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Abstract
The effort towards a greener future will entail a shift to more environmentally friendly alternatives of many human activities. 
Within this context, the path towards a decarbonized society in general, and industrial decarbonization in particular, will 
require using low carbon solutions and/or capturing carbon emissions at the source. This flux of captured carbon will then 
require management and one option is to store it in concrete. The incorporation of the captured CO2 can be done during 
the mixing and/or curing. While the latter is more efficient and effective in terms of the amount of CO2 incorporated, it is 
limited to concrete in elements that are compatible with chamber curing. In practice, this would be restricted to the concrete 
pre-fabrication industry and, most probably, only to small size elements. Despite the lower performance, incorporation of 
CO2 into concrete during the mixing stage is a relatively universal alternative. The present research effort reveals that the 
latter solution is beneficial from an environmental point of view, with an estimated yearly carbon storage of 23 million tonnes 
worldwide against emissions of 2.5 million tonnes to do it.
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Introduction

Greenhouse effect is essential to make life, as we know it, 
possible in the planet by retaining a portion of the solar 
energy in the atmosphere. According to Manabe (2019), 

greenhouse gases (GHG) are responsible for the tempera-
ture difference of roughly 33ºC between the measured mean 
air temperature (14.5ºC) and the theoretical estimated tem-
perature if the Earth-atmosphere system would behave like 
a Stefan–Boltzmann blackbody (-18.7ºC). The same author 
also explains how the GHG concentration increase, in par-
ticular carbon dioxide (CO2) since it is the most abundant 
from anthropogenic origin (IPCC 2014), leads to an increase 
of the planet mean air temperature. The temperature increase 
causes also an acceleration of the water cycle, resulting in a 
higher average water vapor concentration in the atmosphere. 
Since water vapor is the most abundant GHG in the atmos-
phere and is responsible for half of the greenhouse effect 
(Buis 2022), this further exacerbates climate changes.

Considering Earth as a closed system (except for the 
energy exchanges to and from space), the issue associated 
with anthropogenic GHG emissions is that it represents net 
transfer of substances with greenhouse effect potential, pres-
ently stored in the solid or liquid forms in the surface or the 
crust, to the atmosphere, in the gaseous state. Basically, the 
problem is the destabilization of the natural balance between 
emission and removal of GHG to and from the atmosphere 
that human activities are responsible for. Amongst those 
activities, the built assets assume a spotlight position in 
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terms of GHG emissions, with the operation of buildings 
being responsible for 28% of the anthropogenic carbon diox-
ide emissions (CO2) emissions worldwide, and further 11% 
being attributed to the construction industry (IEA 2019).

Within the construction industry, the largest portion of 
the CO2 emissions are from the production of the construc-
tion materials. In this context, structural materials such as 
concrete and steel are responsible for a significant portion 
since they are present in buildings and infrastructures alike, 
while other constructions materials (e.g., glass) are only pre-
sent in buildings. Steel (160 kg CO2/t for recycled rebar to 
6150 kg CO2/t for stainless steel) has a substantially higher 
specific embodied carbon than concrete (72 kg CO2/t for 
concrete with 75% of ground granulated blast slag to 375 kg 
CO2/t for autoclaved aerated blocks) (Cabeza et al. 2021). 
However, concrete is not only the most consumed construc-
tion material, but it is the most consumed material overall 
worldwide after water (WBCSD 2009; ISO/TC 071 2016). 
Considering the yearly concrete production of 30 billion 
tones reported by Monteiro et al. (2017) and assuming that 
concrete is responsible for 9–10% of the global CO2 emis-
sions indicated by Cao et al. (2021), an average emission of 
120 kg CO2/t is obtained. This figure is slightly higher than 
the 72.5 kg/t indicated by MPA (2021), but in the lower end 
of the range of values of the studies reviewed by Cabeza 
et al. (2021).

Concrete is a mixture of three basic components, aggre-
gates, cement and water, but it may include also other addi-
tives and/or admixtures, usually in minor proportions. With 
an estimated consumption of 2.4 tones per cubic meter of 
concrete, aggregates make up roughly 60% to 75% of the 
concrete volume (Wang et al. 2021; Warburton 2020). How-
ever, with GHG emissions ranging between 7.85 and 103 kg 
CO2eq/t, aggregates imply mostly the consumption of large 
amounts of natural raw material (Hossain et al. 2016; Bas-
cetin et al. 2017). On the other hand, cement comprise 15% 
to 20% of the concrete volume but is responsible for 75% of 
the concrete CO2 emissions (Cao et al. 2021). With specific 
carbon emissions usually above 600 kg CO2/t, for blended 
cements, and above 800 kg CO2/t, for non-blended cements 
(Anderson and Moncaster 2020), Portland cement is respon-
sible for 7–8% of all anthropogenic CO2 emissions (Miller 
et al. 2016; IEA 2018; Andrew 2018) and concrete incorpo-
rates the largest portion of the over 4 billion tones produced 
annually worldwide (USGS 2022).

