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Abstract
Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on 
greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and 
protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emis-
sions factors. With boosting algorithms, this study estimated each animal category’s biogas potential and  CH4 emissions 
(tier1 and tier2 approach) for 2004–2021 in all of Turkey’s provinces. Two different scenarios were created in the study. For 
scenario-1, the years 2020–2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022–2024 
were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor 
(XGBR) algorithm was the most successful algorithm with an R2 of 0.9883 for animal-based biogas prediction and 0.9835 
and 0.9773 for animal-based  CH4 emission predictions (tier1 and tier2 approaches) for the years 2020–2021. When the 
mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. 
According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential 
of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for 
Bursa, and 12.866 for Antalya. In the estimation of log10 values of  CH4 emission, the tier1 approach yielded estimates of 
3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 
and 2.122, respectively.
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Introduction

The need for energy worldwide is increasing in line with the 
population, and this energy demand continues to increase 
with living conditions and technological developments. 
Energy demand has increased by 150% in the last 40 years. 
Energy consumption is thought to have caused an increase 

of approximately 60% in air pollution. Using clean energy 
sources is very important to prevent such adverse effects. 
Greenhouse gases formed during energy production are 
known as the gases responsible for climate change world-
wide. Since these gases’ physical and chemical properties 
are different, their effects are also different. Due to this 
global situation, the Kyoto Protocol and the Climate Change 
Convention were signed in the United Nations Framework 
Convention on Climate Change (Can 2020; OECD 2015; 
Senocak and Guner Goren 2022).

The increase in industrial-scale livestock farming world-
wide and the resulting animal waste have become significant 
sources of environmental pollution. Turkey is an important 
agricultural and livestock country. Livestock farming con-
tributes significantly to agricultural production, rural devel-
opment, and the economy. Due to Turkey’s growing popu-
lation and economic development, there is an increasing 
demand for meat and milk. However, livestock production 
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needs to be controlled. A significant amount of manure is 
produced in the livestock sector every day. Ensuring hygiene 
in the livestock sector and proper disposal of the obtained 
manure are crucial. The irregular disposal of livestock 
manure and its direct use as fertilizer in agricultural lands 
are two significant issues in animal manure management 
in Turkey (Can 2020; Erdogdu et al. 2019; Melikoglu and 
Menekse 2020; Şenol et al. 2021). A new regulation has 
been introduced to control animal manure management. This 
new regulation, effective in the second half of 2021, restricts 
the direct application of livestock manure to the soil. In addi-
tion, livestock farms are held responsible for properly storing 
animal manure and developing manure management plans 
(Chandra Manna et al. 2018; Erdogdu et al. 2019; Zaidi et al. 
2018). This regulation also encourages the use of animal 
manure for biogas production as a management strategy. 
Due to certain restrictions, animal manure is not directly 
disposed of and is mainly stored in fertilization or storage 
facilities. Uncontrolled animal manure storage can lead to 
greenhouse gas emissions and environmental issues such 
as odor and hygiene problems. Animal manure that does 
not have proper storage facilities can indirectly contaminate 
surface water or groundwater. Animal manure contains vari-
ous microorganisms that can risk animals and humans, caus-
ing food contamination and disease outbreaks (Font-Palma 
2019; Maroušek et al. 2020; Sun et al. 2021). Therefore, 
implementing sustainable manure management systems 
that reduce the environmental risk and allow for the stor-
age, transportation, and use of manure on farms is crucial 
in many aspects. The livestock and agriculture sectors con-
tribute significantly to Turkey’s greenhouse gas emissions. 
Therefore, it is essential to target the reduction of green-
house gas emissions resulting from manure management 
and find innovative solutions to tackle this significant issue 
(Erdogdu et al. 2019; Şenol et al. 2021; Sun et al. 2021).

There is a growing trend toward using renewable energy 
sources to meet the world’s energy needs while reducing 
environmental damage. There is a growing effort among 
governments, scientists, and companies to develop sustain-
able methods of obtaining energy and to enact laws gov-
erning the use of such methods. Several sustainable energy 
sources have been promoted in energy production, resulting 
in a gradual decrease in the use of fossil fuel-based energy. 
The shift in electricity generation in European Union mem-
ber countries is achieved through the promotion of sustain-
able energy sources and the reduction of reliance on fossil 
fuels (Gündoğan and Koçar 2022; Karaaslan and Gezen 
2022; Ocak and Acar 2021).

This year, for the first time in European Union member 
countries, 40% of electricity generation came from renewa-
ble energy sources, while 34% was derived from fossil fuels. 
The increasing utilization of renewable energy sources con-
tributes to the transformation aimed at meeting the world’s 

energy demand while minimizing the impact on the ecosys-
tem. Governments, scientists, and companies are working 
toward legal regulations to promote energy production and 
improvements through sustainable methods (Cheng et al. 
2021; Erdin and Ozkaya 2019; Pence et al. 2022; Yurtkuran 
2021).

This situation demonstrates the effectiveness of policies 
that reduce dependence on fossil fuels, transition to methods 
that cause less harm to the environment in energy produc-
tion, and promote sustainable energy sources. Increasing 
renewable energy sources reduces greenhouse gas emissions, 
decreases environmental pollution, and combats climate 
change (Jones and Moore 2023; Pence et al. 2022; Senocak 
and Guner Goren 2022).

The anaerobic decomposition of organic materials such as 
manure, agricultural waste, sewage sludge, and food waste 
produces biogas. It primarily consists of methane  (CH4) and 
carbon dioxide  (CO2), which can be converted into heat and 
electricity. Biogas is known as a renewable energy source. 
It is widely used in Europe due to its advanced technology.

The Intergovernmental Panel on Climate Change (IPCC) 
Guidelines recommend two general methods for estimating 
 CH4 emissions factors: tier1 and tier2. The tier1 method uses 
default emissions factors to calculate emission factors, while 
the tier2 method uses country-specific data. Compared to 
tier1, tier2 is more accurate because it incorporates country-
specific information (Dong et al. 2006).

As a clean, renewable energy and fuel with low envi-
ronmental impact, biogas is used for various purposes such 
as cooking, lighting, and electricity generation (Khoshgof-
tar Manesh et al. 2020). It is stated that biogas utilization 
can reduce greenhouse gas emissions and can be one of the 
most important energy sources in meeting countries’ energy 
demands (Usack et al. 2019). Biogas, mainly consisting of 
50–70%  CH4, can be converted into heat and electricity. 
Biogas is considered a renewable energy source. Renewable 
energy and related conversion technologies provide an alter-
native to fossil fuel-derived energy, which is associated with 
various environmental issues (Heydari et al. 2021; Wang 
et al. 2021). Recently, it has been stated that photovoltaic/
biomass systems are more cost-effective than renewable 
hybrid systems (Heydari et al. 2023).

