used as general indicators of the overall 
efficiency of the catalytic system.

The effectiveness of CWPO for micropollutant removal 
has been extensively demonstrated in a discontinuous opera-
tion context (i.e., slurry batch reactors) due to the easiness 
of operation and the fast operational parameters screening, 
but the laborious recovery and recirculation of the powdered 
catalyst particles clearly hinders its practical implementa-
tion considering the large volumes of wastewater treated at 
WWTPs. These requirements represent the most important 
challenge to the state-of-the-art on CWPO, where continu-
ous operation has been remarkably less investigated, and 
pilot plant studies are practically inexistent. A comprehen-
sive review devoted to the application of continuous reac-
tors (fixed bed, fluidized bed, and continuous stirred-tank 
reactors) in CWPO was developed by Esteves et al. (2016), 
where fixed-bed reactors (FBR) were pointed as attractive 
configurations as they allow amplifying the solid/liquid ratio 
and thus, accelerating the oxidation rate while reducing the 
contact times. Furthermore, when compared to the other 
continuous systems, the residence time is well controlled 
with minimum back mixing, and loss, as well as mechanical 
crushing of the catalyst, are avoided to a high extent.

Table 1 collects the most recent works (last 5 years) 
focused on the application of CWPO in continuous FBRs. 
As can be seen, iron oxide catalysts are the most relevant 
solids applied in this process. In particular, those based on 
synthesized magnetite have received major attention, which 
can be attributed to the presence of both Fe(II) and Fe(III) 
species, which significantly fasten the oxidation rate (Munoz 
et al. 2015). In general, catalysts preparation involves the 
use of synthetic organic or inorganic supports and requires 
relatively complex multi-step procedures like incipient wet-
ness impregnation followed by high-temperature calcination 
(di Luca et al. 2018; Ding et al. 2020), combination of ther-
mal treatments and metal–organic chemical vapor deposi-
tion (Yang et al. 2018), clay intercalation by auto-hydrolysis 
followed by calcination (Pinchao et al. 2021) or chemical 
co-precipitation and hydrothermal treatment (Huaccallo-
Aguilar et al. 2021a, b; Huaccallo-Aguilar et al. 2021a, b). 
There are also attempts using different kinds of wastes as 
carbon support precursors like PET bottles (Thirumoorthy 
et al. 2021) or olive stones (Esteves et al. 2022), but in both 
cases, complex multi-step procedures and carbonization 
at high temperatures were required. Catalyst preparation 
clearly increases the cost of CWPO application, but what is 
even more important, synthetic catalysts usually suffer from 
deactivation. In fact, catalyst deactivation is one of the main 
concerns dealing with the application of CWPO in continu-
ous mode. Leaching of iron, fouling of the catalytic surface, 
poisoning, and pore blocking are the main reasons behind 
this undesirable phenomenon (di Luca et al. 2018). As can 
be appreciated in Table 1, most reported catalysts suffer 
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deactivation to some extent, being iron leaching as the most 
important cause for the activity loss. A metal-free catalyst 
based on a monolayer graphene film showed a reasonably 
good stability, but it exhibited a relatively low activity as 
denoted by the high operating temperature applied (80 °C) 
(Liu et al. 2020). On the other hand, it must be noted that 
most CWPO applications were focused on the treatment of 
aromatic compounds as well as dyes and industrial waste-
waters at relatively high pollutant concentrations (mg  L−1–g 
 L−1). Studies focused on the abatement of micropollutants 
are scarce and carried out at pollutant concentrations clearly 
higher than the representative concentration at WWTP efflu-
ents (Huaccallo-Aguilar et al. 2021a, b; Huaccallo-Aguilar 
et al. 2021a, b). Furthermore, most works were performed at 
relatively high operating temperature (50–90 °C), and long-
term studies are limited, with most publications testing time 
on stream of 1–3 days. All in all, there exists a noticeable 
knowledge gap regarding the development and application 
of robust and stable catalysts in CWPO in long-term opera-
tion. These studies are urgently required to demonstrate the 
feasibility of this system for potential application in WWTPs 
as tertiary treatment for micropollutant removal.

