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Abstract
Aqueous solutions of humic acid (HA) derivatized by a catalyzed O-alkylation reaction with methyl, pentyl, and benzyl 
groups at 40, 60, and 80% of total HA acidity were used to wash off polycyclic aromatic hydrocarbons (PAHs) from two 
contaminated soils. The enhanced surfactant properties enabled the alkylated HA to remove phenanthrene, anthracene, 
fluoranthene, and pyrene from both soils more extensively than the original unmodified HA, the 60% benzylation generally 
showing the greatest soil washing efficiency. For both soils, all alkylated HA revealed greater PAH removals than Triton 
X-100 nonionic surfactant, while the benzylated and methylated HA nearly and fully matched pollutants release by the anionic 
SDS in the coarse- and fine-textured soils, respectively. A consecutive second washing with 60% benzylated HA removed 
additional PAHs, in respect to the first washing, from the coarser-textured soil, except for fluoranthene, while removal 
from the finer-textured soil incremented even more for all PAHs. These findings indicate that the enhanced hydrophobicity 
obtained by a simple and unexpensive chemical derivatization of a natural humic surfactant can be usefully exploited in the 
washing of polluted soils, without being toxic to the soil biota and by potentially promoting the subsequent bio-attenuation 
of organic pollutants.

Keywords Humic acid · Polycyclic aromatic hydrocarbon · Phase transfer alkylation · Soil washing · Synthetic surfactants · 
Consecutive washings

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are major contam-
inants of polluted soils and represent a considerable health 
and environmental hazard due not only to their carcinogenic, 
mutagenic, and teratogenic properties but also to their great 
persistence in soils conferred by a high hydrophobicity (Lau 
et al. 2014). While PAHs are largely produced during incom-
plete combustion of hydrocarbon-containing fuels, primary 
anthropogenic sources are open fires, domestic heating 

systems, and manufactured gas plants (Sakshi Singh and 
Haritash 2019). In the latter sites, PAH concentration in 
soil may be significant and ranging from 724 to 7700 ppm 
(Gong et al. 2006).

Since toxicity and hydrophobicity of PAHs show a paral-
lel increase with the number of rings, a strategy for detoxi-
fication of contaminated soils should address the alteration 
of the hydrophobic interactions which stabilize adsorption 
of such highly hydrophobic pollutants on surfaces of soil 
particles. Several techniques were developed based on this 
principle, such as electrokinetic remediation, solvent extrac-
tion, and washing with surfactants (Vidal and Báez 2023). 
In the case of soil washing, both anionic and nonionic syn-
thetic surfactants with amphiphilic properties are used as 
additives to water to enhance the extraction efficiency of 
PAHs from soil (dos Santos et al. 2023). However, the use 
of synthetic surfactants to remediate contaminated sites is 
limited by their intrinsic toxicity towards soil microorgan-
isms that hinders further biodegradation of pollutants and a 
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balanced biological activity in the washed soils (Deschênes 
et al. 1995; Sandbacka et al. 2000).

In alternative, the use of biosurfactants in washings of 
polluted soils have been increasingly proposed in recent 
years (Bezza and Chirwa 2017; Vijayakuma and Saravanan 
2015), offering the advantage over chemical surfactants to be 
easily biodegradable and biologically safe (Mulligan 2005). 
Moreover, biosurfactants may enhance the bioavailability 
of the residual molecules remaining sorbed on soil particles 
after washing (Whang et al. 2008). The combination of soil 
washing followed by biodegradation induced by biosur-
factants may thus represent an effective means of soil reme-
diation from PAH pollution (Chebbi et al. 2017; Lamichhane 
et al. 2017). Among biosurfactants, humic substances (HS) 
of different origin have been recognized to be capable of 
incorporating PAHs (Conte et al. 2001), increasing aerobic 
degradation of recalcitrant soil contaminants (Berselli et al. 
2004; Fava and Piccolo 2002; Fava et al. 2004) and effec-
tively washing away pollutants from soils (Conte et al. 2005; 
Piccolo et al. 2019a, 2021; Wei et al. 2023).

