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Abstract
Given the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials 
could become an option for the future in accordance with the principles of the circular economy. In this work, the technical 
feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with 
ryegrass (Lolium perenne L.). Phytoextraction combined with both AC current and DC current with reversal polarity was 
applied (1 V  cm−1, 8 h  day−1) to real mine tailings containing a total concentration of REEs (Sc, Y, La, Ce, Pr, and Nd) of 
around 146 mg  kg−1. Changes in REEs geochemical fractionation and their concentrations in the soil pore water showed the 
mobilization of REEs caused by plants and electric current; REE availability was increased to a higher extent for combined 
electrokinetic-assisted phytoextraction treatments showing the relevant role of plants in the process. Our results demon-
strated the initial hypothesis that it is feasible to recover REEs from real metal mining waste by phytoextraction and that 
the performance of this technology can be significantly improved by applying electric current, especially of the AC type, 
which increased REE accumulation in ryegrass in the range 57–68% as compared to that of the treatment without electric 
field application.
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Introduction

Rare earth elements (REEs) have had an important role in 
the energy transition and technological development world-
wide (Binnemans et al. 2013). REEs are considered excellent 
electrical conductors, making them key components of vari-
ous products related to the high-tech industry such as low-
carbon energy technologies, electric and hybrid vehicles, 

rechargeable batteries, wind turbines, and electronic devices 
(Ananth et al. 2009). Even, REE-enriched fertilizers have 
recently been implemented in the agricultural field to 
improve crop growth and agronomic performance (Thomas 
et al. 2014; Ramos et al. 2016).

This group of essential metals is mainly comprised of 
15 lanthanides that are divided into two groups: light REEs 
(LREE: La, Ce, Pr, Nd, Pm, Sm, and Eu) and heavy REEs 
(HREE: Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), plus Y and 
Sc (Liu et al. 2021). REEs are widespread in the Earth crust 
and their concentration may even be higher than those of 
other common metals (Dinh et al. 2022); they are usually 
found in the chemical form of oxides, phosphates, carbon-
ates and silicates (Tao et al. 2022). The most feasible REEs 
minerals for extraction are bastnaesites, monazites and 
xenotimes, which contain up to 65–75% REEs (Wübbeke 
2013). Unfortunately, the negative environmental impacts 
associated with conventional extensive mining methods 
include the use of chemical compounds, expensive equip-
ment required and the release of wastes (Massari and Ruberti 
2013; Dinh et al. 2022). The extraction and separation of the 
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different REEs from their sources are a complex and diffi-
cult process because of their similar physical and chemical 
properties (García et al. 2020; Wen et al. 2021). In most 
cases, REE extraction is more profitable as a by-product of 
mining other metals (Wübbeke 2013), since they are usu-
ally not found in sufficient abundance in a single location to 
make their exploitation economically cost-effective (Krzciuk 
and Gałuszka 2015). Sizeable REE deposits are mainly dis-
tributed in China, Russia, Brazil, Australia, and Vietnam 
(Charalampides et al. 2015; Lima and Ottosen 2021). REEs 
have been included in the European Commission’s list of 
critical raw materials as a consequence of their economic 
relevance and the depletion of resources (Martins and Cas-
tro 2020). In this sense, the pursuit of potential sources of 
these strategic elements in Europe has become a relevant 
issue (Balaram 2019). Hence, waste recycling is presented 
as a viable alternative in terms of sustainability and circu-
lar economy, which has been poorly implemented (Almeida 
et al. 2021; Dang and Li 2022); in fact, currently, barely 
2.8% of the total REEs waste discarded is recycled (Lima 
and Ottosen 2021). Consequently, mining wastes from 
metallic ores could be a valuable source for the recovery of 
REEs and a suitable initiative for treating this type of stock-
piled and abandoned wastes at mining sites (Goodenough 
et al. 2016; Van der Ent et al. 2021; Hernández et al. 2023).

In this frame, phytoremediation technologies emerges as 
a cost-effective, environmentally sustainable and promising 
alternative for the rehabilitation of abandoned mining sites 
which would allow, not only the removal of metals from 
polluted soil and waste, but also the recovery of valuable ele-
ments from low-grade ores or metal-rich soils (Ashraf et al. 
2019; Khorasanipour and Rashidi 2020). Phytoremediation 
involving metal recovery is usually called as “phytomining.” 
Although REEs are not essential elements for plants, they 
can be accumulated into their tissues at moderated concen-
trations (Grosjean et al. 2019); to date, phytomining studies 
have mainly been focused on the extraction of major metals 
(Cu, Zn, Cd, and Pb) (Salas-Luévano et al. 2017; Zhang 
et al. 2019; Gascó et al. 2019), but they have scarcely been 
applied for REEs recovery (Jalali and Lebeau 2021). One of 
the most cited drawbacks of phytoextraction is the relative 
slowness of the technique, mainly due to the low availability 
of metals in the solid matrix and, consequently, the reduced 
ability of plants for metal uptake. Among the different 
approaches that have been studied in order to increase phy-
toextraction efficiency, one of the most interesting and novel 
is the combination of phytoextraction and electrokinetics, 
named as electrokinetic-assisted phytoremediation (EKPh). 
This technique has been proven to significantly increase phy-
toextraction yields for the uptake of major metals from soils 
and waste (Zhou et al. 2007; Acosta-Santoyo et al. 2017), 
but, to our best knowledge, its application for the recovery 
of REEs has not yet been studied.