The application of pristine magnetite mineral as catalyst 
could overcome the main shortcomings of synthetic catalysts 
in a unique manner as iron is part of the robust mineral struc-
ture, and thus, it is highly stable, with limited iron leaching 
(Munoz et al. 2018). Furthermore, its low surface area and 
practically negligible adsorption capacity for organic com-
pounds would minimize possible poisoning, fouling, and 
pore blocking, as demonstrated in previous batch operation 
studies (Lopez-Arago et al. 2023; Serrano et al. 2019, 2020). 
Despite these advantages, to the best of our knowledge, pris-
tine magnetite mineral has not been tested as a catalyst in 
continuous FBR so far.

The aim of this work is to demonstrate the feasibility of a 
FBR packed with natural magnetite powder for the CWPO 
of a representative mixture of azole pesticides (tebuconazole 
(TEB), tetraconazole (TET), and penconazole (PEN)) listed 
in the most recent EU Watch Lists (Decision 2020/1161 and 
Decision 2022/1307). This work clearly represents a signifi-
cant advancement in the context of the literature, as it proves 
the viability of CWPO in long-term operation (500 h). The 
catalytic performance of the system was evaluated analyz-
ing the impact of the main operating parameters, i.e., cata-
lyst load, feed flow rate, hydrogen peroxide dose, and initial 
micropollutants concentration along 300 h on stream. To 
warrant the practical applicability of the catalytic system, 
all experiments were performed under ambient conditions. 
In the same line, a slightly acidic pH value  (pH0 = 5) was 
established to maximize the  H2O2 consumption efficiency, 
as demonstrated in our previous work in batch reactor opera-
tion (Munoz et al. 2018). Under optimized conditions, an 
additional long-term experiment for 200 h was performed C
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to further demonstrate the high stability of the FBR packed 
with natural magnetite powder. As a proof of concept, a real 
WWTP sample fortified with the micropollutants mixture 
was finally employed as the inlet stream. These results rep-
resent an important step forward in the field of CWPO and 
open the door for its scale-up.

Materials and methods

Materials and chemicals

Azole pesticides (analytical grade quality), hydrogen per-
oxide solution (33% wt.), nitric acid (65%), and hydroxy-
lamine (≥ 99%) were obtained by Sigma-Aldrich. Acetoni-
trile (99.9%) and 1,10-phenantroline (≥ 99%) were provided 
from Scharlau and Fluka, respectively. All reagents were 
used without further purification. The magnetite mineral 
powder employed as catalyst (ref: 500121500) was provided 
by Marphil S.L. (Spain). Natural magnetite granules (ref: 
0029882796573), used to pack the magnetite powder in the 
FBR, were supplied by Inoxia (UK). Unless otherwise indi-
cated, all trials were conducted using deionized water. The 
main properties of the azole pesticides tested in this work 
are summarized in Table 2.

Catalyst characterization

The complete characterization of the powdered natural mag-
netite  (Fe3O4) catalyst employed in this work can be found in 
our previous contribution (Munoz et al. 2018). Crystalline 
magnetite was the only phase present in the solid according 
to XRD analysis, being the content of iron similar to the 
theoretical one for pure magnetite (73 wt%). Consistent with 
these features, the solid showed strong magnetic properties 

(MS = 77.9 emu  g−1). The average size of the particles, which 
showed a rough spheric shape, was 0.2 µm, being the spe-
cific surface area value of 7  m2  g−1. The point of zero charge 
 (pHPZC) was 7.8.

Furthermore, SEM images for both natural and used 
magnetite after 500 h of continuous operation were acquired 
using a JSM 6335F microscope (JEOL Ltd., Tokyo, Japan).

Experimental procedure

The experimental setup used in this work is shown in Fig. 1. 
The FBR consists of a jacketed glass column (18 mm i.d., 
115 mm length) where the catalyst bed  (Fe3O4, 0.2 µm) 
was packed between two layers of magnetite granules. The 
bottom layer  (Fe3O4, 1.5 g, 250–500 µm) was employed to 
improve aqueous solution dispersion in the catalytic bed. 
The top layer  (Fe3O4, 6 g, 500–1000 µm) was added to 
prevent the possible loss of the fine catalyst powder taking 
advantage of the magnetic properties of both solids. These 
three layers were placed between two layers of glassy beads 
(2–3 mm) and a fine layer of glass wool. The reactor was 
continuously fed in up-flow mode using a peristaltic pump 
to prevent gas pocket formation and ensure that the catalyst 
powder is totally wetted.