End products of the biotic degradation of animal and 
vegetal biomasses, HS are supramolecular associations of 
a multitude of heterogeneous molecules of relatively small 
mass held together by weak interactions such as dispersive 
forces and hydrogen bonds (Nebbioso and Piccolo 2011; 
Piccolo 2002; Piccolo et al. 2019b; Wells 2019). The self-
assembling of hydrophilic and hydrophobic molecules into 
pseudo-micellar superstructures confers to HS the surfactant 
properties that enable the thermodynamically favorable 
repartition of PAHs from soil adsorption sites into the humic 
hydrophobic domains and efficiently wash such apolar pol-
lutants from soils (Balasubramanian et al. 1989; Smejkalova 
and Piccolo 2008; Tschapek et al. 1981).

However, the capacity of HS as biosurfactants in clean-
ing-up contaminated sites may depend on soil texture. In 
fact, soils rich in fine-sized particles (silt and clay) may 
reduce substantially the washing efficiency of surfactants 
(Kuhlman and Greenfield 1999; Lee et al. 2002). This limita-
tion may be overcome by increasing the hydrophobicity of 
HS through a chemical modification of humic molecules. 
Different derivatization reactions of HS have been previ-
ously performed with various aims: (i) solubility increase 
in water (Terashima et al. 2007); (ii) soil aggregates stabili-
zation (Kulikova et al. 2021); (iii) redox properties change 
(Volikov et al. 2021); (iv) alteration of conformational struc-
ture (Nebbioso and Piccolo 2015). Recently, a phase-transfer 
catalyzed O-alkylation reaction was reported to vary the 
hydrophobicity of HS by covalently linking methyl, pentyl, 
and benzyl residues to the oxygen-containing humic func-
tional groups (Piccolo et al. 2023).

In this study, we employed O-alkylated HS as soil wash-
ing biosurfactants on two soils of different texture, which 
were spiked with four PAHs of varying polycondensation, 

such as anthracene, phenanthrene, fluoranthene, and pyr-
ene. The aim was to verify whether the enhanced affinity of 
the chemically modified humic matter towards hydrophobic 
PAHs improved the washing of the two soils in comparison 
to the original HS and two different synthetic surfactants.

Materials and methods

Soils and humic matter

Soils were collected from the surface layers (0–20 cm) of (1) 
a sandy-clay-loam Typic Haploxeralf (Soil 1) with 8.9% OC 
and 47.0, 20.1, and 32.9% of sand, silt, and clay, respectively, 
and (2) a clay-loam Vertic Xerofluvent with 1.05% OC and 
36.6, 33.75, and 29.65% of sand, silt, and clay, respectively. 
Soils were sampled at the University of Napoli Federico II 
experimental stations of Torre Lama, near Salerno (Soil 1), 
and Castel Volturno near Caserta (Soil 2). Soil samples were 
air-dried and sieved at 2.00 mm before use.

The humic acid (HA) used in this study was extracted 
from a Leonardite source (TEMA, Tecnología Especializada 
en el Medio Ambiente, https:// www. temam exico. mx/), and 
details on HA isolation and characterization are reported 
elsewhere (Piccolo et  al. 2023). An automatic titrator 
(TIM840 Titration Manager, Radiometer Analytical, France) 
was used to measure total acidity. A suspension of 0.5 mg 
 mL−1 of HA in deionized water was titrated to pH 9.0 with 
0.5 M NaOH under a  N2 stream under stirring. The calcu-
lated HA total acidity was 6.05 meq  H+  g−1.

Phase‑transfer O‑alkylation reaction

Details on the derivatization reaction to modify the hydro-
phobicity of humic materials were previously reported 
(Piccolo et al. 2023). Briefly, HA were dissolved in deion-
ized water, the pH was adjusted to 9.0 with a 1.5 M NaOH 
solution, and the phase-transfer catalyst TBAH (tetrabu-
tylammonium hydroxide)  (Bu4N+OH−) was added to the 
solution. After 2 h stirring at room temperature, specific 
volumes of each alkyl halide (methyl iodide; pentyl bro-
mide; benzyl bromide) were added to the humic solution 
in amounts corresponding to 40, 60, and 80% of HA total 
acidity, in order to partially and progressively saturate the 
nucleophilic humic sites, and concomitantly maintain the 
aqueous solubility of the modified humic matter. The reac-
tion mixture was stirred for 2 h at room temperature. Then, 
the pH was adjusted to 1.0 with a 10% HCl solution to pre-
cipitate the reaction products. The excessive alkylating agent 
was removed under reduced pressure at 50–70 °C, while the 
residual tetrabutylammonium salts were removed from the 
reaction products by washing the residue with hot (45 °C) 
deionized water. Finally, the residue was dialyzed against 

https://www.temamexico.mx/
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deionized water and freeze dried. All reagents 98–99% pure 
were purchased from Aldrich (Milano, Italy) and used with-
out further purification.