In this context, the present research shows the results 
obtained in the application of electrokinetic-assisted phy-
toextraction to recover rare earth elements from real multi-
metal polluted mine tailings. EKPh experiments were car-
ried out using a growth substrate constituted of tailings from 
a former Pb/Zn mine, the plant ryegrass (Lolium perenne L.), 
and two types of electric field application, i.e., alternate cur-
rent and direct current with reversal polarity. Performance 
of the experiments has been followed by analyzing different 
physicochemical parameters of the liquid and solid phases 
of the growth substrate along with the REE concentration 
in the plant tissues. Ryegrass has been selected because of 
its capability to grow quickly and developing a consider-
able biomass in this type of polluted substrate along with 
its recognized ability to accumulate metals in their tissues 
(Houben et al. 2013). The use of real waste from an aban-
doned mine site adds novelty to this work and may allow a 
first assessment of the feasibility of applying this technology 
for the recovery of resources from this type of waste.

Materials and methods

Studied area and sampling

The research utilized mine waste materials obtained from the 
San Quintin Mine, an inactive mining site in the South-Cen-
tral region of Spain. The specific location of the mine site 
can be identified using UTM coordinates: 389484, 4297643. 
This particular mine was once actively exploited to extract 
galena (PbS) and sphalerite (ZnS) from the late nineteenth 
century until the first half of the twentieth century. Detailed 
information about the mine site can be found in previous 
studies conducted by Higueras et al. (2012) and Rodríguez 
et al. (2009). The sample of mine tailings was collected from 
a depth of 60 cm and subsequently air-dried under ambient 
conditions at the laboratory. To ensure homogeneity, the 
sample was sieved to a particle size of 2 mm and blended 
with washed sand in a 75:25 weight ratio. This prepared 
mixture served as the growth substrate for the EKPh experi-
ments. Essential information regarding the concentration of 
rare earth elements, major metals, and various physicochem-
ical characteristics of the growth substrate can be found in 
Table 1.

Experimental design and methodology

For the EKPh experiments, rectangular plastic containers 
made of transparent material were used. These containers 
measured 27 cm in length, 17 cm in width, and 18 cm in 
height. Each container had semi-cylindrical wells with nylon 
mesh walls (120 mesh, 5 cm in diameter) located at both 
ends. To set up the electrodes, graphite rods measuring 1 cm 
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in diameter and 25 cm in height were placed inside these 
wells (Fig. 1).

Seeds of English or perennial ryegrass (L. perenne) 
were then sown into the containers using a dosage of 
100 g  m−2. To be precise, each container contained 7 kg 
of growth substrate. The containers were subsequently 
fertilized with a solution containing nitrogen, phosphorus 
and potassium using a rate of 40 kg N  ha−1, 30 kg  P2O5 
 ha−1, and 90 kg  K2O  ha−1.Additionally, they were irrigated 
daily with tap water to maintain moisture at field capacity, 

representing 28.5% of the dry weight of the substrate. 
The water level in the electrode wells was monitored and 
adjusted as needed. Initially, the water level measured 
approximately 8 cm.

The plants were allowed to grow for 44 days without 
the application of electric current. Following this period, 
an electric current was applied for an additional 14 days. 
The EKPh experiments were conducted in a greenhouse 
equipped with artificial lighting, providing 12 h of light 
per day (from 8:00 a.m. to 6:00 p.m.). The greenhouse also 

Table 1  Physicochemical 
properties and total 
concentrations of REEs and 
major metals in the growth 
substrate (mine tailings/
sand 75:25 w:w) used in the 
experiments

Parameter Value Analytical method

pH 6.80 ± 0.05 Soil–water ratio of 1:5 (w:v)
Electrical conductivity (mS cm−1) 0.66 ± 0.02
% Inorganic carbon 0.01 Shimadzu TOC Multi EA 4000 carbon analyzer
% Organic carbon 0.08
% Total carbon 0.09
% Sand 30.4 ± 1.6 Bouyoucos-hydrometer method
% Clay 1.7 ± 0.9
% Silt 67.9 ± 1.6
Texture (USDA classification) Silt loam
Total Pb, mg kg−1 3832 ± 122 Acid digestion and inductively coupled plasma 

mass spectrophotometer (ICP-MS)Total Zn, mg kg−1 2904 ± 132
Total Cu, mg kg−1 93.99 ± 3.7
Total Cd, mg kg−1 38.68 ± 4.0
Total Ce, mg kg−1 59.54 ± 3.33
Total La, mg kg−1 32.48 ± 2.52
Total Nd, mg kg−1 24.76 ± 1.44
Total Pr, mg kg−1 7.390 ± 0.41
Total Cs, mg kg−1 6.174 ± 0.63
Total Y, mg kg−1 15.34 ± 0.92

Fig. 1  Schematic representation of the experimental setup used in the electrokinetic-assisted phytoextraction tests: a alternate current treatments; 
b direct current treatments
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maintained controlled temperatures, ranging between 22 
and 29 °C during the day and 11–14 °C at night.