CWPO trials were performed under ambient conditions 
(1 atm, 25 °C) at a slightly acidic pH value  (pH0 = 5.0), 
which was adjusted with  HNO3 (1 M). Operating tempera-
ture was kept constant by the upstream circulation of tem-
pered water (25 °C) throughout the column jacket. The 
main parameters of the process were systematically inves-
tigated along 300 h on stream. The impact of each operat-
ing condition was assessed under steady-state conditions, 
and the experiments have an approximate duration of 
24 h. Samples were taken from the reactor effluent every 

Table 2  Main properties of the azole pesticides

Penconazole (PEN) Tebuconazole (TEB) Tetraconazole (TET)

CAS number 66246-88-6 107534-96-3 112281-77-3

Molecular formula C13H15Cl2N3 C16H22ClN3O C13H11Cl2F4N3O

Structural formula

Molar weight (g 

mol−1)
284.2 307.8 372.1

pKaa 5.2 5.0 0.7

Log kow
a 3.72 2.70 3.56
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1 h. Accordingly, the effect of catalyst weight in the bed 
(2–8 g), the reactor inlet flow rate (0.25–1 mL  min−1), the 
hydrogen peroxide dose (3.4–13.4 mg  L−1), and the initial 
pesticide concentration (100–1000 µg  L−1) were studied. 
As depicted in Fig. 1, both the mixture of azole pesticides 
and  H2O2 at the desired concentrations were transferred 
into the reactor in the up-flow inlet stream. A long-term 
continuous experiment (200 h) was accomplished after 
evaluating the operating conditions. Finally, the impact 
of the water matrix composition was also studied using 
a real WWTP effluent. All experiments were performed 
in triplicate, and the standard deviation was below 12%.

Preliminary experiments allowed to discard the pos-
sible role of azole pesticides adsorption on the catalytic 
bed, as the decrease on their concentration was negligi-
ble in the absence of  H2O2. In the same line, it was also 
confirmed that  H2O2 alone cannot efficiently oxidize the 
micropollutants under the operating conditions tested 
in this work (pesticide conversion < 5%). Finally, it was 
demonstrated that the magnetite granules used to pack 
the reactor were practically inactive for the CWPO reac-
tion given their significantly lower exposed surface area 
compared to the fine catalyst powder.

Analytical methods

Liquid samples were periodically taken from the reactor 
effluent along the continuous CWPO experiments. Azole 
pesticide concentration was determined by HPLC–UV (Shi-
madzu, Prominence-I model, LC-2030C LT) using an Agilent 
Eclipse Plus C18 column (15 cm length, 4.6 mm diameter) 
as stationary phase. A mixture of acetonitrile and ultrapure 

water at 0.8 mL  min−1 was used as the mobile phase (60/40%, 
v/v). The detection wavelength was set at 222 nm for all the 
pesticides. Dissolved iron concentration was quantified by 
colorimetry with a UV 2100 Shimadzu UV–VIS spectropho-
tometer using the o-phenantroline method (Hoffman 1945). 
Total organic carbon (TOC) was determined with a TOC 
analyzer (Shimadzu TOC  VSCH, Kioto, Japan).

Results and discussion

Kinetic study

The possible existence of mass transfer limitations in the 
FBR packed with magnetite was evaluated prior to conduct-
ing the kinetic study. This preliminary analysis is crucial as 
mass transfer limitations lead to a performance decrease, 
increasing the operating costs (Alalm et al. 2021). For such 
study, the azole pesticide tebuconazole (TEB) was selected 
as a target pollutant since it is one of the most widely used 
triazole fungicides (Stamatis et al. 2015), being frequently 
detected in WWTP effluents in the order of ng  L−1 (Stamatis 
et al. 2010). Moreover, as it will be shown in the following 
sections, TEB exhibited the highest reactivity among the 
three micropollutants tested in this work, although all of 
them showed removal yields above 80% in the optimum con-
ditions. To check external mass transfer limitations in the 
reaction system, both the flow rate (Q) and catalyst load (W) 
were systematically varied, leading to different space–time 
values 

(

τ =
W

Q

)

 between 4 and 32 gcat min  mL−1. The results 
obtained are collected in Fig. 2. The modification of the flow 
rate, keeping constant the catalyst load, is denoted by the 
solid symbols, while the variation of the catalyst load, keep-
ing constant the flow rate, is denoted by the square ones. As 
can be seen, external mass transfer limitations can be dis-
carded under the operating conditions tested in this work as 
the conversion of the pollutant was maintained practically 
unchanged for the same space–time when the catalyst load 
or the flow rate was varied.