In recent years, machine learning (ML)-based models 
have emerged as promising tools for predicting AD pro-
cesses (Andrade Cruz et al. 2022). It is possible to estimate 
and determine biogas production using ML models with-
out understanding the process mechanisms (Tufaner and 
Demirci 2020). Several studies have utilized ML algorithms 
such as artificial neural networks (ANN) and random forests 
(RF), or combinations thereof, applied to biogas processes 
(Chiu et al. 2022; Gonçalves Neto et al. 2021).

Najafi and Faizollahzadeh Ardabili (2018) studied 
small-scale biogas production using mushroom compost. 
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This study employed ANFIS (adaptive neuro-fuzzy infer-
ence system) and ANN models to predict biogas produc-
tion based on independent variables. The independent var-
iables considered in the study were the carbon-to-nitrogen 
(C/N) ratio, reactor temperature (T), and retention time 
(RT) (Najafi and Faizollahzadeh Ardabili 2018).

De Clercq et  al. (2019) developed an ML model to 
predict biogas output based on waste input. They aimed 
to improve biogas production in industrial facilities by 
designing a graphical user interface. The ML model used 
in the study consisted of logistic regression, support vector 
machine, random forest, extreme gradient boosting, and 
k-nearest neighbor regression. According to their findings, 
the k-nearest neighbor (KNN) regression model was the 
most suitable method for the biogas plant, achieving an 
accuracy of 87% on the test set (De Clercq et al. 2019).

Stolarski et al. (2020) conducted a study on developing 
bioenergy technologies in Denmark, Germany, Estonia, 
Finland, Latvia, Lithuania, Poland, Sweden, and Norway. 
The research focused on assessing the potential of agricul-
tural biomass, manure, and slurry in these countries. The 
study revealed that Germany and Poland have the high-
est potential for utilizing agricultural biomass, manure, 
and slurry for bioenergy production. Furthermore, it was 
highlighted that Germany, the leading biogas producer, 
accounted for 92% of all biogas plants in the studied coun-
tries (Stolarski et al. 2020).

Elmaz et al. (2020) employed ML methods to predict 
the outcomes of biomass gasification. Their study utilized 
four regression techniques: polynomial regression, sup-
port vector regression, decision tree regression, and mul-
tilayer perceptron. The results showed that the multilayer 
perceptron and decision tree regression outperformed the 
other methods regarding prediction accuracy (Elmaz et al. 
2020).

Das et al. (2020) utilized farm animal population data 
from Bangladesh between 2005 and 2018 to estimate green-
house gas emissions using the 2006 IPCC tier1 approach. 
They determined that the greenhouse gas emissions from 
livestock in 2018 amounted to 66.59 Gg/year  CO2 equiva-
lent. The study further projected that by 2020, the emissions 
could reach 69.87 Gg; by 2030, 80.62 Gg; by 2040, 94.64 
Gg; and by 2050, 113.10 Gg/year  CO2 equivalent. In 2018, 
the total greenhouse gas emissions were composed of enteric 
 CH4 (44%), manure  CH4 (3.6%), direct  N2O (51.5%), and 
indirect  N2O emissions (Das et al. 2020).

Almomani (2020) developed an ANN algorithm to model 
and optimize cumulative  CH4 production from agricultural 
solid waste and cow manure (Almomani 2020).

Kim et al. (2020) calculated the impact of digested biogas 
from organic waste on natural gas and its ability to reduce 
 CO2 emissions for two Korean wastewater treatment plants 
(Kim et al. 2020).

Ibidhi et al. (2021) estimated the country-specific national 
emission factor for  CH4 emissions from enteric fermenta-
tion in dairy cattle in South Korea using the 2006 IPCC 
approach. They calculated the emission factor for different 
age groups of animals. With the developed emission factor 
for dairy cattle, it was determined that the South Korean 
dairy sector has the potential to reduce greenhouse gas emis-
sions by approximately 97 ×  103 tons of  CO2 equivalent per 
year, which corresponds to a reduction of 8% from the sec-
tor’s total emissions (Ibidhi et al. 2021).

Tongwane and Moeletsi (2021) conducted a study for 
2019, which determined that South Africa produced 35.37 
million tons of  CO2e emissions, including emissions from 
sources such as cattle, pasture, and grasslands.  CH4 emis-
sions from enteric fermentation accounted for 64.54% of the 
total emissions, followed by emissions from pasture, grass-
lands, and savannahs at 27.66%. Regarding emissions related 
to fertilizer management, 4.34% of the total emissions were 
attributed to nitrous oxide  (N2O), and 3.45% were attributed 
to  CH4 emissions (Tongwane and Moeletsi 2021).

Jeong et al. (2021) estimated the biogas production of a 
municipal wastewater treatment plant in South Korea with 
deep learning-based models. In the estimation results, the R2 
value was obtained as 0.76 (Jeong et al. 2021).

Sun et al. (2021) analyzed that China reduced its total 
annual greenhouse gas by 2% due to biogas production from 
straw and its conversion (Sun et al. 2021).

Ocak and Acar (2021) evaluated the energy production 
potential of Turkey’s Marmara region and concluded that 
converting agricultural and animal wastes into biogas and 
then into electricity is economical (Ocak and Acar 2021).

Huo et al. (2021) estimated  CO2 emissions from China’s 
agricultural biomass conversion based on life cycle assess-
ment. They predicted the potential of agricultural biomass 
to replace fossil energy and reduce emissions under three 
scenarios, considering resource endowment and bioenergy 
potential of crop straw and livestock manure (Huo et al. 
2021).

Ludlow et al. (2021) evaluated the potential of convert-
ing organic waste into energy using lower heating values in 
Chile and found that this corresponded to 3.3% of the annual 
energy demand (Ludlow et al. 2021).

Zubir et al. (2022) utilized livestock data from Malaysia 
from 2010 to 2019 to estimate greenhouse gas emissions 
from different animal species. In the livestock sector, poul-
try, pigs, non-dairy cattle, and goats were predominant. Non-
dairy cattle were found to be the main contributor to  CH4 
emissions, accounting for 73.91% of enteric fermentation 
emissions. Regarding  CH4 emissions from manure manage-
ment, pigs accounted for 61.49%, while poultry accounted 
for 26.24%. Regarding direct  N2O emissions from manure 
management, poultry contributed 63.25%, and non-dairy 
cattle accounted for 20.79%. Enteric fermentation was noted 
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to have the largest share in total  CO2 equivalent emissions, 
surpassing 50% (Zubir et al. 2022).