While some sources of carbon emissions are possible 
to replace by carbon neutral alternatives (e.g., renewable 
energies for electricity production), others are not. Port-
land cement in particular falls in the latter category since 
the emissions from the production of its main component, 
the clinker, originate from two sources: i) production emis-
sions; and ii) process emissions. The production emissions 
refer to the emissions associated with thermal and electrical 

energy consumption. The sintering reactions responsible 
for the formation of the clinker require maintaining the raw 
material at 1450ºC, which is achieved by the combustion 
of a variety of fossil fuel mixes. Consequently, the thermal 
energy required is the major source of production emissions. 
The presence of carbonates in the raw material, in particular 
calcium carbonate, is responsible for the process emissions. 
When the clinker raw material reaches the 800ºC-900ºC, 
the CO2 in the carbonates is released into the atmosphere. 
Process emissions make up around 60% of the total CO2 
emissions from cement production (almost 70% in the most 
efficient cement factories) (IEA 2018; Carriço et al. 2020; 
Fennell et al. 2021), corresponding to around 520 kg CO2/t 
of clinker (IPCC 2006). So, even if it would be possible to 
eliminate completely the consumption of fossil fuels and use 
green electricity in the production of Portland cement, the 
calcination of the carbonates in the raw material would still 
be responsible for the emission of substantial amounts of 
CO2. This is why Davis et al. (2018) categorizes cement as 
one of the main energy services and industrial process that 
are particularly hard to provide without emission of CO2, 
along with long-distance freight transport, air travel, highly 
reliable electricity, and steel manufacturing.

Over the years, a multiplicity of alternatives has been 
explored to reduce the CO2 emissions from cement pro-
duction by both the scientific and technical communities. 
These can be grouped into alternatives aiming at (Barcelo 
et al. 2014; Carriço et al. 2020; Gartner and Hirao 2015): i) 
increasing energy efficiency of the production process; ii) 
reducing the specific emissions by using alternative fuels 
(e.g., biomass, wastes) or decarbonated raw materials (e.g., 
chemical decarbonation); iii) incorporating alternative addi-
tives, both inert (e.g., limestone filler) or active (e.g., fly 
ash), to reduce the clinker content of the cement or concrete; 
and iv) capturing and storing CO2 in the gases before releas-
ing to the atmosphere. Several solutions within the first three 
groups are already used by the industry for years, but their 
mitigation potential has been eliminated in terms of overall 
net emissions by the exponential growth of the demand for 
cement, which is reported to have increased by a factor of 30 
since 1950 and almost 4 times since 1990 (Andrew 2019). 
As a result, the proportion of the global anthropogenic CO2 
emissions resulting from cement production is estimated to 
have increased from 5%, in 2000, (Worrell et al. 2001) to 
8%, in 2018 (Andrew 2018). The evolution of the total CO2 
emissions from just over 25 to almost 35 billion metric tons 
in the same period (Friedlingstein et al. 2022) means that the 
increase is even larger in absolute terms.

In order to achieve carbon neutrality in the cement indus-
try, in particular, and the construction industry, in general, 
the development and implementation of more efficient 
CO2 capture technologies will be required (Wilberforce 
et al. 2021). According to the CEMBUREAU (2020) and 
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the PCA (2021) roadmaps, carbon capture technologies will 
be responsible for up to 42% of the CO2 emissions reduc-
tion needed for carbon neutrality of cement. This, in turn, 
will generate a significant amount of CO2 waste that will 
need to be managed. Some management alternatives that are 
being assessed include (Hepburn et al. 2019): i) storage in 
geological formations (e.g., empty gas fields); ii) storage in 
biomass (e.g., algae); iii) use in the production of chemicals 
(e.g., urea) and fuels (e.g., methanol); iv) use in forestry and 
agricultural applications (e.g., soil organic carbon content); 
and v) incorporation in materials (e.g., concrete).

Looking at the last option, concrete (mostly the cement) 
is not just a source of CO2 emissions. The natural carbona-
tion reaction between CO2 and the hydrated cements com-
pounds, makes it also a sink for atmospheric CO2. Cao et al. 
(2020) analysis of the cement carbon cycle estimated that, 
in 2014, cement production was responsible for emitting 
almost 3 Gt of CO2 but, at the same time, absorbed more 
than 0.6 Gt of CO2. Almost 80% of the CO2 uptake from 
cement-based products (mortar and concrete) takes place 
during the life cycle of the built assets. In addition to the 
fact that the balance between emissions and absorptions 
is extremely positive, there is also a substantial time delay 
between emission and absorption. Considering that typical 
life spans of built assets range from 50 to 100 years, even 
if the absorption capacity was the same of the emissions 
there would be a substantial accumulation of CO2 in the 
atmosphere. Furthermore, the full absorption potential is not 
used, since the 50 years carbonation depths estimated by 
Elgalhud et al. (2017) are always below 80 mm. Pade and 
Guimaraes (2007) estimated that only 25% of the CO2 that 
could be uptaken by concrete carbonation is absorbed after 
100 years (70 years of service life and 30 years in landfill as 
crushed concrete).

