Skip to main content
Log in

A new strategy for groundwater level prediction using a hybrid deep learning model under Ecological Water Replenishment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 26 March 2024

This article has been updated

Abstract

Accurate prediction of the groundwater level (GWL) is crucial for sustainable groundwater resource management. Ecological water replenishment (EWR) involves artificially diverting water to replenish the ecological flow and water resources of both surface water and groundwater within the basin. However, fluctuations in GWLs during the EWR process exhibit high nonlinearity and complexity in their time series, making it challenging for single data-driven models to predict the trend of groundwater level changes under the backdrop of EWR. This study introduced a new GWL prediction strategy based on a hybrid deep learning model, STL-IWOA-GRU. It integrated the LOESS-based seasonal trend decomposition algorithm (STL), improved whale optimization algorithm (IWOA), and Gated recurrent unit (GRU). The aim was to accurately predict GWLs in the context of EWR. This study gathered GWL, precipitation, and surface runoff data from 21 monitoring wells in the Yongding River Basin (Beijing Section) over a period of 731 days. The research results demonstrate that the improvement strategy implemented for the IWOA enhances the convergence speed and global search capabilities of the algorithm. In the case analysis, evaluation metrics including the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE) were employed. STL-IWOA-GRU exhibited commendable performance, with MAE achieving the best result, averaging at 0.266. When compared to other models such as Variance Mode Decomposition-Gated Recurrent Unit (VMD-GRU), Ant Lion Optimizer-Support Vector Machine (ALO-SVM), STL-Particle Swarm Optimization-GRU (STL-PSO-GRU), and STL-Sine Cosine Algorithm-GRU (STL-SCA-GRU), MAE was reduced by 18%, 26%, 11%, and 29%, respectively. This indicates that the model proposed in this study exhibited high prediction accuracy and robust versatility, making it a potent strategic choice for forecasting GWL changes in the context of EWR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

Download references

Funding

This study was supported by the Beijing Municipal Science and Technology Project (Z191100006919001) and the National Key Research and Development Program of China (SQ2022YFC3700182).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Zihao Jia: conceptualization, methodology, software, investigation, data curation, writing—original draft preparation. Qin Zhang: conceptualization, methodology, validation, visualization, writing—original draft preparation. Bowen Shi: visualization, writing—reviewing and editing. Congchao Xu: validation, writing—reviewing and editing. Di Liu: visualization. Yihong Yang: visualization. Beidou Xi: validation, writing—review and editing. Rui Li: resources, writing—review and editing.

Corresponding author

Correspondence to Rui Li.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4471 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Zhang, Q., Shi, B. et al. A new strategy for groundwater level prediction using a hybrid deep learning model under Ecological Water Replenishment. Environ Sci Pollut Res 31, 23951–23967 (2024). https://doi.org/10.1007/s11356-024-32330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32330-0

Keywords

Navigation