Fajobi et al. (2022) comprehensively examined the stud-
ies in the literature addressing the effects of different bio-
mass sources used in biogas production on biogas yield with 
different techniques. It evaluated artificial intelligence’s 
applicability in modeling and optimizing the anaerobic 
digestion process for different parameters. They used the 
fuzzy logic-based ANFIS method to estimate biogas yield 
(Fajobi et al. 2022).

Hörtenhuber et al. (2022) examined Austria’s greenhouse 
gas emissions from livestock and the effects of livestock 
farming on climate for the years 1990 and 2019. It has been 
shown that  CH4 reduction from livestock reduces total  CO2 
emissions by 16% (Hörtenhuber et al. 2022).

Senocak and Guner Goren (2023) made a 5-year predic-
tion with the support vector machine algorithm for animal, 
agricultural, and municipal solid wastes, which are biomass 
resources in Denizli province of Turkey (Senocak and Guner 
Goren 2023).

Sharafi et al. (2023) measured the long-term energy effi-
ciency of Iran’s significant crops between 1970 and 2019. 
Greenhouse gas emissions were modeled with machine 
learning algorithms using 17 agricultural products in five 
main categories as input parameters (Sharafi et al. 2023).

Zhang et al. (2023) estimated the number of biomass 
resources that can be used in energy in 2020 by using spe-
cific parameters and coefficients. They also evaluated the 
potential to reduce  CO2 emissions using biomass energy 
depending on its life cycle (Zhang et al. 2023).

Liu et al. (2023) estimated the biogas potential of agri-
cultural waste in Hubei Province in China and evaluated the 
environmental and economic impact of  CO2 reduction (Liu 
et al. 2023).

Nehra and Jain (2023) examined the estimation of animal-
based biomass potential and the reduction of greenhouse gas 
emissions in rural Haryana, India. They stated that biomass 
energy production could prevent emissions of approximately 
1707 to 3583 million kg/year (Nehra and Jain 2023).

Ceylan et al. (2023) developed a hybrid optimization 
model for Manisa, Turkey, utilizing a neuro-regression 
approach to determine the optimal biogas power plant loca-
tion (Ceylan et al. 2023).

Heydari et al. (2023) studied the optimal design of a 
renewable wind/solar/biomass hybrid system for grid-inde-
pendent applications in Iran by comparing the performance 
of genetic algorithms and particle swarm optimization. Sim-
ulation results showed that the photovoltaic/biomass system 
is cost-effective, and particle swarm optimization yields bet-
ter results (Heydari et al. 2023).

It is possible to predict environmental quantities using 
boosting algorithms, an ML algorithm. By combining many 
weak models, these algorithms produce a single robust 

model. In most cases, the real-time dataset is nonlinear. Con-
sequently, if a model cannot accurately define the dataset 
values, it will become underfitted and biased. In this case, 
boosting algorithms are necessary to reduce bias.

In this study, Adaptive Boosting (AdaBoost), Gradient 
Boosting, and eXtreme Gradient Boosting (XGBoost), which 
are popular boosting algorithms in the literature, were used 
to estimate the amount of biogas and  CH4 emissions from 
animal sources. Biogas and  CH4 quantities were calculated 
for 81 provinces of Turkey based on cattle, small ruminants, 
and poultry numbers. To determine the theoretical biogas 
and  CH4 quantities, general and specific information about 
cattle, small ruminants, and poultry was used, along with 
data about animal age, number, breed, weight, and waste 
quantity. A data set was created to carry out further analysis.

With Turkey taking part in the Paris Agreement, it has 
plans to increase renewable energy production and reduce 
greenhouse gas emissions with the preparations for the 2050 
climate change strategy and 2030 action plan. It also aims 
to develop dynamics for using artificial intelligence meth-
ods in the country. In this sense, it is crucial to accurately 
estimate Turkey’s energy potential and emissions regard-
ing animal husbandry-related research. Detailed examina-
tion and modeling of the livestock-based biogas potential in 
Turkey with boosting algorithms and energy and emission 
estimates based on this potential for the coming years can 
give researchers and policy planners ideas. In this study, 
biogas potential and  CH4 emission values in cross-validation 
and time series format have been converted to log10 and 
predicted with boosting algorithms for regression analysis. 
Boosting algorithms were preferred because they reduce bias 
and make more successful predictions than classical ML 
algorithms.

The proposed study includes two different analyses:

(a) The first one includes the biogas potential and  CH4 
emission values of each province in Turkey for the 
years 2004–2019 and the forecasts of each of these 
values for the years 2020–2021 with the boosting algo-
rithms,

(b) The second one uses the same values for 2004–2021 
and makes predictions for 2022–2024.

The novelty and contribution are (i) animal-based biogas 
potential and  CH4 emission were estimated by boosting 
algorithms using the unique identifier of the provinces and 
year information; (ii) the appropriate boosting model that 
can make predictions for all provinces of Turkey for the 
coming years has been created.

This study is presented in four sections and organized 
as follows: In this section, statistical information about the 
potential of renewable energy, animal husbandry, emis-
sions, and biogas in Turkey is presented, and a literature 
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review is included. In the “Materials and methods” section, 
the parameters used in theoretical biogas potential and  CH4 
emission calculations and the machine learning methods 
recommended for estimation are explained in detail. In the 
third section, the experimental results of machine learning 
algorithms are compared under two different scenarios, and 
future predictions are made. In the last section, conclusions 
and recommendations are made.

Materials and methods

Theoretical biogas potential calculation

Between 2004 and 2021,  CH4 production through biogas 
was determined for each of the 81 provinces in Turkey 
using the animal population data of various animal species. 
Each animal species was categorized separately based on 
age, gender, and weight. Live weight values specific to ani-
mal species and breeds were obtained from farms within 
the provinces to determine the amount of manure. Since no 
representative value was available for manure production 
in Turkey, the percentages of live weight values obtained 
from the literature were used. The percentages used were 
6% for cattle, 5% for small ruminants, and 4% for poultry. 
The daily fresh manure values were calculated separately 
for each province and district based on the age and spe-
cies of cattle and small ruminants and separately for poultry 
using these percentages. The amount of animal waste var-
ies depending on feeding practices, climate conditions, and 
reproductive types. The usability coefficients for each animal 
species were 50% for cattle, 13% for small ruminants, and 
99% for poultry. Figure 1 provides the details of the animal 
species along with the parameters (VS,  B0, MCF, MS) used 
in the calculation of  CH4. These parameters were utilized in 
the tier2 approach for  CH4 estimation (Avcioǧlu and Türker 
2012; Dong et al. 2006).