Soil spiking

Soils were spiked according to the method reported by 
Sawada et al. (2004) with each selected polycyclic aromatic 
hydrocarbon (PAH): phenanthrene (PHE), anthracene 
(ANT), fluoranthene (FLA), and pyrene (PYR). Briefly, 250 
g of dry soil and 1 L of acetone containing 2500 mg  L−1 of 
PHE, ANT, and PYR and 1250 mg  L−1 of FLA were mixed 
in a 2000-mL round-bottomed flask and shaken for 4 h in a 
rotary shaker at 50 rpm. The acetone was evaporated with a 
rotary evaporator at 30–35 °C, and the soils were then air-
dried for 2 days under dark conditions in a fume hood. The 
content of PHE, ANT, FLA, and PYR was revealed to be, 
respectively, 9.1, 10.0, 4.8, and 9.9 g  kg−1 for the dry soil 1, 
and 9.8, 10.2, 5.1, and 10.6 g  kg−1 for the dry soil 2, with a 
standard deviation never exceeding ± 0.2.

Soil washing

Each soil was subjected to soil washing by a water solution 
(control), a solution of original unmodified HA, and solu-
tions of methylated, pentylated, and benzylated HA at 40, 
60, or 80% of humic acid total acidity. The solution con-
centration of original and modified HA was 4 g  L−1. Other 
washings of spiked soils were also conducted with synthetic 
surfactants, such as 4% (w/v) of the anionic sodium dode-
cyl sulfate (SDS), and 4% (v/v) of the nonionic polyethyl-
ene glycol tert-octylphenyl ether (Triton X-100) solutions. 
Triplicates of both soils spiked with PAHs (10 g each) were 
placed in Erlenmeyer flasks and suspended in 200 mL of dif-
ferent soil washing solutions and shaken for 24 h in a rotary 
shaker at 50 rpm. All suspensions were centrifuged in Teflon 
tubes at 10,000 rpm for 10 min to separate soil residues from 
washing solutions. The soil residues were oven dried at 35 
°C and stored in a desiccator before further treatments.

Triplicates (10 g) of both soils underwent two consecu-
tive washings with the aqueous solution of benzylated HA 
at 60% of total acidity by first washing with the benzylated 
HA solution (4 g  L−1) as by the above procedure. The result-
ing dried residue was again subjected to a second washing 
with the 60% benzylated HA solution. This second residue 
of both soils was again oven-dried and stored in a desiccator 
for further analyses.

Ultrasonic extraction

Ultrasonication had been previously proved as the most effi-
cient method to solvate organic pollutants from contami-
nated soils (Conte et al. 2005). Both unwashed and washed 

spiked soils (10 g) were suspended in 100 mL of an acetone/
dichloromethane (1:1) mixture and sonicated with a Misonix 
XL2020 sonicator, as by the procedure outlined in USEPA 
Test Method 3550 B. A power of 55 W was applied for 12 min 
to the soil suspensions to obtain a total energy of 39.6 kJ. After 
sonication, the suspension was centrifuged in Teflon tubes at 
10,000 rpm for 10 min to separate the soil residue from the 
supernatant, whose PAH content was analyzed by GC–MS. 
The removed percentage of PAHs was calculated based on the 
content of initial PAHs spiked on soils and final content left in 
soils after the washings.