Five different treatment groups were implemented for 
the experiments: (a) ryegrass under alternating current 
(EKPhAC series); (b) ryegrass under direct current with 
polarity reversal (EKPhDC series); (c) unseeded substrate 
with alternating current (EKAC series); (d) unseeded sub-
strate with direct current and polarity reversal (EKDC 
series); and (e) ryegrass without the application of electric 
current (PHYTO series). The experimental design followed 
a randomized block layout, with three replicates for each 
treatment.

A constant voltage gradient of 1 V  cm−1 was applied 
between days 45 and 58, for 8 h per day (from 10:00 a.m. 
to 6:00 p.m.). That dose of electric current was selected 
based in previous papers with the objective of increasing the 
mobility of REEs without affecting plant growth (Rodríguez 
et al. 2022). This was achieved using a DC power supply 
(Delta Elektronica S.V., model SM120-13, The Netherlands) 
for the EKDC and EKPhDC series, while an AC power sup-
ply (Polylux, model TRAFO QB200, Spain) was used for 
the EKAC and EKPhAC series. The electrode that initially 
operated as the anode was labelled as W1, while the other 
electrode was labelled as W2. In the experimental series 
involving DC current, the polarity of the electric field was 
switched 4 h after the start of the application (2:00 p.m.), 
resulting in the reversal of electrode roles.

Sample collection and analysis

To determine the concentration of dissolved REEs in the liq-
uid soil matrix and electrode well solutions, periodic extrac-
tion and subsequent analysis were performed. A total of five 
samplings were conducted on days 46, 49, 52, 55, and 58. 
The liquid soil matrix was sampled using Rhizon samplers, 
while the electrode well solution was also analyzed.

Samples of the growth substrate located in the cen-
tral section of the containers were taken at the end of the 
EKPh experiments. These solid samples were air-dried at 
room temperature for 24 h before being ground in a ball 
mill (Retsch model MM200, Germany) for further analysis. 
Plant samples were also collected after the EKPh experi-
ments and separated into shoots and roots. The plant sam-
ples were washed with deionized water and then dried in an 
oven at a temperature of 80 °C for 24 h. Finally, they were 
ground using an ultra-centrifugal mill (Retsch model ZM 
200, Germany).

All the solid samples, including the growth substrate and 
plant samples, were digested using the EPA3051A method. 
This involved mixing 0.5 g of ground sample with 9 mL of 
concentrated nitric acid and 3 mL of concentrated hydro-
chloric acid. The mixture was then digested in a micro-
wave digestor. For the determination of the geochemical 

distribution of REEs in the mine tailings, the modified BCR 
sequential extraction method was utilized. This method, 
described by Rodríguez et al. (2009), allowed for the extrac-
tion of four metal fractions: exchangeable and acid-solu-
ble, bound to Fe/Mn oxides, bound to organic matter and 
sulfides, and the residual fraction. Details of the extraction 
method can be found in Table SM1 in the Supplementary 
Materials.

The concentrations of REEs, specifically La, Ce, Pr, Nd, 
Y, and Sc, in the liquid samples (including soil solution sam-
ples and the extracts from digestion and BCR extraction) 
were analyzed using an ICP-MS spectrophotometer (Thermo 
iCAP TQ model from ThermoFisher Scientific, Waltham, 
MA). To ensure the quality assurance of the REE analysis, 
comparisons were made with standard reference materials 
such as SQC001 (Sigma-Aldrich) for soil samples and ERM-
CD281 (European Reference Materials) for plant samples. 
The accuracy of the BCR sequential extraction method was 
assessed using the BCR-701 standard reference material. 
Differences up to 10% between measured values and certi-
fied ones were obtained. Additionally, blank control samples 
were included in the analysis, with acid digestions being 
checked every 10 samples, and the sequential extraction pro-
cedure being checked every 9 samples.

Statistical analysis

For analyzing the data, the Statistix 10 package (Analyti-
cal Software, USA) was employed. The analysis of vari-
ance (ANOVA) was conducted on each parameter measured, 
following the experimental design of randomized complete 
block with three replicates. In order to compare the aver-
age values of these parameters, Fisher’s least significant 
difference (LSD) test was utilized, at a significance level 
of p ≤ 0.05 as specified by Gómez and Gómez (1984). The 
statistical differences between the mean values were then 
depicted in all tables and figures by assigning different let-
ters to indicate these distinctions.