If animal manure is not effectively managed and pro-
cessed in a biogas production system, it can result in the 
uncontrolled release of  CH4 gas into the atmosphere. The 
agricultural and livestock industries are significant contribu-
tors to greenhouse gas emissions, and the improper handling 
of animal waste exacerbates this issue. The release of  CH4, a 
potent greenhouse gas, further contributes to global warming 
and climate change. Therefore, proper collection and treat-
ment of animal manure within biogas systems are essential 
for mitigating greenhouse gas emissions and promoting sus-
tainable agricultural practices (Riaño and García-González 
2015).

CH4 emissions are calculated using different meth-
ods, with tier1 and tier2 being the most commonly used 
approaches. In tier1, a simple calculation is employed, 
multiplying the number of animals in each category by the 

emissions factor per animal. Tier2, on the other hand, is 
a more advanced method implemented in most developed 
countries. It involves considering various parameters spe-
cific to each animal species. The Intergovernmental Panel on 
Climate Change (IPCC) provides assumed emission factors 
for each livestock category, considering the average annual 
temperature. These emission factors reflect the range in 
manure volatile solids content and the application of manure 
management practices in different regions. They have been 
evaluated based on the annual temperature for each climatic 
region. By utilizing tier2 methodology and considering these 
emission factors, a more accurate estimation of  CH4 emis-
sions from livestock can be obtained. This approach allows 
for a more comprehensive assessment of the environmental 
impact of livestock farming and helps develop targeted strat-
egies for reducing greenhouse gas emissions in the agricul-
tural sector.

The  CH4 emissions were calculated using different 
approaches. For the tier1 approach, the formula provided 
in Fig. 1 and the emission factors specific to each region, as 
listed in Table 10.11 of IPCC-2006 (Dong et al. 2006), were 
utilized. This method involves multiplying the emission fac-
tor by the number of animals in each category. On the other 
hand, the tier2 approach employed the formulas depicted in 
Fig. 1, along with the parameter values specified in Table 1. 
This more advanced method considers additional parameters 
and variables associated with each animal species. Tier1 and 
tier2 approaches allow for a comprehensive calculation of 
 CH4 emissions. These approaches provide valuable insights 
into the environmental impact of livestock farming and assist 
in devising effective strategies for mitigating greenhouse gas 
emissions in the agricultural sector. The IPCC approach was 
used to calculate  CH4 emissions from enteric and manure 
in the dairy cow system (Baek et al. 2014) and for values 
from beef cattle (Chen et al. 2020). In addition, an applica-
tion was made for Korea in agricultural biomass calculation 
(Shin et al. 2016). While the greenhouse gas detection stud-
ies carried out using the tier1 approach include Ngwabie 
et al. (2018), the tier2 approach was used in the studies of 
Herrera et al. (2021) and Basak et al. (2022). While Khan 
et al. (2021) examined Pakistan’s biogas production potential 
from animal manure (Khan et al. 2021), Şenol et al. (2021) 
carried out studies on calculating Turkey’s biogas potential 
until 2030 (Şenol et al. 2021).

Creation of the biogas and  CH4 quantities data set

In this study, the biogas and  CH4 (tier1 and tier2 approaches) 
quantities for each of the 81 provinces in Turkey for the 
years 2004–2021 were calculated based on the data obtained 
from the Turkish Statistical Institute (TUIK) regarding the 
number of cattle, small ruminants, and poultry (TUIK 2022). 
The calculation used general and specific information about 
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Fig. 1  Formulas and parameters for biogas and  CH4 emission (tier1, tier2 approaches)
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cattle, small ruminants, and poultry and data on animal age, 
count, breed, weight, and waste quantity to determine the 
theoretical biogas and  CH4 quantities. The biogas potential 
and  CH4 emissions (tier1 and tier2 approach) of each ani-
mal category in all provinces of Turkey for 2004–2021 were 
theoretically calculated, and a data set was created. While 
the biogas potential and  CH4 emissions are the target values, 
only the unique identifier of the provinces and year informa-
tion is the input value. This way, training and prediction can 
be performed in a time series format. The dataset contains 
1458 samples for 18 years for 81 provinces in Turkey. For 
scenario-1, 1296 data from 2004 to 2019 were used for train-
ing, and 162 data from 2020 to 2021 were used for testing. 
For scenario-2, all 1458 data from 2004 to 2021 were used 
for training, and the years 2022–2024 were predicted.

During regression analysis, log transformations are used 
to reduce the distance between data points and help develop 
a better model. Due to the extensive range of values and 
sometimes outliers included in the dataset, this may be the 
case. In log10 transformations, base 10 is used to determine 
the logarithm. In addition to being more readily interpreted 
or checked, common logarithms are more straightforward to 
comprehend (Zhang et al. 2022).

This study transformed biogas potential and  CH4 emis-
sion values to log10 because of their wide range of values 
in training boosting algorithms.

Ensemble learning for prediction

Ensemble learning in ML refers to an ensemble of base 
learners working together to make a more accurate final 
prediction. As a result of high variances and biases, a single 
weak learner might not perform well alone. However, by 
combining weak learners, a strong learner can be created. 
It is possible to improve model performance by combining 
weak learners in this manner. Consequently, a problem can 
be solved more effectively by combining several ML algo-
rithms. Ensemble learning algorithms train multiple models 
on the data and then combine their predictions to produce 
the final result. In regression problems, this combination 
is done by taking the average of the predictions. There are 

various methods for model averaging, including one-step 
and iterative weighted parameter estimation. The objective 
is to increase the true conditional mean of the dependent 
variable provided by the predictors’ prediction accuracy. 
This means adjusting the model’s predictions under differ-
ent conditions or values of the predictors to match the actual 
average values of the dependent variable more closely. The 
idea is to develop a model that can more accurately predict 
the conditional mean by capturing the relationships between 
the predictors and the dependent variable.

The total prediction error of an ML model is composed 
of bias and variance errors. Bias measures how far off the 
model’s predictions are from the actual values. If the bias is 
high, the model does not accurately capture the relationship 
between the input and output variables and may need to be 
more complex. Variance measures how much the model’s 
predictions change when trained on different subsets of the 
data. If the variance is high, the model is overfitting to the 
training data and may need to be simplified or trained on 
more data.

Ensemble learning methods such as bagging and boosting 
differ primarily in how they are trained. A bagging method 
involves training weak learners in parallel, whereas a boost-
ing method involves training them sequentially.