To further confirm the absence of external mass transfer 
limitations in the FBR system, the Carberry number (Ca) 
was calculated for TEB, the pesticide which showed the 
highest reactivity. For such goal, Sherwood, Reynolds, and 
Schmidt numbers were used for the estimation of the liq-
uid–solid mass transfer coefficient (kTEB,s) of the system (see 
Supplementary Material for details). The Carberry number 
represents the relationship between the observed reaction 
rate and the maximum external mass transfer rate (Eq. 1).

(1)Ca =
(−rTEB)obs�

kTEB,savCTEB,s

Fig. 1  Scheme of the FBR packed with powdered magnetite catalyst 
used in the continuous CWPO experiments



29155Environmental Science and Pollution Research (2024) 31:29148–29161 

where
(

−rTEB
)

obs
� is the observed reaction rate for TEB 

( mgL−1min−1 ), kTEB,s is the corresponding liquid–solid mass 
transfer coefficient (m  s−1) for the micropollutant, av is the 
volumetric external surface area of the catalyst particles  (m2 
 m−3), and CTEB,s is the concentration (mg  L−1) of the micro-
pollutant in the liquid phase.

(

−rTEB
)

obs
� was obtained exper-

imentally, while kTEB,s was estimated using the Sherwood 
number (see Table S1 of the Supplementary Material). The 
obtained values for the Carberry number were far below 0.05 
under steady-state conditions which confirmed the absence 
of mass transfer limitations at the operating conditions test-
ing in this work (Vega et al. 2022).

The determination of the reaction kinetics was experi-
mentally accomplished by varying the concentration of the 
pesticides in the inlet stream. As a representative example, 
it must be noted that the conversion values obtained by the 
FBR for TEB (XTEB) at different starting micropollutant con-
centrations (from 100 to 1000 µg  L−1) were in the range of 
93–97% (see Fig. S1 of the Supplementary Material).

Therefore, varying the initial concentration of the pesti-
cide in the inlet stream did not cause any significant change 
in the conversion of the pollutant under steady-state con-
ditions. Accordingly, the process can be described by a 
pseudo-first-kinetic-order model. Considering this aspect, 
the mass balance for a continuous fixed-bed reactor was 
applied to determine the apparent kinetic constant of the 
reaction (kapp) following Eq. 2.

where W is the catalyst weight (g), Fi,0 is the mass flow 
rate of the pesticide fed to the reactor (mg  min−1), Xi is the 
pesticide conversion value, and 

(

−ri
)

obs
 is the reaction rate 

(2)
W

Fi,o

= ∫
Xi

0

dXi

(−ri)obs

of each pesticide (mg gcat
−1  min−1). Since a pseudo-first-

kinetic-order model was proposed to describe the reaction, 
Eq. 2 can be rewritten as Eq. 3:

where Q is the flow rate (mL  min−1), Ci,0 and Ci,t are the pol-
lutant concentration in the inlet and outlet streams, respec-
tively (mg  mL−1).

By the integration of Eq. 3, the value of the kapp (mL 
gcat

−1  min−1) can be obtained by plotting the experimental 
data according to Eq. 4:

The kapp calculated values for PEN, TET, and TEB 
removal were 0.12 ± 0.03, 0.09 ± 0.04, and 0.17 ± 0.03 mL 
gcat

−1  min−1, respectively, along the different space-times 
tested in this work (4–32 gcat min  mL−1). The apparent 
pseudo-first-order rate constants for the three azole pesti-
cides under all the operation conditions tested in this work 
are collected in Fig. S2, S3, and S4 of the Supplementary 
Material.