Assuming that no alternative materials are developed for 
replacing concrete and Portland cement in the near future 
and that carbon capture will be required to meet the emis-
sion targets, CO2 will become a substantial by-product flux 
from the cement industry. A possibility for dealing with it 
is to accelerate its absorption by concrete during the mixing 
and/or curing stages. Herein, we assess the balance between 
the CO2 stored and the emitted for injecting CO2 during 
concrete mixing, in particular in the ready-mix industry, but 
also the precast industry. Assuming that CO2 capture will 
be mandatory in cement plants in the near future, the CO2 
emitted comprise the liquefaction, transportation, vaporiza-
tion and injection stages required for injecting CO2 during 
concrete mixing.

The potential of incorporating CO2 into concrete is not 
limited to the acceleration of the natural carbonation reaction 
in conventional concrete (e.g., Meng et al. 2022). Another 
alternative based on the same principle is the accelerated 
carbonation of recycled aggregates (e.g., Singh et al. 2021; 

Kursula et al. 2022; Torrenti et al. 2022; Zhang et al. 2023) 
prior to the production of recycled aggregates concrete. 
However, a variety of other options have explored using 
other concrete components as CO2 absorbers. One to these 
options is the production of nano-calcite to be used as filler 
in concrete (e.g., Qin et al. 2018; Fu et al. 2022; Liu et al. 
2022; Monkman et al. 2022). Batuecas et al. (2021) demon-
strates that is possible to use waste CaO, for instance from 
the purification of steelmaking slags or from the by-product 
of the soda ash Solvay production process (calcium chloride 
and NH3), as source of calcium to obtain the nano-calcite by 
mixing mix CO2. The carbonation of alkaline mineral con-
crete admixtures, such as fly ash or steel slag, has been also 
explored as an alternative to incorporate CO2 into concrete 
(e.g., Pan et al. 2017; Humbert and Castro-Gomes 2019). 
Presently, there is already a variety of technologies aimed 
at carbonizing various types of wastes to produce artificial 
aggregates (e.g., Hanifa et al. 2023).

Injecting co2 during concrete mixing 

The artificial storage of CO2 in concrete can be done by 
either (Nogueira et al. 2023): i) curing the concrete in CO2 
rich atmospheres; and ii) mixing concrete with CO2. The 
former is, in practical terms, limited to concrete used in the 
precast industry, since it requires placing the elements in an 
air-tight chamber to enable the creation of the CO2 rich envi-
ronment. This might even be limited to precast concrete ele-
ments of small size. Injecting CO2 during concrete mixing 
consists in using CO2 as component during the production 
stage. This approach can be easily expanded to all ready-
mix concrete industry and even to on-site concrete batching 
plants, such the ones that can be found in large construction 
projects (e.g., dams).

When injecting CO2 during concrete mixing, the typical 
reactive compounds of concrete (cement, water and even-
tual additives and admixtures) are mixed with CO2 and the 
inert components (aggregates) at the same time. As such, the 
chemical reactions taking place are not the carbonation of 
hydrated cement compounds, since they are not formed yet. 
The processes occurring within this mixture are not yet fully 
understood, since the research is still quite recent. A few 
research groups are exploring this solution and some per-
formance reductions have been observed. Table 1 resumes 
some main results obtained with injecting CO2 during con-
crete mixing and the overall conclusion is that the amount of 
CO2 injected has to be lower than 1% of the cement weight 
to prevent the degradation of the concrete performance. The 
exception is the recent work by Liu et al. (2021), but the 
authors do not discuss or compare the results with previous 
research efforts in the topic.
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In practical terms, two main strategies have been explored 
to introduce CO2 during concrete mixing: i) use of carbonated 
water (Kwasny et al. 2014; Silva et al. 2021); and ii) inject 
CO2 directly to the mixture (Monkman and MacDonald 2016). 
Since the solubility of CO2 in water is just 0.0015 gCO2/gH2O 
(Dodds et al. 1956), this is the factor limiting the amount of 
CO2 possible to store in concrete. The injection of gaseous 
CO2 has been used for decades in the production of wood-
cement composites to increment the product turn-over (Jorge 
et al. 2004) and, more recently, is being implemented by Car-
bonCure Technology Inc. (CarbonCure 2021) in the produc-
tion of ready-mixed concrete. The injection is reported to 
last for just 1–2 min and introducing less than 1% of CO2 by 
weight of cement. In laboratory conditions, some authors (e.g., 
Kwasny et al. 2014) also explored mixing concrete inside a 
carbonation chamber to create a CO2 rich atmosphere, but this 
option has no practical use.