The boosting technique is used in ensemble models to 
improve the generalization of a weak learning model, such 
as decision trees. Better prediction is obtained compared to 
the single weak learner using methods like majority voting 
in classification problems or a linear combination of weak 
learners in regression problems.

In boosting, multiple weak learners are combined to 
create a strong learner. A boosting algorithm differs from 
a bagging algorithm because it aims to reduce bias rather 
than variance. Boosting involves adjusting the next mod-
el’s weighting based on the previous model’s performance 
so that new subsets will contain elements that previous 
models had misclassified. The purpose of boosting is to 
improve the performance of a relatively simple classi-
fier with a high bias rate. It is necessary to train each of 
the base classifiers sequentially. As a result of high bias, 
the model fails to capture the essential features of data 

Table 1  The performance scores for modeling animal-based biogas potential for 2004–2021

Analysis Algorithm Train Test/prediction

RMSE MAE R2 RMSE MAE R2

Cross-validation (2004–
2019)

Gradient Boosting 0.259 ± 0.004 0.212 ± 0.003 0.8479 ± 0.0044 0.285 ± 0.016 0.232 ± 0.012 0.8134 ± 0.0239
XGBR 0.036 ± 0.002 0.025 ± 0.001 0.9971 ± 0.0003 0.106 ± 0.013 0.071 ± 0.006 0.9741 ± 0.0058
AdaBoost 0.500 ± 0.004 0.427 ± 0.004 0.4342 ± 0.0079 0.511 ± 0.015 0.434 ± 0.010 0.4040 ± 0.0447

Prediction (2020–2021) Gradient Boosting 0.254 0.207 0.8543 0.247 0.201 0.8439
XGBR 0.036 0.026 0.9970 0.067 0.054 0.9883
AdaBoost 0.496 0.424 0.4432 0.500 0.422 0.3567



24468 Environmental Science and Pollution Research (2024) 31:24461–24479

because the assumptions it makes are too basic, and boost-
ing algorithms are used to reduce high bias.

The algorithm for boosting is as follows:

1. Initialize the dataset and assign the weights of all data 
points to be equal.

2. Train a weak learner on the weighted data and compute 
the error between predicted and actual values.

3. Increase the weights of the data points with significant 
errors and decrease the weights with minor errors.

4. The algorithm passes the updated weights to the next 
learner.

5. Steps 2–4 should be repeated until the training error is 
less than a predetermined threshold or for a fixed num-
ber of iterations.

6. The results from each weak learner are combined.

Boosting is a widely used technique for solving classifi-
cation and regression problems. The most popular boosting 
algorithms in the literature are Adaboost, Gradient Boosting, 
and XGBoost. In this study, boosting algorithms were custom-
ized for regression analysis to estimate biogas potential and 
 CH4 emission values in cross-validation and time series format.

Adaptive boosting

AdaBoost is the first boosting algorithm introduced by 
Freund and Schapire (1997) and combines weak learners 
to create a strong learner. It is known as adaptive boost-
ing because each instance receives an updated set of 
weights, with higher weights given to incorrectly classified 
instances. It combines weak classifiers iteratively trained 

on incorrectly classified samples from the previous itera-
tion into a strong classifier (Ganaie et al. 2022). This algo-
rithm can also be used for regression problems.

As a first step in the AdaBoost algorithm, �(i) which 
is the weight of each sample, is assigned an initial value 
of (1/n) equally. The first learner is then trained, and the 
weighted error rate is calculated. In Eq. (1), the weighted 
error rate of the jth learner is calculated.

In Eq. (1), ŷ(i)
j

 represents the jth learner prediction for 
ith sample. The weights of the learners are calculated 
according to Eq. (2).

In Eq. (2), � is the learning rate. The AdaBoost algo-
rithm then updates the weights of the incorrectly pre-
dicted examples to speed up the learning rate, as given 
in Eq. (3).

The weights of all samples are then normalized by divid-
ing by 

∑m

i=1
�(i) . Finally, a new learner is trained with the 

updated weights, and the process continues until the termi-
nation criterion is reached (Géron 2019).

(1)
rj =

∑m

i = 1

ŷ
(i)

j
≠ y(i)

�(i)

∑m

i=1
�(i)

(2)�j = �log
1 − rj

rj

(3)�(i) =

⎧
⎪⎨⎪⎩

i = 1, 2,… ,m

�(i), ŷ
(i)

j
= y(i)

�(i)e�j , ŷ
(i)

j
≠ y(i)

Fig. 2  The structure of XGBR 
for biogas potential and  CH4 
emission prediction ( fk : the 
predicted value of each tree)



24469Environmental Science and Pollution Research (2024) 31:24461–24479 

Gradient boosting

Gradient Boosting is a generic algorithm that sequentially 
assembles tree models. A generalization of the AdaBoost 
algorithm, gradient boosting allows any differentiable 
loss function. The difference between the predicted and 
actual values of the outcome variable is determined by 
fitting the tree to the loss function’s negative gradient. 
This allows it to optimize arbitrary differential loss func-
tions (Friedman 2001). Gradient Boosting is an ensemble 
model that makes predictions by “boosting” the collec-
tion of subpar prediction models to create a more reliable 
model. The errors learned from previous base learners 

are the focus of this model’s training of the current base 
learner (Otchere et al. 2022).

Extreme gradient boosting

XGBoost approach is one of the most popular gradient-boosted 
decision tree implementations and can solve the sparse data 
problem. The training process is accelerated by hardware 
acceleration and parallel processing in XGBoost, an opti-
mized Gradient Boosting implementation. Regularization, 
weighted quantile sketches, parallel learning blocks, cache 
awareness, and out-of-core computing capabilities are all pro-
vided by XGBoost. L1/L2 penalties are used for regularization 

Fig. 3  Comparison of XGBR’s predictions with the theoretical calculations of animal-based biogas potential: a tenfold cross-validation results 
and b prediction results for 2020–2021

Fig. 4  Box plots of XGBR’s predictions with the theoretical calculations of animal-based biogas potential: a tenfold cross-validation results and 
b prediction results for 2020–2021
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to control overfitting. Utilizing the weighted quantile sketch 
algorithm, it can also handle sparse data sets. The main idea 
behind the XGBoost algorithm is to divide features and add 
trees to grow a tree continuously. The predicted value of the 
sample is calculated by adding up the scores corresponding 
to each tree if a prediction is generated for each sample after 
training. This score is determined using the characteristics of 
this sample, which correspond to a leaf node in each tree (Chen 
and Guestrin 2016; Khan et al. 2023). XGBoost Regressor 
(XGBR) is used for regression problems.

The objective function of the XGBR algorithm is given 
in Eq. (4), while the regularization term in this function is 
given in Eq. (5).