GC–MS analysis

A Perkinelmer autosystem™ XL gas-chromatograph, 
equipped with a Programmed-Temperature Split/Splitless 
injector with programmable pneumatic control kept at a con-
stant temperature of 250 °C, a 30-m-long, 0.25-mm ID, Restek 
Rtxc-5MS capillary column (5% diphenyl-95% dimethylpo-
lysiloxane), and a Perkin-Elmer TurboMass Gold mass-spec-
trometer were used for qualitative and quantitative analysis of 
contaminants in the soil extracts. The conditions used for GC 
analyses were the following: (1) initial temperature of 40 °C 
for 4 min; (2) to 270 °C at a 10 °C/min rate; (3) isothermal for 
3 min. The total GC run time was 30 min. Helium was the car-
rier gas at 1.5 mL  min−1 with a split-flow of 30 mL  min−1. The 
inlet-line temperature of the GC–MS system was set at 250 °C, 
while that of the MS source at 300 °C. A solvent delay time 
of 5 min was applied before acquisition of the mass spectra to 
prevent filament injuries. Low and high m/z limits of the mass 
spectrometer were 50, and 400 µm, respectively. A NIST mass 
spectral library version 1.7 was used for peak identification.

Data treatment and statistical analysis

Sonication extractions were performed in triplicate for each 
soil before and after soil washings. Each organic extract 
was analyzed in triplicate by GC–MS analysis. Quantitative 
results by GC–MS analyses were weight-averaged to provide 
experimental error. The least significant difference (LSD) 
test was used to determine the statistical significance of PAH 
removal. Data were significantly different among values if 
p(F) < 0.05. Version 8.0 of Design expert was used for all 
statistical analyses, including multiple comparisons test of 
Duncan, Fisher (LSD) and Tukey–Kramer (P < 0.05).

Results and discussion

Soil washing with HA and alkylated HA

The efficiency in the soil washing treatments by water and 
aqueous solutions of either unmodified or various alkylated 
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HA was evaluated as percent removal of the four different 
PAHs (PHE, ANT, FLA, and PYR) from the two soils of 
this study (Table 1). The aqueous solution of the original 
unmodified HA washed more PAHs than just water, being 
the removal the largest for ANT and the least for FLA in 
both soils (Table 1). Under this treatment, the sandy-clay-
loam soil 1 generally released more pollutants than the clay-
loam soil 2, except for FLA that was hardly removed from 
both soils.

The washing of the two soils with aqueous solutions of 
methylated HA resulted in much larger removal of PAHs 
than for the unmodified HA (Table 1; Fig. S1). Again, and 
regardless of the soil type, anthracene was the most removed 
pollutant, while fluoranthene was the least one. For soil 1, 
the modified HA enhanced the efficiency of PAHs removal 
when the methylation satisfied both 40 and 60% of the 
HA total acidity, but it was somewhat decreased at 80% of 
methylation (Table 1; Fig. S1). In particular, the percent 
increase of PAH removal at 40/60% of methylation over 
that of the original HA passed from 57.9/63.2, 31.6/26.7, 
1720/1660, 135.1/141.7% to 34.1, 26.2, 1160, 111.3% at 
80% of methylation for PHE, ANT, FLA, and PYR, respec-
tively (Table S1). For soil 2, the washing of PAHs with 
HA methylated at 40% of total acidity was significantly 
less efficient than for 60 and 80% of methylation (Table 1; 
Fig. S1). In fact, the percent increase in PHE, ANT, FLA, 
and PYR removal at 40% of methylation in respect to that 
of the unmodified HA, resulted, respectively, 118.3, 32.9, 
516.7, 202.7%, whereas that found for 60/80% of methyla-
tion raised to 138.3/136.7, 57.7/57.1, 1683.3/1616.7, and 
275.7/273% (Table S1).

A similar trend of efficiency was observed when soils 
were washed with solutions of pentylated HA, although the 
percent removal of PAHs was more extensive for soil 1 than 
for soil 2 (Table 1; Fig. S3 and S4). For soil 1, the greatest 
removal of anthracene and pyrene, in respect to the origi-
nal HA, occurred by washing with 40% of HA pentylation, 
whereas PHE and FLA were mostly released by the action 
of the pentylated HA at 60% of total acidity (Table 1 and S1; 
Fig. S3 and S4). In the case of soil 2, the soil washing with 
pentylated HA was generally less efficient than for soil 1 and 
the most extensive release of pollutants, as compared to the 
original HA, was generally obtained by the 60% pentylated 
HA, that succeeded to solvate 35, 41, 1.9, and 26.4% of 
PHE, ANT, FLA, and PYR, respectively (Table 1).