Impact of operating conditions on FBR performance

The impact of the space–time on the stability of the FBR 
system for pesticide removal was evaluated in the range 
of 4–32 gcat min  mL−1, varying both the flow rate and the 
catalyst load. The results obtained are depicted in Fig. 3. 
The shading area in the figure denotes the time required to 
achieve the steady state. In the first place, it must be noted 
that the azole pesticide reactivity decreased following the 
order: TEB > PEN > TET, which is consistent with our pre-
vious contribution where the removal of azole pesticides 
by CWPO in batch operation was investigated (Lopez-
Arago et al. 2023). This phenomenon may be attributed to 
the competitive effects among different pesticides, which 
can be influenced by their chemical structure and proper-
ties (Table 2). TEB only contains a chlorine substituent at 
the -para position, while both TET and PEN contain two 
chlorine radicals attached to the aromatic ring in the -orto 
and -para position. The presence of halogen substituents 
stabilizes the delocalized electrons of the aromatic ring 
and thus, TET and PEN showed a lower reactivity than 
TEB. On the other hand, the main reason for the slower 
degradation rate of TET may be explained by the fact that 
it has less alkyl groups in its structure (Rokbani et al. 
2019).

As observed in Fig. 3, the system showed a high stabil-
ity since the micropollutant conversion remained practically 

(3)
W

QCi,o

= ∫
Xi

0

dXi

kappCi,t

= ∫
Xi

0

dXi

kappCi,0(1 − Xi)

(4)In

(

1

1 − Xi

)

= kapp
W

Q

0 5 10 15 20 25 30 35

0,0

0,2

0,4

0,6

0,8

1,0

 Q = 0.5 mL min-1

 W = 8 g

X
T

E
B

τ (gcat min mL-1)

Fig. 2  Effect of τ variations (4–32 gcat min  mL−1) on TEB oxi-
dation  ([TEB]0 = 500  µg  L−1; W = 2–8  g; Q = 0.25–1  mL   min−1; 
 [H2O2]0 = 2.7 mg  L−.1;  pH0 = 5; T = 25 °C)
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unchanged along 25 h-experiments. Besides, iron leach-
ing was below 0.1 mg  L−1 in the FBR effluent in all cases. 
The removal of the target pollutants clearly increased with 
increasing the space–time. For instance, the conversion of 
TET, the least reactive pesticide towards CWPO, increased 
from ~ 30 to ~ 95% by varying the space–time from 4 to 32 
gcat min  mL−1. Under these conditions, i.e., a flow rate of 
0.25 mL  min−1 and a catalyst amount of 8 g, a residence time 
of around 30 min is assumed, considering that the reaction 
volume (useful volume) was ~ 8 mL. This residence time is 
quite attractive taking into account that 45 min is the average 
contact time in conventional adsorption tertiary treatment 
(Mailler et al. 2016).

It is well-known that  H2O2 represents the main operat-
ing cost in Fenton-based technologies and thus, the opti-
mization of its consumption is a critical issue that must 
be considered (Berberidou et al. 2022; Cai et al. 2020). 
Although the impact of this operating cost is clearly 
more evident in the treatment of highly polluted indus-
trial wastewaters (Munoz et al. 2014; Pliego et al. 2012) 
than in the degradation of micropollutants, any decrease 
in its intake clearly favors the economy of the process. 

Fig.  4 shows the results obtained in the continuous 
removal of azole pesticides by CWPO at different  H2O2 
doses. In particular, concentrations of 3.4, 6.7, 10.0, and 
13.4 mg  L−1 were tested, which approximately corre-
spond to 50%, 100%, 150%, and 200% of the theoreti-
cal stoichiometric dose of  H2O2 required to achieve the 
mineralization of the micropollutants. As observed, the 
conversion of the azole pesticides was slightly decreased 
when the stoichiometric dose of  H2O2 was decreased by 
half. For instance, in the case of PEN, the conversion 
decreased from 85 to 71%. This result can be explained 
by the decrease in oxidizing species concentration under 
these conditions. Following the same trend, when the 
 H2O2 dose was increased up to 150% of the theoretical 
stoichiometric amount, the conversion of the micropol-
lutants was also increased. In this case, TEB conversion 
reached up to 97%. Nevertheless, a further increase of the 
 H2O2 dose (up to 200% of the theoretical stoichiometric 
amount) led to a decrease of the azole pesticides conver-
sion rate (e.g., TEB conversion was reduced to 88%). 
The concentration of  H2O2 was then in clear excess so 
the oxidant itself could compete with the micropollutants 
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for the available active sites at the catalytic surface, lead-
ing to an inefficient consumption of  H2O2 and slower 
degradation of the pesticides (Farzaneh Kondori et al. 
2018; Huaccallo-Aguilar et al. 2021a, b). Furthermore, 
 H2O2 could also act as an autoscavenger for oxidizing 
radicals (mainly HO· and HOO·), leading to termination 
reactions, as the following ones (Eqs. 5–6) (Farzaneh 
Kondori et al. 2018; Pera-Titus et al. 2004):