In Eqs. (4) and (5), L(.) and Ω(.) refer to the loss func-
tion and the regularization term. The target value is y, 
and the predicted value is ŷ  , the number of samples is n, 
and the current sample is i in the loss function. k denotes 
the number of trees in the current model, t denotes the 
current tree, T denotes the total number of leaf nodes, 
and ω denotes the weight of each leaf. This term of regu-
larization suppresses the complexity of the model that 
forms the objective function. Control parameters to pre-
vent overfitting include γ and λ. The structure of XGBR 
is given in Fig. 2.

(4)OBJ =

n∑
i=1

L
(
ŷi, yi

)
+

k∑
t=1

Ω
(
ft
)

(5)Ω(f ) = �T +
1

2
�‖�‖2

Model evaluation

Testing the model on the test set after training should be 
conducted to determine its performance and generaliz-
ability. It is possible to use metrics for evaluating models 
in this context. An analysis of regression was conducted 
using the root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE), 
and coefficient of determination (R2), which are commonly 
used metrics for regression analysis. Equation (6)–(9) pro-
vides the equations for these metrics (Hajabdollahi Oud-
erji et al. 2023).

According to Eqs. (6)–(9), y represents the target value, 
ŷ represents the predicted value, y represents the mean of 
the target value, and n represents the sample size. MAPE 
is a relative measure based on percentage units instead of 

(6)RMSE =

√
1

n

∑n

i=1

(
yi − ŷi

)2

(7)MAE =
1

n

∑n

i=1
||yi − ŷi

||

(8)MAPE =
1

n

∑n

i=1

|||||
yi − ŷi

yi

|||||

(9)R2 = 1 −

∑n

i=1

�
yi − ŷi

�2
∑n

i=1

�
yi − yi

�2

Table 2  The performance scores for modeling animal-based  CH4 emissions for 2004–2021

Approach Analysis Algorithm Train Test/prediction

RMSE MAE R2 RMSE MAE R2

Tier1 Cross-validation 
(2004–2019)

Gradient Boost-
ing

0.213 ± 0.003 0.151 ± 0.002 0.9898 ± 0.0003 0.238 ± 0.029 0.165 ± 0.017 0.9855 ± 0.0057

XGBR 0.042 ± 0.003 0.022 ± 0.001 0.9996 ± 0.0000 0.186 ± 0.056 0.080 ± 0.017 0.9914 ± 0.0043
AdaBoost 0.321 ± 0.002 0.254 ± 0.002 0.9768 ± 0.0009 0.329 ± 0.025 0.259 ± 0.020 0.9716 ± 0.0113

Prediction 
(2020–2021)

Gradient Boost-
ing

0.214 0.151 0.9897 0.209 0.153 0.6552

XGBR 0.047 0.024 0.9995 0.046 0.034 0.9835
AdaBoost 0.324 0.254 0.9764 0.333 0.254 0.1220

Tier2 Cross-validation 
(2004–2019)

Gradient Boost-
ing

0.200 ± 0.004 0.159 ± 0.003 0.7872 ± 0.0068 0.217 ± 0.020 0.173 ± 0.011 0.7441 ± 0.0280

XGBR 0.028 ± 0.002 0.018 ± 0.001 0.9959 ± 0.0004 0.119 ± 0.036 0.062 ± 0.007 0.9191 ± 0.0437
AdaBoost 0.350 ± 0.006 0.289 ± 0.005 0.3530 ± 0.0190 0.354 ± 0.019 0.289 ± 0.019 0.3196 ± 0.0749

Prediction 
(2020–2021)

Gradient Boost-
ing

0.205 0.162 0.7766 0.211 0.170 0.7647

XGBR 0.030 0.020 0.9953 0.066 0.055 0.9773
AdaBoost 0.347 0.288 0.3612 0.365 0.297 0.2955
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the variable’s units to compare prediction accuracy between 
time-series models.

Cross-validation in ML evaluates a model’s performance 
when it is applied to unseen data. Data is divided into mul-
tiple folds or subsets, and one fold serves as a validation 
set, while the other folds are used to train the model. The 
validation process is repeated several times, using differ-
ent subsets of data each time. The model’s performance 
on unseen data is then estimated by averaging the results. 
In this study, tenfold cross-validation was also used on the 
training data in addition to future predictions.

The statistical significance of relationships between ML 
algorithms’ prediction values is assessed using statistical 
tests. The Wilcoxon rank-sum test confirms the inconsisten-
cies between the model output and the actual value. If the 
p value of the model predictions is less than 0.05, the null 
hypothesis is rejected (Hayes et al. 2022).

Boosting algorithm parameters

Default parameters in Sklearn and XGBoost libraries were 
used in all boosting algorithms. For Adaboost, the maximum 
number of predictors is 50, the learning rate is 1.0, and a 
linear loss function is used. For Gradient Boosting, the loss 
function is the square of the error, the learning rate is 0.1, the 
number of predictors is 100, the subsample rate is 1.0, the 
friedman_mse function is used to measure the quality of a 
split, min_samples_split is 2, min_samples_leaf is 1, and the 
maximum depth of individual regression predictors is 3. For 
XGBR, the booster is gbtree, which uses tree-based models, 
0.3 step size reduction used in updating to avoid overfitting, 
gamma is 0, max_length is 6, min_child_weight is 1, 1.0 
subsample ratio of training samples, sample_method is uni-
form, tree generation method is faster histogram optimized 
approximate greedy algorithm.

Fig. 5  Comparison of XGBR’s predictions with the theoretical cal-
culations of animal-based  CH4 emissions: a tenfold cross-validation 
(tier1 approach), b prediction results for 2020–2021 (tier1 approach), 

c tenfold cross-validation (tier2 approach), and d prediction results 
for 2020–2021 (tier2 approach)
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Results and discussion

This study used Adaboost, Gradient Boosting, and XGBR, 
popular boosting algorithms in the literature, to estimate the 
amount of biogas and  CH4 emissions from animal sources. 
The proposed study includes two different analyses:

(a) The first one includes the biogas potential and  CH4 
emission values of each province in Turkey for the 
years 2004–2019 and the forecasts of each of these 
values for the years 2020–2021 with the boosting algo-
rithms (scenario-1),

(b) The second one uses the same values for 2004–2021 
and makes predictions for 2022–2024 (scenario-2).

Python programming language (ver. 3.10) with Scikit-
learn library with boosting algorithms and XGBoost library 
was used for the execution of the algorithms.