The covalent insertion of benzyl groups into the HA 
molecular system provided a similar soil washing efficiency 
as the methylated and pentylated HA, except for a gener-
ally greater FLA solubilization (Table 1; Fig. S5 and S6). 
For soil 1, the percent increase of pollutant extraction by 
washing with the 60% benzylated HA resulted generally the 
largest, in respect to either the original HA or both methyl-
ated and pentylated HA at the same percent of total acidity, 

except for ANT (Table S1). In particular, the affinity of the 
benzylated HA to FLA was the largest of all modified HA 
and capable to solvate the greatest amount of this pollutant at 
60% of benzylation (Table 1; Fig. S5 and S6), with a percent 
increase as large as 3880%, in comparison to the unmodi-
fied HA (Table S1). For soil 2, benzylation of HA at 60% 
of total acidity washed a larger percentage of PAHs than 

Table 1  Percent of PAH removal (± SD) from soil 1 and soil 2 by 
washings with water, aqueous solutions of unmodified original HA, 
and aqueous solutions of alkylated HA at 40, 60, and 80% of total 
acidity

Phenanthrene Anthracene Fluoranthene Pyrene

Soil 1
Methylated HA

Water 16.0 ± 1.8 17.2 ± 0.3 0.6 ± 0.6 0.5 ± 0.6
Unmodified 

HA
26.1 ± 0.1 43.1 ± 0.8 0.5 ± 0.3 16.8 ± 2.2

  40 41.2 ± 2.2 56.7 ± 0.6 9.1 ± 2.0 39.5 ± 2.0
  60 42.6 ± 0.3 54.6 ± 0.2 8.8 ± 2.3 40.6 ± 0.1
  80 35.0 ± 2.6 54.4 ± 1.4 6.3 ± 2.9 35.5 ± 2.8

Pentylated HA
Unmodified 

HA
26.1 ± 0.1 43.1 ± 0.8 0.5 ± 0.3 16.8 ± 2.2

  40 44.6 ± 1.3 53.3 ± 0.1 8.9 ± 1.0 39.9 ± 1.3
  60 42.6 ± 0.2 53.5 ± 0.9 13.1 ± 0.3 36.6 ± 0.4
  80 41.2 ± 0.7 52.4 ± 0.1 4.8 ± 0.8 34.9 ± 0.9

Benzylated HA
Unmodified 

HA
26.1 ± 0.1 43.1 ± 0.8 0.5 ± 0.3 16.8 ± 2.2

  40 39.4 ± 0.1 45.7 ± 0.3 9.4 ± 3.6 30.7 ± 1.5
  60 49.8 ± 0.4 49.4 ± 1.1 19.9 ± 1.5 48.9 ± 0.1
  80 45.4 ± 1.4 45.6 ± 1.0 13.0 ± 1.5 39.9 ± 0.7

Soil 2
Methylated HA

Water 18.7 ± 0.6 17.9 ± 2.4 0.5 ± 0.3 6.5 ± 0.8
Unmodified 

HA
18.0 ± 0.4 35.0 ± 1.6 0.6 ± 0.5 11.1 ± 0.2

  40 39.3 ± 1.2 46.5 ± 0.1 3.7 ± 0.4 33.6 ± 0.8
  60 42.9 ± 0.7 55.2 ± 0.5 10.7 ± 0.3 41.7 ± 0.4
  80 42.6 ± 1.4 55.0 ± 1.1 10.3 ± 2.4 41.4 ± 0.8

Pentylated HA
Unmodified 

HA
18.0 ± 0.4 35.0 ± 1.6 0.6 ± 0.5 11.1 ± 0.2

  40 32.3 ± 0.5 40.3 ± 3.1 0.2 ± 0.2 25.9 ± 2.1
  60 35.0 ± 1.2 41.0 ± 0.7 1.9 ± 0.7 26.4 ± 0.1
  80 31.7 ± 1.2 41.1 ± 0.9 2.1 ± 2.1 25.4 ± 1.3

Benzylated HA
Unmodified 

HA
18.0 ± 0.4 35.0 ± 1.6 0.6 ± 0.5 11.1 ± 0.2

  40 30.6 ± 2.3 47.4 ± 0.6 0.4 ± 0.5 21.7 ± 2.6
  60 36.9 ± 0.1 48.0 ± 1.6 8.9 ± 0.3 33.4 ± 0.5
  80 30.7 ± 2.2 48.5 ± 0.3 3.0 ± 2.4 27.2 ± 1.5
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for benzylated HA at 40 and 80% (Table 1; Fig. S5 and S6), 
although, in comparison to the original HA, its efficiency 
in extracting pollutants from this soil remained greater and 
smaller than for the pentylated and methylated HA, respec-
tively, at the same percent of alkylation (Table S1).