Results and discussion

Changes in the REE geochemical fractionation 
in mine tailings

The most abundant REEs detected in the mine tailings 
used in this research corresponded to Ce, La, and Nd, with 
mean concentrations of 59.54, 32.48, and 24.76 mg·kg−1 
respectively (Table 1); the order in REE concentrations was 
Ce > La > Nd > Y > Pr > Sc. The distribution pattern found 
for the LREEs (La, Ce, Pr, and Nd) aligns with the Oddo-
Harkins rule, which establishes that the elements with even 
atomic numbers tend to exhibit higher abundance compared 
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to their neighbors with odd atomic numbers (Loell et al. 
2011). Overall, the total concentration of REEs found in 
the studied mine tailings, around 146 mg·kg−1, was sig-
nificantly lower than those reported for contaminated soils 
from nearby locations of REEs mine tailings in China, which 
ranged from 156 to 56,500 mg·kg−1; nevertheless, it closely 
approximates the mean concentration found in the Chinese 
soils (181 mg·kg−1), which serves as a primary reference for 
the lanthanide reserves in the world (Wang and Liang 2015).

The geochemical fractionation of REEs (determined 
using the BCR sequential extraction method) in the initial 
growth substrate and in the samples taken at the end of the 
EKPh experiments was obtained to assess the geochemical 
changes occurred in the mine tailings after the application 
of the different treatments; the results are shown in Fig. 2. 
The initial geochemical distribution of REEs was predomi-
nantly dominated by the fraction bound to the residual frac-
tion (F4), comprising approximately 92% of the total REEs, 
and to a lesser extent, by the fraction bound to Fe/Mn oxides 
(F2), accounting for approximately 6.2%. A similar affinity 
of REEs was reported by Liu et al. (2016) for the geochemi-
cal fractionation in sediments, showing that REEs could 

be bounded to Fe/Mn oxides although Fe oxide minerals 
were relatively low; similar findings were also found for 
soils (Jalali and Lebeau 2021). Other studies showed that 
the residual fraction generally represents up to 90% of the 
REE concentration, and it is typically composed of alumino-
silicates (small-sized ores that mainly constitute clays) and 
phosphates (Lima and Ottosen 2021); moreover, this fraction 
is considered the least mobile and available fraction for plant 
uptake (Malsiu et al. 2020). Likewise, the mobility and solu-
bility of REEs are strongly influenced redox potential and 
pH (Laveuf et al. 2012). In our case, soil pH was kept around 
neutral values even when the electric current was applied 
and the electrochemical redox reactions took place in the 
electrodes (Medina-Díaz et al. 2023); hence, under these 
conditions the mobility of REEs may be fairly restricted 
(Wiche et  al. 2017). Likewise, the adsorption capacity 
of cations is significantly influenced by their valence and 
hydrated ionic radius (Cuevas Durán 2010; Khorasanipour 
and Rashidi 2020); as the size decreases and the valence 
increases, REE and other metal ions are held more strongly 
(Kabata-Pendias 2010). This trend explains the order found 
for REEs F1 and F2 fractions in the used mine tailings, i.e., 

Fig. 2  Geochemical fractiona-
tion of REEs (expressed as % of 
the total concentration) in the 
initial mine tailings substrate 
(mine tailings/sand 75:25 w:w) 
and after the application of the 
different treatments obtained by 
the BCR sequential extraction 
method: (F1) exchangeable and 
acid-soluble REEs, (F2) REEs 
bound to Fe/Mn oxides, (F3) 
REEs bound to organic matter 
and sulfides and, (F4) REEs in 
residual fraction. Treatments 
applied: PHYTO: plants and no 
electricity; EKDC and EKAC: 
electric current and no plants; 
EKPhDC and EKPhAC: plants 
and electric current. Distinct 
letters indicate significant differ-
ences between treatments (n = 3; 
Fisher’s LSD test; p ≤ 0.05) for 
each REE and fraction (F1, F2, 
F3, and F4)
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Y > Nd > Pr > Ce > La > Sc; with the exception of Sc (which 
showed a high affinity for organic matter, as will be seen 
later), that order is just the opposite to that of atomic size.

Some significant changes were observed in the different 
REEs fractions of the mine tailings after the application of 
electric current and/or plants (Fig. 2). The residual fractions 
(F4) of Ce, Pr, Nd, and Sc were significantly decreased, as 
compared to the initial values, by the application of phy-
toremediation and EKPh treatments; mean percentages 
also decreased for the residual fraction of La, but that 
decrease was not significant. However, the Y residual frac-
tion increased under these same treatments; since electroki-
netic treatments without plants did show the decrease of the 
residual fraction, this rise may be associated with the uptake 
of more labile fractions by plants for this element (see the 
“Ryegrass biomass and phytoextraction of REEs” section). 
The electrokinetic treatments without plants were less effec-
tive for the REE mobilization; significant decreases in the 
residual fraction were only found for Ce and Y under AC 
current application (EKAC series). It means, on one hand, 
that the application of treatments based on phytoremediation 
achieved to increase the availability of metals in the mine 
tailings; on the other hand, these results also reveal the syn-
ergistic effect of the combination of electrokinetics and phy-
toremediation. The good performance on metal mobilization 
by the PHYTO treatment can be attributed to the secretion of 
plant metabolites (root exudates), such as organic acids, as it 
was previously suggested by us (Medina-Díaz et al. 2023).