It should be noted that the CO2 injected during concrete 
mixing is absorbed not only by the cement, but also by other 
supplementary cementious materials that are frequently used. 
Several of the supplementary materials (e.g., fly ash; steel slag) 

are also capable of sequester CO2 (Monkman and MacDonald 
2017; Monkman et al. 2016). Conservatively, this contribution 
was not account for because: i) the statistics found of the con-
crete compositions do not disclose the supplementary cemen-
tious materials type and amount; ii) the availability of the most 
common supplementary materials (fly ash and steel slag) are 
decreasing with the trend for closing coal power plants and 
replacing steel production from raw material by steel recycling; 
and iii) recent research efforts (e.g., Luo et al. 2022) are con-
sistent with the initial studies that the CO2 absorption of the 
supplementary cementious materials (e.g., Kwasny et al. 2014) 
and the impacts on the concrete properties are identical or even 
better than with concrete only with Portland cement.

Methods

Scope

The present research was developed in the premise that, to meet 
the carbon emission targets needed to halt climate changes, 

Table 1  Summary of results from carbonation of cement-based materials during mixing

1 fc – compressive strength

Material Carbonation process Performance Footprint benefit Refs

Concrete (308 kg of cement 
and 77 kg of slag)

0.05%wt
0.15%wt
0.30%wt
(CO2/cement) injected dur-

ing mixing

3% increment
4% reduction
6% reduction
In fc1 at 28 days
No impact on durability

not mentioned Monkman and Cail (2019)

Concrete (147.7 kg of 
cement and 73.9 kg of 
slag and of fly ash)

0.11%wt
(CO2/cement) injected dur-

ing mixing

No reduction in fc1 in 
relation to a reference 
concrete with 4.3% more 
binder

net reduction in  CO2 of 
10.0 kg/m3 of concrete

Kwasny et al. (2014)

Cement paste (w/c = 0.5, 0.6 
and 0.7)

0.44%wt
1.76%wt
0.88%wt
1.32%wt
2.20%wt
(CO2/cement) injected dur-

ing mixing

Decrease
Increase
Increase
Increase
Increase
In fc1 at 28 days
(graphical data)

not mentioned Liu et al. (2021)

Cement paste (w/c = 0.4) Carbonated water with 4.2 
pH  (CO2 introduced at a 
pressure of 8 bar)

20% reduction
In fc1 at 28 days

not mentioned CarbonCure (2021)

Cement mortar (w/c = 0.4) Carbonated water with 4.2 
pH  (CO2 introduced at a 
pressure of 8 bar)

Reduction in fc
Porosity doubled and pores 

around 80 nm increased

not mentioned CarbonCure (2021)

Cement paste (w/c = 0.5) Carbonated water with 4.2 
pH  (CO2 introduced at a 
pressure of 1 bar)

6% reduction in fc1 at 
28 days

not mentioned Lippiatt and Ling (2020)

Cement paste (w/c = 0.44) 45 min
90 min
of mixing time in a 

carbonation chamber 
with 85 ± 5%v/v of  CO2 
concentration

12% reduction
13% reduction
In fc1 at 28 days

0.93%wt
1.12%wt
CO2 uptake  (CO2/clinker)

He et al. (2017)

17807Environmental Science and Pollution Research  (2024) 31:17804–17821



CO2 will have to be captured in the cement and other industries. 
These will create the opportunity to use the CO2 captured as 
a non-fossil carbon-source to produce products that cannot be 
made without carbon and for which no non-carbon alternatives 
exist (e.g., many chemicals, solvents, fuels, detergents) (Sick 
et al. 2022). However, the amount of CO2 that is estimated to 
be required to capture exceeds the demand by these products. 
So, before considering its storage as a waste, it is considered 
herein that there are economic and environmental benefits from 
incorporation CO2 in products that currently are not made with 
carbon. In this context, the concrete industry has a large poten-
tial by allowing the CO2 to be used for carbonating aggregates 
and mixing and curing concrete (Woodall et al. 2019).

Within this context, the evaluation of the CO2 balance of 
injecting CO2 during concrete mixing in the concrete industry 
can be modelled considering the system defined in dashed 
lines in Fig. 1. Only the stages that are different from the tra-
ditional concrete production stage and required to inject the 
CO2 into the concrete during the mixture are modelled, which 
include the liquefaction, the transportation, the vaporization 
and the injection of the CO2. The functional unit for reference 
the modelling is 1  m3 of concrete produced.

The exclusion of the capture compression and cooling 
of the CO2 from the modelled system boundaries results 
from the assumption that carbon capture will become man-
datory in the near future. In this circumstance, the energy 

consumption in these stages will be associated with the 
production process that emits it. This implies the assump-
tion that the CO2 will be captured at the cement factories, 
creating a product loop aligned with the circular economy 
model reflected in the European Green Deal (EU 2020). 
This approach has similarities with the environmental per-
formance assessment of several subproducts that are incor-
porated into concrete for several decades, in particular fly 
ash (Xu and Shi 2018).