Our findings indicate that the PAHs mobilized from soil 
by alkylated HA was either similar to previous soil washing 
results using different biosurfactants (Zhu et al. 2023) or 
even larger (Cazals et al. 2022). We also verified that the 
original unmodified HA washed less PAHs from the heavier 
texture soil 2 than the lighter textured soil 1, as expected 
from previous literature that reports a reduced efficiency 
of surfactants in soils with fine-sized particles (Lee et al. 
2002). In these soils, the adsorption of hydrophobic organic 
matter on the surface of fine colloidal particles favors the 
transition from micro into macroaggregates (Jastrow 1996; 
Piccolo et al. 2019a), thereby protecting the co-adsorbed 
PAHs from being reached by the humic washing solutions 
and limiting the pollutants removal, that was even less than 
1% in the case of the highly hydrophobic FLA (Table 1).

All alkylated derivatives at 40, 60, and 80% of HA total 
acidity increased removal of PAHs from soils in respect to 
the original HA, due to the greater hydrophobicity conferred 
to the humic surfactant by the insertion of alkyl groups (Pic-
colo et al. 2023). Such enhanced surfactant properties of 
modified HA may have induced a disruption of soil aggre-
gates and favored the release of apolar PAHs (Smejkalova 
and Piccolo 2008). Nevertheless, the repartition of PAHs 
from soil surfaces into the hydrophobic domains of alkylated 
HA was still dependent on the soil texture and was less effi-
cient for the finer-textured soil 2 than for the coarser soil 1.

The mechanism of increasing hydrophobicity appeared 
to be effective in solvating PAHs by HA derivatives at all 
rates of humic total acidity, although the most efficient pol-
lutant removal from both soils, as compared to the unmodi-
fied HA, generally occurred at 60% alkylation (Table S1). 
At this rate, the proton displacement by either methyl, pen-
tyl, or benzyl groups in the O-alkylation reaction of HA 
was found to be more extensive (Piccolo et al. 2023). This 
led to a more stable system, as it is proven by the general 
lesser standard deviation for the percent increase of PAH 
removal at 60% alkylation than for those at 40 and 80% 
(Table S1). In particular, the fact that the 60% benzylated 
HA promoted the largest removal of the highly recalcitrant 
fluoranthene from soil 1 and a significant release from soil 
2 (Table 1) implies that the mechanism of hydrophobic 
repartition driven by weak dispersive forces is also accom-
panied, for the benzylated derivative, by that of multiple π-π 
bindings between the FLA aromatic rings and the benzyl 
groups introduced in HA. The counterintuitive fact that HA 
alkylated at 80% of total acidity was generally less efficient 
than 60% alkylation in removing pollutants from both soils 
should be attributed to the conformational dynamics of the 

supramolecular structure of humic matter that becomes 
tighter with increasing hydrophobicity, thereby reducing 
PAH repartition into the HA apolar domains and sites avail-
ability to π-π interactions.

Original and alkylated HA versus synthetic 
surfactants

Despite their deleterious effects on soil microbial bioactivity 
and biodiversity, synthetic surfactants are still widely used 
in remediation of soils contaminated by PAHs since, like 
biosurfactants, they remove organic pollutants by repartition 
into the surfactant micellar phases formed in water (Chun 
et al. 2002; Cuypers et al. 2002; Trellu et al. 2018; Chen 
et al. 2021). For the two soils of this study, we compared 
the washing efficiency of synthetic surfactants (TX-100 and 
SDS) with that observed for original HA and for the more 
performing alkylated derivatives at 60% of total acidity 
(Figs. 1 and 2).