Ce, Nd, and Pr concentrations of the F2 fraction were sig-
nificantly increased, with respect to the initial value, for the 
PHYTO, EKPhDC, and EKPhAC treatments; on the con-
trary, the application of electrokinetics without plants only 
increased in a significant way the F2 fraction of Sc (Fig. 2). 
Likewise, Sc and Y F2 concentrations were significantly 
decreased under the effect of the single and combined phyto-
extraction treatments. It has been previously reported that the 
Fe/Mn oxides have a relevant role in the release and availabil-
ity of REE compounds (Thomas et al. 2014); this is a process 
mainly favored under reducing conditions which strongly 
depends on redox potential and pH (Laveuf et al. 2012; Liu 
et al. 2016). Ce is the REE most sensitive to redox poten-
tial changes, since Ce(III) can be easily oxidized to Ce(IV) 
reducing its availability for plants (Wang and Liang 2015). 
On the other side, REEs were poorly bounded to oxidizable 
BCR fraction (F3), except for Sc (Fig. 2). Even though, other 
studies have indicated that REEs may further exhibit a strong 
affinity for organic matter (Wiche et al. 2017; Vukojević et al. 
2019), in this study, the complexation between REEs and 
organic matter could be restricted due to the low organic car-
bon content (< 1%) of mine tailings (Liu et al. 2020), which 
is a typical characteristic of this type of waste (Tao et al. 
2022). Nevertheless, Pr, Nd, Y, and Sc F3 concentrations 
were significantly increased with respect to the initial mine 

tailings under EKPhAC, EKPhDC, and PHYTO treatments 
(Fig. 2). Lastly, the F1 fraction showed low values for most 
of the studied REEs; it consists as weak-adsorbed free ions on 
the soil particles surface, susceptible to ion exchange, along 
with metals bound to carbonates; this is considered the most 
soluble and mobile fraction (Kotelnikova et al. 2020). Sig-
nificant changes were found for Y and Nd, whose F1 fraction 
increased significantly under the application of combined and 
phytoextraction treatments, respectively (Fig. 2).

Distribution of REE concentration in water in soil 
pores and electrode wells

The behavior REEs in the solution of the soil pores and elec-
trodes  (W1 and  W2) was assessed in order to detect changes 
in their solubility and mobility; concentrations of Ce, Pr, 
Y, and Sc over the days are shown in Fig. 3 (La and Nd 
concentrations were also measured and, since their similar-
ity with Ce, they have been included in the Figure SM1 of 
the Supplementary Materials). With respect to the electrode 
wells, the highest concentrations of REEs were detected for 
the treatments using DC current; it was expected because 
electroosmotic and electromigration fluxes can only be estab-
lished using this type of electric field (Medina-Díaz et al. 
2023). The anode–cathode movement induced by electroos-
mosis along with the cationic form of REEs, which allowed 
their transport to the opposite-charge electrode well (cathode, 
W1) (Sánchez et al. 2018; Cameselle et al. 2019), may have 
contributed to obtain the highest concentrations of REEs in 
the cathode well under treatments using DC current (Luo 
et al. 2018; Awa and Hadibarata 2020). The presence of sig-
nificant amounts of Ce, Y, and Sc in the anode (W2) can be 
explained by the partial dissolution of some metal species in 
the vicinity of the anode due to the low pH caused by water 
electrolysis (Medina-Díaz et al. 2023). Between metals, Ce 
and Y reached the highest concentrations in both in the anode 
and cathode; it can be attributed, on one hand, to the high 
availability of Y in the mine tailings (in agreement with that 
seen in the previous section) and, on the other hand, to the 
higher content of Ce (as compared to Pr, Sc, and Y) in the 
used mine tailings. Likewise, it was observed that the REE 
concentrations decreased progressively under the EKPhDC 
treatment but was raised under the EKDC treatment; it means 
that the presence of plants affected the concentration of solu-
ble REEs and their migration towards the electrode wells.

Regarding the soil pore water extracted by the Rhizon 
samplers, concentrations of Ce and Pr (mean values of 0.116 
and 0.021 µg  L−1, respectively) were approximately three 
times lower than those of the electrode wells (0.337 and 
0.059 µg  L−1 for Ce and Pr, respectively) in all treatments 
(Fig. 3). On the contrary, Y and Sc concentrations were quite 
higher than Ce and Pr ones for all treatments (mean val-
ues of 0.741 and 1.149 µg  L−1 for Y and Sc, respectively); 
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moreover, Y concentration remained almost constant while 
Sc concentration decreased as the experiment progressed. 
Both in electrode wells and soil pore water, Y and Sc high-
lighted heterogeneous behavior with respect to other REEs, 
possibly due to their lower ionic radius (Ou et al. 2022; 
Galhardi et al. 2022). The high solubility of Y is in agree-
ment with that seen for its geochemical partitioning in the 
previous section; solubility of Sc can be attributed to the 
formation of the Sc(H2O)6