Methodology

The stages identified in dashed in Fig. 1 were simulated to 
determine the balance between the CO2 storage and emitted 
with injecting CO2 during concrete mixing. If the balance 
is positive, the amount of CO2 stored in the concrete is less 
than the CO2 emitted in the process, rendering it an envi-
ronmentally viable option.

Fundamentally, the amount of CO2 that can be stored 
by injecting CO2 during concrete mixing is the product 
between the: i) absorption rate; ii) the amount of concrete 
produced; and iii) the cement content of the concrete. 
The absorption rates translate the amount of CO2 that is 
retained in the concrete. The amount of concrete produced 
was limited to ready-mix and precast industries, since 
injecting CO2 during concrete mixing on construction sites 

Concrete pouring and 
cure

Components 
produc�on

Carbon capture

Cement

Aggregates

Water

Addi�ves

Admixtures

In-situ

Plant

In-situ

Precast

Concrete mixture

Capture
Compression 

Cooling
Liquefac�on

Tr
an

sp
or

ta
�o

n

Vaporiza�on

Injec�on

Modelled component/stage

Fig. 1  Modelled system boundaries
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may be difficult in some cases. Since the absorption rate 
is by weight of cement, knowing the average cement dos-
age or total cement consumption in ready-mix and precast 
concrete is required.

The emissions from implementing carbon curing can be 
estimated by the product between the emission factor and the 
energy consumption in each stage, as represented in Fig. 2. 
With the exception of the transportation, all other processes 
are assumed to consume electricity, so the emission factor 
will vary between country depending on the mix of energy 
sources. The electricity consumption depends on the equip-
ment required for each stage. The transportation emissions 
depend on the distance, the emission factor and the transport 
efficiency. The distance was estimated as the diagonal of the 
square corresponding to the area of each country divided 
by the number of cement factories. The emission factor and 
transport efficiency (reflects the weight of the container in 
relation to the product being transported) were estimated 
assuming road transportation using trucks.

Given the degree of uncertainty in all the model ele-
ments, a stochastic analysis was also carried out resorting 
to Monte Carlo simulation, as a complement to the deter-
ministic approach.

Data

A mixed approach was adopted to obtain the data required 
to run the simulations, including: i) industry associations 
and official sources (CO2 emissions from electricity genera-
tion and land transportation; concrete production; ready mix 
production; precast production; cement content); ii) research 
results from the literature (concrete production; CO2 absorp-
tion; precast production; cement content; energy consump-
tion); and iii) questionnaire replies (precast concrete con-
sumption and composition). The questionnaires were just 
conducted in Portugal and only six complete replies were 
obtained, representing roughly 5% of the market.

The absorption rates considered herein were retrieved 
from Ravikumar et al. (2021). The absorption rates reported 
by Ravikumar et al. (2021) range between 0.001 kg CO2/
kg cement and 0.016 kg CO2/kg cement, having an average 

value of 0.0085 kg CO2/kg. The 0.01 kg CO2/kg cement 
limit for avoiding performance degradation of the con-
crete was taken into consideration, but assuming that in 
some cases it could be slightly exceeded in the stochastic 
modeling.

Table 2 lists the information collected in terms of total 
concrete production and the amount used in the form of 
ready-mix concrete and precast elements. The distribution 
of the total concrete consumption in 2020 was estimated 
assuming the same proportion distribution presented by 
Miller et al. (2016) and using the total concrete produc-
tion indicated by the GCCA (2021). The data regarding the 
concrete used in the precast industry is scarcer and it was 
impossible to obtain with the same temporal discretization.

For some countries, the data in Table 2 allows estimat-
ing the proportion of concrete that is used in the form of 
ready-mix concrete (Brazil: 46.6%; United States: 80.9%; 
China: 35.9; India: 52.3%; Japan: 50.7%). The average of 
the proportion of concrete used as ready mix weighted by 
the amount of concrete consumed in each country is 39.8%. 
Assuming this percentage to be representative of the world, 
the amount of ready-mix concrete produced in 2020 can be 
estimated to be 5 568.1 ×  106  m3.