Anthracene was removed in greater amount by the 
unmodified HA than by TX-100 in both soils, while phen-
anthrene was released more in soil 1 and to a similar extent 
in soil 2. Conversely, fluoranthene and pyrene were solvated 
more in TX-100 than in the original HA for soil 1, whereas 
for soil 2, the unmodified HA was more effective on pyrene 
than TX-100 and fluoranthene was not significantly differ-
ent between the two (Figs. 1 and 2). Moreover, the SDS 
synthetic surfactant was capable to remove from both soils 
substantially more PAHs than the unmodified HA.

In respect to the original HA, the improvement in wash-
ing efficiency was dramatic for the alkylated HA, which 
showed for both soils a significant increase of PAH removal 
than for TX-100, except for fluoranthene in soil 1 that was 
solvated by the synthetic surfactant in similar amount as 
the benzylated HA (Figs. 1 and 2). In the case of SDS, its 
washing efficiency for soil 1 was invariable greater than all 
alkylated HA, among which the benzylated derivative was 
the most effective. For soil 2, SDS washed off more PHE 
than all alkylated HA, but the methylated HA removed more 
ANT and FLA than SDS, and both benzylated HA and SDS 
solvated equal amounts of FLA.

These results confirm that the modification of HA by 
O-alkylation reactions increases the heterogeneous hydro-
phobicity of humic micellar phases in aqueous solutions, 
thereby exerting a capacity to solvate from soil PAHs of 
different structures with an efficiency often similar to, if 
not as large as, the synthetic surfactants (Fava et al. 2004). 
However, it appears that repartition of PAHs into hydro-
phobic micellar domains was more effective for SDS than 
for Triton X-100, whose pollutant removing capacity was 
generally inferior to that of alkylated HA. This was par-
ticularly evident for methylated and benzylated HA which 
could account their washing effectiveness not only to the 
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cited mechanism of hydrophobic drive of contaminants into 
flexible HA apolar domains but also to the additional mech-
anism of π-π interactions between aromatic rings in both 
PAHs and humic matter. It has been previously suggested 
that humic materials enriched with aromatic groups are the 
most efficient detoxifying agents in respect to PAHs (Permi-
nova et al. 1999), since the latter bind humic substances by 
both specific affinity to aromatic moieties and nonspecific 
partitioning in hydrophobic domains (Kile and Chiou 1989; 
Chiou et al. 1998). The occurrence of both mechanisms was 
confirmed by experiments in which hydrophobic interac-
tions were found responsible for the removal of pyrene from 
soils (Chefetz et al. 2000), and an induced bleaching of HA 

proved that aromatic structures could not solely contribute 
to the sorption of hydrophobic compounds to HA (Simpson 
et al. 2003).

PAH removal by consecutive soil washings

The efficiency of soil remediation by washing with sur-
factants is often enhanced by subsequent soil washing cycles 
(Ishikawa and Oya 2008; Shen et al. 2021). Here, we sub-
jected the soil residue from the first washing with the aque-
ous solution of the most performing benzylated HA at 60% 
of total acidity to a second washing with the same modified 

Fig. 1  Percent removal of four 
PAHs from soil 1 by washing 
with water, aqueous solutions 
of unmodified original HA, of 
alkylated HA at 60% of total 
acidity and of X100 and SDS 
synthetic surfactants
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Fig. 2  Percent removal of four 
PAHs from soil 2 by washing 
with water, aqueous solutions 
of unmodified original HA, of 
alkylated HA at 60% of total 
acidity and of X100 and SDS 
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HA solution and the percent removal of PAHs by the two 
consecutive washings was calculated (Figs. 3 and 4).

The second washing for soil 1 removed a further amount, 
in respect to the first washing, of PHE, ANT, and PYR by 
15, 13, and 7%, respectively, while it slightly varied the 
release of FLA just by 0.5% (Fig. 3). In the case of soil 2, 
the second washing solubilized an additional share of the 
PHE, ANT, PYR, and FLA content by 22, 22, 10, and 37%, 
respectively (Fig. 4).