3+ and Sc(H2O)5OH2+ complexes 
in aqueous phases along with its affinity for complexing 
with sulphates and carbonates (Kabata-Pendias 2010; Liu 
et al. 2016; Kotelnikova et al. 2021). As pointed out in the 

previous section, REEs are usually predominantly adsorbed 
to the solid phase of the soil and just a tiny amount is dis-
solved in the soil interstitial water (Tao et al. 2022). In gen-
eral, the low soluble REE concentrations obtained (< 1 mg 
 L−1), in consequence of the low availability of REEs in the 
mine tailings used here (the “Changes in the REE geochemi-
cal fractionation in mine tailings” section), are consistent 
with other research (Kotelnikova et al. 2020) and those 
values found in natural waters (Migaszewski and Gałuszka 
2015). In general, the results obtained from the REE concen-
trations in the liquid samples showed that the substantially 
low availability of the REEs can be improved by applying 

Fig. 3  REEs concentrations (mg 
 L−1) in the water obtained from 
electrode wells  (W1 and  W2) 
and the soil pores (collected 
from the middle section of each 
container by Rhizon samplers) 
sampled (n = 3) just before 
turning off the electric current 
on different days: a Ce; b Pr; 
c Y; d Sc. Treatments applied: 
PHYTO: plants and no electric-
ity; EKDC and EKAC: electric 
current and no plants; EKPhDC 
and EKPhAC: plants and elec-
tric current. For each REE and 
section; single, double, and tri-
ple asterisks indicate significant 
level (two-way ANOVA analy-
sis) of “concentration × time” 
interaction. Vertical bars show 
LSD test (p ≤ 0.05): (I) for same 
level of EK/Phyto treatment 
and (II) for different levels of 
treatments
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electric current, especially DC current. (Liu et al. 2016; 
Yuan et al. 2021). Furthermore, although REEs are not con-
sidered essential elements for plants, the soluble forms can 
be absorbed through the root system, being strongly retained 
in the negatively charged cell wall (Khan et al. 2017). In fact, 
as will be seen in the next section, Sc accumulated poorly in 
the ryegrass tissues; this could be the reason why significant 
concentrations of this element remained in the soil solution 
throughout the experiments.

Ryegrass biomass and phytoextraction of REEs

The biomass production of ryegrass was assessed after the 
end of the experiments (Figure SM2 in Supplementary 
Materials). Dry weight of ryegrass was not significantly dif-
ferent for the combined treatments (EKPhDC and EKPhAC 
series) as compared to the phytoextraction one (PHYTO); 
average biomass values of 4.04, 7.21, and 11.25  g per 
container were obtained for roots, shoots, and total plant, 
respectively. It suggests that the ryegrass growth was not 
affected when either DC or AC electric fields were applied. 
Our results contrast with some previous studies that reported 
enhanced effects on plant growth under AC current, due to 
the biological/biochemical alterations induced in response to 
the interaction between electric current and interstitial fluid 
(Cang et al. 2011; Cameselle et al. 2013; Acosta-Santoyo 
et al. 2017). Likewise, the improvement of enzymatic activi-
ties capable to reduce oxidative stress conditions (He et al. 
2017; Kovaříková et al. 2019) and the mobilization of plant 
nutrients in the rhizosphere vicinity thanks to the electroki-
netic process at moderate voltages have also been reported 
(Lima et al. 2017). On the other hand, other authors affirm 
that plant growth may be stimulated when low doses of 
REEs are accumulated into plant tissues, but its toxicity may 
increase along with their concentration (Jalali and Lebeau 
2021). However, in our study, all these potential beneficial 
effects for ryegrass growth were masked by the high toxicity 
caused by the high concentrations of metals such as Pb or 
Cd existing in the mine tailings used as a growth substrate 
(Medina-Díaz et al. 2023); in fact, chlorosis and early wilt-
ing symptoms were observed for all treatments.

Total concentrations of La, Ce, Pr, Nd, Sc, and Y accu-
mulated in plant tissues after the application of the different 
treatments along with the total plant uptake values are shown 
in Table 2. The accumulation order of REEs in the ryegrass 
tissues followed the sequence Ce > La > Nd > Y > Pr > Sc, 
which is with the exception of Y consistent with the order 
of abundance of the REEs in the studied mine tailings. How-
ever, ryegrass showed different affinities for the different 
rare earth elements as it can be pointed out by calculating 
the bioconcentration factor (BCF, calculated as the ratio of 
the element concentration in the ryegrass root by that of 
the substrate). Considering this parameter, the order of REE 

uptake was Y > Ce ≈ Nd ≈ Pr > La >  > Sc; this trend clearly 
agrees with that obtained for the sum of F1 and F2 BCR 
fractions in the mine tailings substrate (the “Changes in the 
REE geochemical fractionation in mine tailings” section). 
Therefore, it seems that REEs belonging to those geochemi-
cal fractions are the most significant for the ryegrass avail-
ability; since the F3 fraction was found to be the majority 
in the case of Sc (the “Changes in the REE geochemical 
fractionation in mine tailings” section), its low accumula-
tion in ryegrass would indicate that this fraction is not as 
available as F1 and F2 ones. Regarding the accumulation 
of REEs in the different plant tissues, all the elements were 
mainly accumulated in the roots with mean concentrations 
exceedingly more than 23 times the shoot ones (note the 
remarkable difference in the scales of the Y axis for root and 
shoot REE concentrations in Fig. 4). The REE concentra-
tions reached in total biomass by ryegrass in this study were 
higher than those detected by Hu et al. (2022), who reported 
concentrations of 400–1400 µg  kg−1 and 800–2100 µg  kg−1 
for La and Ce, respectively, in alfalfa (Medicago sativa L.) 
and 400–600 µg·kg−1and 600–1300 µg·kg−1 for La and Ce, 
respectively, in ryegrass (L. perenne). In the same way, our 