The cement content of the ready-mix concrete is pre-
sented in Table 3, along with the estimate of the transporta-
tion distances. The 2020 estimate of cement content was 
based on the APEB (Associação Portuguesa das Empresas 
de Betão Pronto) estimate that 41% of the total of 4 ×  106 t 
of cement consumed in Portugal was used in ready-mix 
concrete. This information was shared in a meeting and 
is not available in an official publication. The average dis-
tances were estimated dividing each country land area by 
the corresponding number of cement factories and assum-
ing that the distance corresponds to the diagonal of a square 
with the area per plant obtained. In most cases, the esti-
mates are within the 200 km to 300 km limit for economic 
land transportation distances indicated by CEMBUREAU 
(https:// cembu reau. eu/ about- our- indus try/ key- facts- figur es/). 
Noticeable exceptions include Canada, Norway, Sweden and 
Russia, all relatively large countries with small population 
densities. This reveals that, most probably, the results are 

Liquefac�on

• Consump�on
• Emission 

factor 

Transport 
(diesel)

• Distance
• Emission 

factor
• Transport 

efficiency

Vaporiza�on

• Consump�on
• Emission 

factor 

Injec�on

• Consump�on
• Emission 

factor 

Fig. 2  Stages emission variables in the  CO2 supply chain
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Table 2  Concrete statistics by 
location and use (Miller et al. 
2016; ERMCO 2017, 2020; 
GCCA 2021; Sick et al. 2022; 
Statistica 2022; Vázquez-Calle 
et al. 2022; Wang et al. 2021)

a  estimated assuming the same proportional distribution ofMiller et al. (2016)
b  estimated from the precast weight considering an average specific weight of 1.7 t/m3 derived from world 
total precast products weight of 7000 ×  106 t (Sick et al. 2022)
c  estimated from replies to industry questionnaire on precast concrete cement dosage and extrapolation 
based on cement consumed on the precast industry
d  value estimated for 2015 by Vázquez-Calle et  al. (2022), considered conservative since the share of 
ready-mix in China increased from 32 to 38% between 2008 and 2010 and was estimated to increase to 
51% by 2013 (Song 2011)

Region Concrete  [106  m3]

Total Ready mix Precast

2  020a 2 016 2 020 2 019 2 018 2 017 2 016 Various

Africa 628.7 451.7
  Nigeria 63.9

America
  Brazil 246.9 177.4 115.0
  Colombia 5.3
  Canada 39.4 28.3
  United States 353.4 253.9 286.0 280.0 274.0 270.0 265.0 25.2
  Rest of America 367.6 264.1

Europe 849.6 610.4
  Turkey 95.0 67.0 100.0 115.0 109.0
  Germany 55.3 53.5 52.8 51.7 49.5
  France 37.0 40.4 40.1 38.8 36.3 12.2b

  Italy 28.7 28.4 27.3 27.3 23.3
  Poland 25.7 26.2 25.1 20.4 20.4
  United Kingdom 24.9 24.9 22.5 22.9 24.6
  Spain 22.8 24.8 22.2 16.3 16.3
  Belgium 12.4 13.0 12.8 12.7 12.5
  Austria 11.5 11.9 11.8 11.0 10.8
  Switzerland 11.4 11.1 10.9 11.5 11.5
  Netherlands 7.4 7.8 7.5 6.9 6.5
  Portugal 5.9 5.1 4.5 3.5 3.5 3.4c

  Denmark 2.7 2.6 2.6 2.5
  Sweden 4.5 4.5 4.5 4.5
  Ireland 4.3 4.3 4.3 2.4
  Slovakia 2.8 3.0 2.4 1.9
  Norway 3.8 4.1 4.1 4.0
  Czechia 7.1 7.1 6.8 6.8
  Finland 2.7 2.8 3.0 2.9

Middle East 719.2 516.7
  Iran 141.0
  Israel 18.9 18.0 16.9 15.4

Asia
  China 7 940.4 5 704.7 2 848.0 1  200d

  India 1 027.0 737.8 537.0
  Japan 175.8 126.3 89.2 84.8 84.8 84.0 99.0
  Indonesia 119.0
  Pakistan 91.4
  Thailand 2.6
  Taiwan 42.1
  Russia 38.0 38.0 35.0 37.0
  CIS 406.4 292.0

Oceania
  Australia and New Zealand 46.4 33.3

Rest of Asia and Oceania 1 199.1 861.5
World 14 000 10 058 2 400d 4 200
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conservative since the installations (cement factories, ready-
mix plants and prefabrication units) will tend to concentrate 
close to the consumption points.

According to the NPCA (2014), in 2013, the precast 
industry consumed almost 10 ×  106  t of cement to pro-
duce 25.2 ×  106  m3, implying an average consumption of 
396.4 kg/m3. This value is consistent with the most recent 
estimates that the precast industry consumes 10% to 11% of 
the total cement in the US, which corresponded to an amount 
of 10.3 t to 11.8 t (USGS 2020, 2021, 2022). In Portugal, 
the APEB estimates that, in 2020, 24% of the total 4 ×  106 t 
of cement consumed in Portugal was used in the precast 
industry, which corresponds to an average cement content 
of 280.8 kg/m3. In France, the precast elements production 
in 2007 consumed 4 ×  106 t of cement, which corresponds to 
dosage of 329.1 kg/m3 (http:// www. plane te- tp. com/ ciment- 
chiff res- cles- a760. html). The precast production was divided 
in (FIB 2020): i) 50% small building construction elements, 
mostly concrete blocks; ii) 20% large building precast ele-
ments, such as stairs and walls; and iii) 30% precast elements 
for environmental works, such as pipes. T

The electricity consumption for CO2 liquefaction, vapori-
zation and injection were estimated from Ravikumar et al 
(2021), Erik et al. (2016) and Monkman and MacDonald 
(2017), and their mean values are 0.10 kWh/kg CO2, 0.047 
and 0.037, respectively. Table 4 lists the specific emission 
factors from electricity generation by location.