The apparent pseudo-first-order rate constant values also 
showed the same trend, obtaining the highest value at 150% 
of the theoretical stoichiometric dose of  H2O2. For instance, 
the pseudo-first-order constant value obtained for the most 
reactive azole pesticide (TEB) was 0.22 mL gcat

−1  min−1. 
Nevertheless, this value was quite similar to the one achieved 
with the theoretical stoichiometric dose of  H2O2 (0.17 mL 
gcat

−1  min−1) and thus, this dose was selected for further 
studies. Finally, it must be highlighted that the modification 
of the  H2O2 dose did not lead to any significant change on 
the stability of the catalytic bed, being the dissolved iron 
concentration below 0.1 mg  L−1 under the different condi-
tions tested.

FBR long‑term stability

To assess the stability of the system, a long-term continu-
ous experiment was carried out for 200 h on stream under 
selected operating conditions (τ of 16 gcat min  mL−1, initial 
azole pesticides concentration of 500 µg  L−1 and  H2O2 dose 
of 6.7 mg  L−1). As can be seen in Fig. 5, the FBR packed 
with magnetite showed an outstanding stability over 200 h 
on stream with no significant changes in the conversion val-
ues achieved for the azolic pesticides along the experiment. 
In fact, the main properties of the catalyst remained practi-
cally unchanged after being used. The absence of significant 
carbonaceous deposits on the surface of the used catalyst 
was confirmed, as the carbon content was determined to be 
less than 0.1 wt%. Additionally, it was observed that the 
specific surface area value and magnetic properties were 
practically the same as the measured for the fresh material. 
As a representative example, Fig. 6 shows a comparison 
between fresh (Fig. 6a) and used magnetite (Fig. 6b) SEM 
images after the long-term experiment. As can be seen, 
magnetite did not suffer any significant morphological 
change after 200 h of continuous treatment. Notably, the 
concentration of dissolved iron on the outlet stream was 
below 0.1 mg  L−1. After the whole experiment, less than 
0.05 wt% of the iron contained in the catalyst was leached.

(5)

(6)

Proof of concept

The influence of the water matrix composition on the 
overall efficiency of the CWPO process is an important 
issue to be considered as the presence of co-existing 
substances could compete with the pollutants for the 
active sites of the catalyst, lead to the fouling of the 
catalyst surface, or act as oxidizing radical scavengers 
(Garcia-Costa et al. 2021; Miklos et al. 2018). To eval-
uate such impact, the treatment of a real WWTP efflu-
ent sample, spiked with the mixture of azole pesticides 
at 500 µg  L−1, was evaluated. The main characteristics 
of the raw aqueous matrix are summarized in Table 3. 
The sample showed a relevant concentration of both 
organic and inorganic carbon sources. Furthermore, it 
also presented a non-negligible concentration of dis-
solved salts, being some of them common hydroxyl 
radical scavengers like chloride and sulfate (Lipczyn-
ska-Kochany et  al. 1995; Lu et  al. 2005; Siedlecka 
et al. 2007).

Given the relatively high organic matter load present 
in the real water matrix, the  H2O2 concentration used in 
this experiment was 10 mg  L−1, while the space–time was 
kept at 16 gcat min  mL−1. The results obtained are shown 
in Fig. 7 where the kapp of each experiment was obtained. 
For the sake of comparison, the results achieved using 
deionized water are provided as well. Clearly, the pro-
cess was less efficient in the WWTP effluent, leading 
to a decrease of the pollutant conversion at the same 
space–time from 85%, 78%, and 93% to 62%, 48%, and 
75% for PEN, TET, and TEB, respectively. The decrease 
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in degradation efficiency of azole pesticides may be 
associated with the presence of organic and inorganic 