Table 2  REEs concentrations in total plant (µg  kg−1), REEs  total 
uptake (µg per container), and bioconcentration factors (BCF, cal-
culated as the ratio of REEs root concentrations by their concentra-
tion in soil) under the influence of different treatments (PHYTO, 
EKPhDC, and EKPhAC). All values are expressed in mean val-
ues ± STD. Different letters denote significant differences between 
treatments (n = 3; Fischer’s LSD test; p ≤ 0.05)

Parameter PHYTO EKPhDC EKPhAC

Total plant concentration (µg  kg−1)
  La 1034 ± 255 b 1252 ± 81.7 b 1757 ± 63.6 a
  Ce 2180 ± 504 b 2546 ± 180.3 b 3572 ± 75.1 a
  Pr 267.6 ± 64.8 b 319.7 ± 24.6 ab 440.9 ± 8.6 a
  Nd 934.2 ± 222 b 1133 ± 89.1 ab 1549 ± 28.3 a
  Y 571.0 ± 147 b 711.7 ± 73.9 ab 984.5 ± 48.2 a
  Sc 159.1 ± 28.1 b 167.2 ± 15.1 b 278.8 ± 17.5 a

Total REEs uptake (µg per container)
  La 11.98 ± 2.95 b 13.70 ± 1.24 b 19.43 ± 1.74 a
  Ce 25.23 ± 5.50 b 27.84 ± 2.40 b 39.53 ± 3.94 a
  Pr 3.09 ± 0.71 b 3.49 ± 0.30 b 4.88 ± 0.51 a
  Nd 10.80 ± 2.40 b 12.39 ± 0.99 b 17.15 ± 1.77 a
  Y 6.57 ± 1.49 b 7.76 ± 0.74 b 10.90 ± 1.29 a
  Sc 1.84 ± 0.25 b 1.83 ± 0.26 b 3.09 ± 0.38 a

Bioconcentration factor
  La 0.09 ± 0.02 b 0.11 ± 0.01 b 0.17 ± 0.01 a
  Ce 0.11 ± 0.03 b 0.13 ± 0.001 b 0.19 ± 0.01 a
  Pr 0.11 ± 0.02 b 0.12 ± 0.008 b 0.18 ± 0.01 a
  Nd 0.12 ± 0.02 b 0.13 ± 0.007 b 0.19 ± 0.01 a
  Y 0.14 ± 0.01 b 0.17 ± 0.002 b 0.24 ± 0.004 a
  Sc 0.010 ± 0.002 b 0.013 ± 0.002 b 0.026 ± 0.004 a
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findings indicate significantly higher concentrations of La, 
Ce, Pr, and Nd in comparison to the study conducted by 
Anawar et al. (2012), in Vicia villosa Roth (223, 299, 63, and 
261 µg  kg−1 for La, Ce, Pr, and Nd, respectively) and Came-
lia sinensis (L.) Kuntze (393, 369, 103, and 421 µg  kg−1 
for La, Ce, Pr, and Nd, respectively). The relatively low 
concentrations and BCF values obtained here (in the range 
0.01–0.24; Table 2) can be attributed, on the one hand, to 
the very reduced availability of REEs in the studied mine 
tailings (the “Changes in the REE geochemical fractiona-
tion in mine tailings” section) and the high total concen-
trations of major metals such as Pb or Zn (Table 1) which 
compete for metal uptake (Kovaříková et al. 2019). On the 
other hand, light REEs such as Ce, La, and Nd also compete 
with  Ca2+ (macronutrient) for a similar transport pathway in 
a range of plant biological processes (Thomas et al. 2014); 
this is mainly due to the comparable ionic radius and higher 
charge density and trivalent form of REEs relative to  Ca+2 
(Hoshino et al. 2016; Jalali and Lebeau 2021). Previous 
studies reported that up to 80% of the REEs were concen-
trated in the root system (Khan et al. 2017). This is partly 
related to the selective uptake of REEs into root cell walls 
in the form of trivalent cations, which is one of the main 
REEs fixation mechanisms in plants (Tao et al. 2022). Once 
inside the roots, the translocation of REEs to the aerial parts 
is promoted mainly through the xylem, since its cells have a 
high cation exchange capacity that stimulates the binding of 

REEs with the ligands present in the inner membrane (aspar-
tic acid, glutamic acid, citric acid, malic acid, and histidine) 
(Jalali and Lebeau 2021). 