Analyzing a longer time frame (Fig. 3), it is possible to 
observe the overall trend in terms of specific emissions from 
electricity production. The highest value, which correspond to 
Poland, show a clear decreasing trend, but the lowest (Sweden) 
has been stable. At the world scale, the improvements in some 
of the most developed countries (e.g., Europe decreased from 
360 g CO2/kWh, in 2000, to 264 g CO2/kWh, in 2020; United 
States decreased from 499 g CO2/kWh, in 2000, to 348 g CO2/
kWh, in 2020) are being compensated by the increase in elec-
tricity demand in other regions with specific emissions higher 
than the average (e.g., China: 545 g CO2/kWh in 2020; India: 
634 g CO2/kWh in 2020).

Freight transport emissions vary significantly with the 
means of transportation and the methodology used in the 
estimation (Wild 2021). The emission factors are, most fre-
quently, reported not only by unit of distance (e.g., per km) 
but also by unit of weight (e.g., per t). Figure 4 presents two 
series of values reported by the EEA, enabling to grasp both 
the variability and order of magnitude in Europe.

From Fig. 4 it is possible to conclude that the variability 
over time is relatively small. The variables that have more 
influence on the emissions of road transportation are: i) the 
cargo capacity of the truck; ii) the loading ratio, or load factor; 
and iii) the fraction of time operating empty. Typically, the 
higher the capacity of the truck the lower the specific emis-
sion factor since the ratio between the weight of the cargo and 

of the truck diminishes (Transport and Environment 2021). 
The load factor is the ratio between the average effective load 
transported and the full capacity, reflecting how loaded is the 
truck usually operated. The specific emission factor tends to 
lower with the increase of the load factor, since it is a more 
efficient use of the available transportation capacity. The frac-
tion of time operating empty could be translated in the average 
load factor lowering its value, implying an increase of the 
emissions factor (McKinnon and Piecyk (2010). The median 
of the average specific emissions factor values reported in 
McKinnon and Piecyk (2010), Transport and Environment 
(2021), IEA and UIC (2017), EEA (2017), Fraunhofer (2020) 
and Ravikumar et al. (2021) is 82 g CO2/t.km and was used 
in the simulations. The values reported range between less 
than 40 g CO2/t.km to over 700 g CO2/t.km considering the 
full range of heavy-duty vehicles. Considering that is more 
probable to transport CO2 to the ready-mix concrete plants 
and precast concrete factories, using medium and large heavy-
duty vehicles, the maximum specific emissions is around 
300 g CO2/t.km (Sims and Shaeffer 2014).

Formulation

All input data for the Monte Carlo simulation was assumed 
to follow a PERT distribution (PERT). Since it is a robust 
measure central tendency, the median was used instead of 
the average to determine the most probable value using the 
range of values available between 2016 and 2020. For the 
data with limited information, namely the precast industry 
data, a ± 10% variation was assumed.

The equations of the simulation model are presented 
below. Since the model is stochastic, the results are repre-
sented by a distribution (Dist.), rather by a single value as 
in deterministic models.

1) CO2 balance ( BCO2)

where SCO2 is the amount the amount of CO2 stored in 
concrete by injecting during the mixing; and ECO2 is the 
amount of CO2 emitted to inject CO2 during concrete 
mixing.

2) CO2 stored in the concrete

Please check if all equations are presented correctly. where 
CProduced is the amount of concrete produced (Table 2); 
CContent is the cement dosage of the concrete produced 

Dist.
(

BCO2

)

= Dist.
(

SCO2
)

− Dist.
(

ECO2

)

Dist.
(

SCO2
)

=PERT
(

CProduced

)

× PERT
(

CContent

)

× PERT
(

CAbsorption

)

× PERT
(

MEfficiency

)
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Table 3  Average cement 
content of ready-mix concrete 
and average distance between 
cement factories and ready-mix 
plants of precast industries 
(ERMCO 2017, 2020; WB 
2022; CEMNET 2022; USGS 
2021)

Region Cement content in ready-mix concrete Distance

[kg/m3] [km]

2020 2019 2018 2017 2016 2020

Africa
  Nigeria 426.8

America
  Brazil 421.7
  Colombia 317.6
  Canada 1058.6
  United States 261 270 270 270 270 417.4
  Rest of America