compounds in the treated water since they exhibit HO· 
scavenging properties (Bouanimba et al. 2015; Siedle-
cka et al. 2007). For example, the presence of salts such 
as bicarbonate or sulfate are well known to consume 
hydroxyl radicals, making them unavailable for pesti-
cide oxidation. Even though sulfate and chloride radi-
cals could be generated in these scavenging reactions, 
these radicals show a significantly lower oxidizing power 
than hydroxyl radicals (Dimitroula et  al. 2012; Luo 
et al. 2014; Pignatello et al. 2006). On the other hand, 
the presence of organic species in the water matrix may 
cause competition with the pesticides for the active sites 
of the catalyst (Autin et al. 2013; Fan et al. 2013; Ye 
et al. 2019). To enhance the performance of the system 
and increase the pesticide conversion to at least 80% in 
the real WWTP effluent, the space–time was increased 
up to 32 gcat min  mL−1. Under these conditions, simi-
lar pseudo-first apparent kinetic constant values were 
obtained compared with the achieved with deionized 
water at a lower space–time (16 gcat min  mL−1). Con-
sequently, by varying the space–time, comparable lev-
els of conversion were obtained for the micropollutants 
when using deionized water. For instance, TEB exhibited 
a conversion of approximately 93% in deionized water, 
while a conversion of 91% was achieved using WWTP 
effluent. Furthermore, it must be noted that the system 
showed an outstanding stability, maintaining nearly con-
sistent pesticide conversions throughout the 25-h experi-
ment. In addition, the use of a real water matrix did not 
lead to carbonaceous deposits on the catalyst surface. 
Similarly, it was also verified that the use of a secondary 
effluent water matrix did not increase the concentration 
of dissolved iron compared to the use of ultrapure water 
(< 0.05 wt%).

Fig. 6  SEM images of fresh (a) and used (b) magnetite

Table 3  Main characteristics of real water matrix tested

Parameter Secondary 
WWTP efflu-
ent

pH 7.5
TOC (mg  L−1) 6.3
IC (mg  L−1) 12.1
Conductivity (µS  cm−1) 1182
Cl− (mg  L−1) 21.4
NO3

− (mg  L−1) 15.8
SO4

2− (mg  L−1) 197
PO4

3− (mg  L−1) 2.9

Deionized water WWTP effluent

0.00

0.05
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32 gcatmin mL-1
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Fig. 7  Apparent pseudo-first-order kinetic constant in the 
CWPO of TEB in different water matrix  ([TEB]0 = 500  mg  L−1; 
 [H2O2]0 = 2.7 mg L.−1;  pH0 = 5; T = 25 °C)
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Conclusions

The FBR packed with natural magnetite has demonstrated 
to be highly effective and remarkably stable for the removal 
of a representative mixture of azole pesticides in continuous 
long-term operation. A comprehensive study was carried out 
to demonstrate the absence of mass transfer rate limitations 
and thus, to confirm that the system takes place under chemi-
cal kinetic control. The performance of the process was suc-
cessfully described by a pseudo-first-order kinetic equation. 
The stability of the system was confirmed under long-term 
continuous operating, not appreciating any catalytic deacti-
vation upon 200 h on stream. On the other hand, a complete 
operating condition study was carried out. It should be noted 
that variations in both space–time and  H2O2 concentration 
led to changes in pesticide conversions, but in any case, 
the stability of the system was affected. For instance, the 
increase of τ led to a significant increase on the oxidation 
conversion of the pollutants up to > 95%, consistent with the 
higher residence time. Also, decreasing the stoichiometric 
 H2O2 dose by half led to a decrease on the oxidation rate of 
the azole pesticides, while its increase by half led to a slight 
increase. On the opposite, a further increase of the  H2O2 
up to 200% of the stoichiometric amount caused a poorer 
performance, which can be explained by a competitive effect 
for the catalytic active centers and oxidizing radicals. All 
in all, azole pesticide conversion values above 80% were 
achieved under selected operating conditions (WFe3O4 = 8 g, 
 [H2O2]0 = 6.7 mg  L−1, flow rate = 0.5 mL  min−1,  pH0 = 5, 
T = 25 °C). Finally, the versatility of the process was demon-
strated using a real WWTP effluent spiked with the mixture 
of pesticides. The reaction matrix did not have any negative 
effect on the stability of the system although it led to a lower 
oxidation rate, which could be overcome by increasing the 
space–time. Considering the outstanding stability exhib-
ited by the proposed catalytic system in this work, future 
research in this field should be focused on its scale-up to 
a pilot plant to yield valuable insights and substantiate the 
potential application of the catalytic system on a larger scale.
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