In general terms, it was observed that the application of 
electric current increased the average concentrations of all 
the REEs accumulated in ryegrass shoots, roots and total 
plant as compared to those obtained in the phytoextraction 
treatment (Table 2; Fig. 4). However, those increases were 
not statistically significant in all the cases. Specifically, shoot 
concentrations of REEs were not significantly enhanced by 
the application of both DC and AC current (Fig. 4). How-
ever, the concentration of REEs was significantly increased 
in the ryegrass roots by applying AC current (Fig. 4) and, as 
a result, total plant concentrations, total plant uptake, and 
BCFs were also significantly improved (Table 2). This can 
be attributed to the increase in the secretion of root exudates 
induced by AC current, mainly organic acids that facilitate 
the chelation and availability of nutrients and REEs (and 
other metals) in the rhizosphere (Amari et al. 2017). As can 
be seen in Fig. 4, the highest mean shoot concentrations of 
REEs were obtained for the EKPhDC treatment while the 
highest REE concentrations in roots were reached under the 
EKPhAC one; it means that a higher root absorption did not 
necessarily lead to a higher shoot accumulation, indicating 
that REE translocation is hindered to some extent. Plants 
absorb REEs mainly in ionic form and their transport in 
soluble form to the aerial parts is carried out through the 
apoplastic (passive) and symplastic (active) pathways (Jalali 
and Lebeau 2021). On the overall, the application of AC cur-
rent increased the total plant concentrations of REEs between 
63 and 75% and total plant uptake between 57 and 68%. AC 
current favored REE accumulation in the center of the soil 
containers, avoiding the transport to the electrode wells and 
thus facilitating contact between REEs and the ryegrass roots 
(Cameselle et al. 2013; Lima et al. 2017). Bi et al. identified 
an enhancement in the metal uptake mechanism in Lactuca 
sativa L. when a 50 Hz AC field was applied (Bi et al. 2010). 
This is related to the polarization and depolarization of the 
cell membrane in root cells caused by alternating current 
(Bi et al. 2011). The high frequency of this type of electric 
current causes changes in the voltage across the surface of 
the outer membrane and, consequently, the opening and clos-
ing of ionic channels and pumps, facilitating the diffusion of 
ions through the cell membrane; in turn, the negativity of 
the membrane surface potential is decreased, increasing the 
concentration of cations in the cell (Ehosioke et al. 2020).

Despite of the limited phyoextraction yields obtained in this 
study, it has been shown that phytomining could become a 
cost-effective technique to implement the recovery of valuable 
REEs from existing mine tailings, thus achieving the treat-
ment of that type of hazardous waste and obtaining products 
of high-tech interest according to the principles of the circular 
economy (Van Loy et al. 2017). Moreover, the electrokinetic 
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assistance clearly improved the phytoextraction potential of 
ryegrass that was the model plant species used in this study; 
the results obtained here make it worthwhile to explore the use 
of different conditions for the application of the electric field, 
mainly alternate current, as well as the use of potential REE 
hyperaccumulating plants in order to reach higher phytomining 
efficiencies (Siyar et al. 2020). Previous studies have suggested 
some species of hyperaccumulator ferns despite annual low 
dry matter production and the requirements of specific climatic 
conditions (Dinh et al. 2022). Dicranopteris linearis (Burm.f.) 
Underw (fern) is the most representative hyperaccumulator 
species due to its tolerance to the REE uptake from polluted 
soils; total concentrations of REEs (La, Ce, Pr, Nd, Sc, and 
Y) found in this plant accounted approximately 4400 and 
1000 mg  kg−1 for roots and shoots, respectively (Khan et al. 
2017). The herbaceous perennial plant Phytolacca americana 
L. has also been detected to accumulate a total REE concentra-
tions in the range 524–1040 mg  kg−1 (Liu et al. 2020; Thomas 
et al. 2022). In the same way, some grasses, such as Panicum 
miliaceum L. and Phalaris arundinacea L., and herbs, such as 
Fagopyrum esculentum Moench and Brassica napus L., have 
demonstrated a convenient performance in REEs accumula-
tion (Wiche and Heilmeier 2016). In any case, it is advisable 
to carry out an economic and environmental impact study to 
determine the cost–benefit ratio and consider phytomining 
with or without electrokinetic assistance as a feasible technique 
to recover REEs from mine waste.

Conclusions

This work showed the results obtained in the application of 
electrokinetic-assisted phytoremediation to real mine tailings 
using both direct and alternating currents. It has been dem-
onstrated the initial hypothesis that it is feasible to recover 
REEs from real metal mining waste by phytoextraction and 
that the performance of this technology can be significantly 
improved by applying electric current, especially of the AC 
type. Likewise, the mobilization of REEs in the mine tailings 
and the enhancement of their availability have been shown 
by combining the results obtained from the BCR sequential 
extraction, the analysis of the REE concentrations in the soil 
pore water and electrode well solutions, and their uptake by 
ryegrass. It was found that F1 and F2 BCR fractions are the 
most indicative of the availability of REEs for plant absorp-
tion and accumulation and how electric current along with 
plants can modify the distribution of those geochemical frac-
tions, specially the F2 one. It is evident that the phytoex-
traction yields reported here are not sufficient to consider an 
economically feasible application of the studied technology 
to real cases. However, our results showed that it is interest-
ing and recommendable to continue with the study of this 
technology for the recovery of REEs from mining waste and/

or contaminated soils with special emphasis on the search for 
autochthonous hyperaccumulating plant species.
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