Previous experiments on pollutant removal from soil by 
consecutive washings had not been successful. Three con-
secutive cycles of soil washing by SDS failed to remove PHE 

by any significant improvement with cycles (Wang et al. 
2020). Similarly, the consecutive applications of different 
biosurfactants and synthetic Triton X-100 to wash PHE off 
a soil showed that a single soil wash was enough to remove 
most of the phenanthrene (Lima et al. 2011). Contrary to 
these reports, a humic material empowered by the inclusion 
of benzyl groups was found here to significantly enhance its 
surfactant properties and removed further amounts of PAHs 
in the second soil washing. Such a heightened functional-
ity of the benzylated HA in removing PAHs from soils is 
to be attributed to both the greater repartition of pollutants 
into the more abundant hydrophobic domains of this humic 

Fig. 3  Percent removal of 
four PAHs from soil 1 by first 
washing and percent increment 
obtained by a consecutive sec-
ond washing with alkylated HA 
at 60% of total acidity
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Fig. 4  Percent removal of 
four PAHs from soil 2 by first 
washing and percent increment 
obtained by a consecutive sec-
ond washing with alkylated HA 
at 60% of total acidity

Phenathrene Anthracene Fluoranthene Pyrene
0

10

20

30

40

50

60

+3
7%

+1
0%

+2
2%

+2
2%

SOIL 2

Pe
rc

en
t R

em
ov

al  1st Washing
 2nd Washing



17002 Environmental Science and Pollution Research (2024) 31:16995–17004

derivative and to the increased potential to form π-π bonds 
between benzyl groups and PAH aromatic rings. Moreover, 
the greater pollutant removal in the second washing for soil 
2 than for soil 1 (Figs. 3 and 4) may be explained by the 
different textural characteristics of the two soils. In fact, it 
can be hypothesized that the first washing with the highly 
hydrophobic benzylated HA may have altered the aggre-
gates arrangement of the finer textured soil 2 more than the 
coarse soil 1 (Jastrow 1996), thereby favoring the disruption 
of some macroaggregates into microaggregates (Conte et al. 
2005). This process may then have exposed a larger share 
of microaggregate surfaces to the aqueous solution of the 
benzylated HA during the second soil washing and enhanced 
the repartition of adsorbed PAHs from soils into the hydro-
phobic phases of the modified HA.

Conclusions

The structural modification of a humic acid with the covalent 
insertion of methyl, pentyl, and benzyl groups was shown 
here to increase its surfactant capacity and improve signifi-
cantly its soil washing efficiency. This finding is attributed to 
the enhanced HA hydrophobicity that favored PAH reparti-
tion from soil particle surfaces into humic apolar domains. 
Removal of PAHs from a loamy-sandy-clay soil by wash-
ing with all O-alkylated derivatives at different rates of HA 
total acidity showed an invariable increase, with respect to 
the unmodified HA, that was up to 20-fold when fluoran-
thene was solvated by benzylated HA. A similar behavior 
was shown by the finer textured clay-loam soil, though to a 
lesser extent. For both soils, the best efficiency in soil wash-
ing was shown when O-alkylation was at 60% of the humic 
total acidity and the benzylated HA was generally the most 
performing among all derivatives. Such greater efficiency in 
removing PAHs from soils is attributed to the disruption of 
soil aggregation by the enhanced surfactant capacity of ben-
zylated HA and to the formation of π-π bonds between the 
pollutants’ aromatic rings and the newly introduced benzyl 
groups of the benzylated derivative. Alkylated HA showed 
better PAH removal capacity than the nonionic synthetic sur-
factant Triton X-100, whereas only the benzylated and meth-
ylated HA appeared to nearly and fully match, respectively, 
the soil washing efficiency of the SDS anionic surfactant. A 
significant increase in PAH release was observed when soils 
were washed consecutively by a second 60% benzylated HA 
solution, since it may have further induced the disruption of 
soil aggregates and the exposure of a greater surface of soil 
particle to the washing. Our findings indicate that a simple 
and low-cost O-alkylation reaction can significantly increase 
the potential of a natural surfactant, such as a humic acid, 
in washing PAHs from a contaminated soil by an efficiency 
comparable to that of synthetic surfactants. While the extent 

of pollutant removal appears still dependent on soil texture, 
this limitation may be overcome by efficiently applying ben-
zylated HA solutions in consecutive washings, without the 
risk of introducing excessive biological toxicity in the envi-
ronment, as it is the case for synthetic surfactants.
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