In scenario-1, data for the 2004–2019 period were ana-
lyzed with a tenfold cross-validation analysis. Then, 1296 
data for these years were used for training, and 162 data 
for the period 2020–2021 were tried to be predicted. The 
performance scores of cross-validation and predictions for 
animal-based biogas potential are shown in Table 1.

Table 1 shows that the XGBR algorithm is more suc-
cessful in training and test scores in cross-validation and 
2020–2021 predictions.

In comparing XGBR’s predictions with the theoretical 
calculations of animal-based biogas potential, the tenfold 
cross-validation and prediction results for 2020–2021 are 
shown in Fig. 3a, b, respectively.

In Fig. 3a, the sample represents the record of each prov-
ince for each year between 2004 and 2019, while in Fig. 3b, 
it represents each year between 2020 and 2021. In Fig. 3a, 
b, the value represents log10 of the animal-based biogas 
potential of the relevant record. In Fig. 3, the theoretical 

Fig. 6  Box plots of XGBR’s predictions with the theoretical calcula-
tions of animal-based  CH4 emissions: a tenfold cross-validation (tier1 
approach), b prediction results for 2020–2021 (tier1 approach), c 

tenfold cross-validation (tier2 approach), and d prediction results for 
2020–2021 (tier2 approach)
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calculation values of 1296 samples of biogas potential 
between 2004 and 2019 vary between 8.848 and 12.934. 
Residual refers to the difference between theoretical cal-
culation and predicted values in statistical analysis. In the 
residual graphs given in Fig. 3, the values in 2004 fluctuate 
between − 0.5 and 0.5, while the values for other years are 
monotonous. The residual graph of the 2020–2021 predic-
tion shows that the values are monotonic and closer to 0.

As seen in Fig. 3, the XGBR predictions are consistent 
with the original curve, and the results can also be seen as 
a box plot in Fig. 4.

According to Fig. 4, the XGBR predictions (first quartile 
11.20, median 11.71, and third quartile 12.05 for Fig. 4a, 
while first quartile 11.32, median 11.88, and third quartile 
12.25 for Fig. 4b) overlap with the theoretical calculation 
values.

The performance scores of cross-validation and predic-
tions for animal-based  CH4 emissions are shown in Table 2.

Table 3  The MAPE scores for 
modeling animal-based biogas 
potential and  CH4 emissions for 
2004–2021

Category Analysis Algorithm MAPE (%)

Train Test/prediction

Biogas potential Cross-validation (2004–2019) Gradient Boosting 1.84 ± 0.03 2.02 ± 0.12
XGBR 0.22 ± 0.01 0.63 ± 0.05
AdaBoost 3.70 ± 0.04 3.77 ± 0.11

Prediction (2020–2021) Gradient Boosting 1.80 1.69
XGBR 0.23 0.46
AdaBoost 3.68 3.55

CH4 emissions (tier1) Cross-validation (2004–2019) Gradient Boosting 4.37 ± 0.05 4.73 ± 0.48
XGBR 0.57 ± 0.03 1.83 ± 0.24
AdaBoost 7.75 ± 0.06 7.88 ± 0.84

Prediction (2020–2021) Gradient Boosting 4.37 4.87
XGBR 0.59 1.07
AdaBoost 7.72 8.00

CH4 emissions (tier2) Cross-validation (2004–2019) Gradient Boosting 9.12 ± 0.25 9.91 ± 1.11
XGBR 1.02 ± 0.05 3.52 ± 0.48
AdaBoost 16.71 ± 0.54 16.50 ± 1.78

Prediction (2020–2021) Gradient Boosting 9.30 8.51
XGBR 1.08 2.78
AdaBoost 16.56 14.48

Table 4  Statistical comparisons of the XGBR algorithm predictions 
of biogas potential and  CH4 emissions with theoretical values

Category Algorithm The Wilcoxon rank-sum 
test

Cross-
validation 
analysis

2020–2021 
prediction

h p h p

Biogas potential Gradient Boosting - 0.032  + 0.117
XGBR  + 0.894  + 0.521
AdaBoost - 0.000 - 0.000

CH4 emissions (tier1) Gradient Boosting  + 0.700  + 0.165
XGBR  + 0.988  + 0.784
AdaBoost - 0.023 - 0.000

CH4 emissions (tier2) Gradient Boosting  + 0.344  + 0.120
XGBR  + 0.937  + 0.304
AdaBoost - 0.000 - 0.000

Table 5  Theoretical values 
of biogas potential and  CH4 
emissions of 5 major provinces 
in Turkey for the year 2021 and 
the predictions of the XGBR 
algorithm

Province Theoretical values (Log10) XGBR predictions (Log10)

Biogas potential CH4 emis-
sions (tier1)

CH4 emis-
sions (tier2)

Biogas potential CH4 emis-
sions (tier1)

CH4 
emissions 
(tier2)

İstanbul 11.278 3.069 1.787 11.209 3.078 1.824
Ankara 12.084 3.696 2.818 11.960 3.605 2.705
İzmir 12.300 3.933 2.747 12.323 3.919 2.742
Bursa 11.850 3.445 2.567 11.894 3.404 2.450
Antalya 12.869 3.298 2.125 12.825 3.296 2.057
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Table 2 shows that the XGBR algorithm gives the best 
results with R2 values of 0.9914 and 0.9191 in the cross-
validation analysis for  CH4 emissions with tier1 and tier2 
approaches, respectively. On the other hand, in terms of 
2020–2021 predictions, it is seen that the XGBR algorithm 
gives the best results with R2 values of 0.9835 and 0.9773 
in predicting  CH4 emissions with tier1 and tier2 approaches, 
respectively.

In comparing XGBR’s predictions with the theoretical 
calculations of animal-based  CH4 emissions, the tenfold 

cross-validation and prediction results for 2020–2021 are 
shown in Fig. 5a–c and Fig. 5b–d, respectively.

In Fig. 5a–c, the sample represents the record of each 
province for each year between 2004 and 2019, while in 
Fig. 5b-–d, it represents each year between 2020 and 2021. 
In Fig. 5, the value represents log10 of the animal-based 
 CH4 emissions of the relevant record.

In Fig. 5a, the theoretical calculation values of  CH4 
emissions (tier1 approach) for 16 years vary between 1.847 
and 3.981. In the residual graphs given in Fig. 5a, b, the 
values for 2004–2019 fluctuate between − 0.25 and 0.25, 
while the 2020–2021 prediction values vary between − 0.1 
and 0.1. In Fig. 5c, the theoretical calculation values of 
 CH4 emissions (tier2 approach) vary between 0.502 and 
3.380. In the residual graphs given in Fig. 5c, d, the val-
ues for 2006 fluctuate between − 1 and 1, while the val-
ues for other years monotonously approach zero. In the 
residual graph of the 2020–2021 prediction, the values vary 
between − 0.1 and 0.1.

As seen in Fig. 5, the XGBR predictions are consistent 
with the original curve, and the results can also be seen as 
a box plot in Fig. 6.

In Fig. 6a, b, the XGBR predictions for  CH4 emissions 
by tier1 approach (first quartile 2.88, median 3.15, and third 

Table 6  XGBR predictions for animal-based biogas potential and 
 CH4 emissions for 2024

Year Province XGBR predictions (Log10)

Biogas potential CH4 emis-
sions (tier1)

CH4 
emissions 
(tier2)

2024 İstanbul 11.279 3.080 1.810
Ankara 12.055 3.652 2.806
İzmir 12.309 3.929 2.757
Bursa 11.869 3.411 2.552
Antalya 12.866 3.321 2.122

Fig. 7  XGBR predictions for 
animal-based biogas potential 
for 2024
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quartile 3.31 for Fig. 6a, while first quartile 3.05, median 
3.26 and third quartile 3.47 for Fig. 6b) overlap with the 
theoretical calculation values. According to Fig. 6c, d, the 
XGBR predictions for  CH4 emissions by tier2 approach 
(first quartile 1.63, median 1.92, and third quartile 2.12 for 
Fig. 6c, while first quartile 1.80, median 2.10 and third quar-
tile 2.33 for Fig. 6d) overlap with the theoretical calculation 
values.

Examining the error values as a percentage of the 
obtained models’ results can enable a more comfortable 
evaluation of the success of the models. Therefore, the 
comparison of the predictions and theoretical values of 
the boosting algorithms for animal-based biogas potential 
and  CH4 emissions in terms of MAPE score are shown in 
Table 3.

As seen in Table 3, the error rates of XGBR predictions 
for biogas potential were relatively low, approximately 
0.63% and 0.46% for cross-validation and future prediction, 
respectively. For  CH4 emission values, XGBR predictions 
are approximately 1.83% and 1.07% in tier1, while in tier2, 
they are approximately 3.52% and 2.78% for cross-valida-
tion and future prediction, respectively. Low percentage 
error values show that the XGBR algorithm is successful 
in modeling.

Table 4 contains statistical comparisons of the XGBR 
algorithm predictions of animal-derived biogas potential and 
 CH4 emissions with theoretical values.

The statistical test result is shown in Table 4 as h (“ + ,” 
accept; “ − ,” reject), and the test’s p-value is the probability 
that the null hypothesis is true. When the Wilcoxon rank-
sum test results in Table 4 are examined, it is seen that 
there is no significant difference between the results of this 
model and the theoretical values at the significance level of 
p = 0.05.

Table 5 shows the theoretical values of biogas potential 
and  CH4 emissions of five major provinces in Turkey for 
the year 2021 and the predictions of the XGBR algorithm.

As seen in Table 5, the theoretical values of biogas poten-
tial and  CH4 emissions for 2021 for five major provinces in 
Turkey and the predictions of the XGBR algorithm are close 
to each other.

In scenario-2, the values for 2004–2021 are used for train-
ing, and predictions are made for 2022–2024.

Table 6 shows the XGBR predictions for animal-based 
biogas potential and  CH4 emissions of five significant prov-
inces in Turkey for 2024.

According to the results in Table 6, the highest biogas 
potential among the five major provinces in Turkey in 2024 

Fig. 8  XGBR predictions for 
animal-based  CH4 emissions 
(tier1 approach) for 2024
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belongs to Antalya, while the highest  CH4 emissions are esti-
mated to be İzmir and Ankara for tier1 and tier2, respectively.

XGBR predictions for animal-based biogas potential for 
all provinces in Turkey in 2024 are shown in Fig. 7.

As seen in Fig. 7, the highest value in the 2024 animal-
based biogas potential prediction for all provinces of Turkey 
belongs to Mersin province, while the lowest value belongs 
to Düzce province.

XGBR predictions for animal-based  CH4 emissions (tier1 
approach) for all provinces in Turkey in 2024 are shown in 
Fig. 8.

As seen in Fig. 8, the highest value in the animal-based 
 CH4 emission (tier1 approach) prediction for 2024 in all 
provinces of Turkey belongs to Konya province, while the 
lowest value belongs to Yalova province.

XGBR predictions for animal-based  CH4 emissions (tier2 
approach) for all provinces in Turkey in 2024 are shown in 
Fig. 9.

As seen in Fig. 9, the highest value in animal-based  CH4 
emission (tier2 approach) estimation for 2024 in all provinces 
of Turkey belongs to Manisa, while the lowest value belongs 
to Rize.

The greenhouse gas inventory for Turkey is calculated 
as 564.4 Mt  CO2e in 2021, increasing by 7.7% compared to 
2020. Total greenhouse gas emissions per person increased 
by 0.4 tons compared to the previous year, reaching 6.7 
tons of  CO2 in 2021 (TUIK 2022). In this regard, it is 
thought that studies such as the current study will support 
Turkey’s 2050 climate change strategy and 2030 action 
plan preparations and the national contribution declara-
tion, the Climate Change Directorate of the Ministry of 
Environment, Urbanization and Climate Change, and the 
relevant institutions within the scope of the United Nations 
Development Programme.

Although the study contains detailed information and 
analysis regarding animal husbandry in Turkey, it can only 
be considered limited to this area. However, it can also 
be improved in this context using different algorithms, 
parameters, etc. (e.g., agricultural wastes, geographical 
location, climatic conditions). The data in the study was 
obtained from the country’s statistical institution. These 
data-induced errors can also affect the applicability of the 
model. The information obtained as a result of the study 
will be statistically valuable.

Fig. 9  XGBR predictions for 
animal-based  CH4 emissions 
(tier2 approach) for 2024
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Conclusion

Emissions from the livestock sector have an essential place 
in climate change. Sustainable manure management and 
biogas production are crucial for countries to solve this 
problem. This study used boosting algorithms to investigate 
the animal-based biogas potential and  CH4 emissions using 
tier1 and tier2 approaches in all Turkey provinces from 2004 
to 2021. The XGBR algorithm was the most successful in 
predicting animal-based biogas potential and  CH4 emissions, 
with MAPE ranging from 0.46 to 2.78%. The study also 
predicted the biogas potential of five major cities in Turkey 
for 2022–2024. The European Union aims to be a global 
role model in combating the climate crisis and achieving 
sustainable development goals. In this regard, countries want 
to reach climate neutral by 2050 with the Green Deal agree-
ment, and it is thought that the prediction model proposed 
in this study can guide researchers for the coming years.
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