Europe
  Austria 260 260 260 260 122.5
  Belgium 310 280 280 280 77.8
  Czechia 298 298 272 272 160.4
  Denmark 260 260 260 260 200.0
  Finland 355 350 350 345 450.1
  France 298 297 297 298 152.6
  Germany 303 305 301 298 118.2
  Ireland 260 260 260 255 151.5
  Italy 320 320 320 320 99.3
  Netherlands 314 315 315 313 149.8
  Poland 278 285 270 270 217.0
  Portugal 278 244 204 195 196 151.3
  Slovakia 303 300 302 300 138.7
  Spain 270 275 275 283 154.2
  Sweden 638.2
  United Kingdom 278 258 262 260 168.7
  EU 288 285 283 282 128.8
  Norway 360 360 360 365 603.6
  Switzerland 280 280 280 280 114.8
  Turkey 305 295 290 290 142.3

Middle East
  Iran
  Israel 120.1

Asia
  China 151.8
  India 143.2
  Japan 348 348 351 351 153.3
  Indonesia 306.4
  Pakistan 234.7
  Thailand 252.7
  Taiwan
  Russia 360 360 359 360 699.2
  CIS

Oceania
  Australia and New Zealand

Rest of Asia and Oceania
World 300.6 298.6 296.7 296.9 288.8
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(Table 3); CAbsorption is the CO2 absorption (from Raviku-
mar et al. (2021)); and MEfficiency is the mixing efficiency. 
The latter intents to reflect that, in real conditions, some of 
the CO2 injected may be lost to the atmosphere (assumed 
a value between 0.5 and 0.85, with a median of 0.675). 
This is a conservative approach, since if the mixing effi-
ciency is closer to 1 the CO2 stored will be higher for the 
same CO2 emitted in the process.
3) CO2 emitted for injecting CO2 during concrete 
mixing ( ECO2 ) is comprised by the emissions from 
liquefying ( ELiquifaction ), transporting ( ETransportation ), 
vaporizing ( EVaporization ) and injecting ( EInjection ) the 
CO2 captured at the cement plants (Fig. 1)

with

where EDLiquifaction , EDVaporization and EDVaporization are the 
electricity demands for liquifying, vaporizing and inject-
ing the CO2; EElectricity is the specific electricity CO2 
emission factor (Fig. 3); DPlants is the distance between 
the cement and the ready-mix or precast plants (Table 3); 
EFreight is the specific CO2 emissions in road freight trans-
portation (Fig. 4); and TEfficiency is the transportation effi-
ciency. The latter reflects that the load transported is no 
all CO2 since there is also the CO2 containers and the 
trucks do not return fully load from the ready-mix and 
precast plants (assumed a value between 0.585 and 0.715, 
with a median of 0.65).
The full data used in all stages for modeling the results 
presented below is detailed in Table 5 of the appendix.

Results and discussion

Figure 5 presents the results of the balance (difference) between 
the amount of CO2 that is possible to store and the CO2 that 
emitted with injecting CO2 during the mixture of concrete for 
the World, US, European Union, France, Portugal, China and 

Dist.
(

ECO2

)

=Dist.
(

ELiquifaction

)

+ Dist.
(

ETransportation

)

+ Dist.
(
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)

+ Dist.
(
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)
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(
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)

= PERT
(
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)

× PERT
(
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)

Dist.
(
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)

=PERT
(
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)

× PERT
(

EFreight

)

× PERT
(
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)

Dist.
(
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)

= PERT
(
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)

× PERT
(
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)
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(
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)

= PERT
(
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)

× PERT
(
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)

Table 4  Average annual electricity emissions per kWh of electricity 
produced (Our World in Data 2022)

Region Electricity emissions [g CO2/kWh]

2020 2019 2018 2017 2016

Africa 442.72 468.15 470.73 479.83 483.03
  Nigeria 395.24 398.36 397.91 386.70 378.01

America
  Brazil 113.21 122.27 123.60 139.36 134.29
  Colombia 192.63 172.38 163.30 153.38 223.11
  Canada 116.97 130.01 129.47 135.87 141.48
  United States 348.54 370.25 388.02 392.52 403.69
  Rest of America

Europe 264.54 285.81 301.95 313.30 316.79
  Turkey 409.58 410.14 463.05 461.25 447.87
  Germany 313.78 345.94 406.14 414.48 445.82
  France 57.29 56.85 59.23 70.40 61.13
  Italy 221.01 234.81 248.53 263.66 262.28
  Poland 725.47 743.95 782.17 780.22 786.15
  United Kingdom 242.15 264.39 280.62 294.30 322.79
  Spain 174.66 213.08 276.92 304.75 265.81
  Belgium 178.99 170.87 213.23 184.72 175.22
  Austria 82.68 94.30 102.01 98.14 87.57
  Switzerland 54.52 52.56 54.13 59.52 59.48
  Netherlands 323.75 387.31 438.20 460.51 486.24
  Portugal 207.34 263.38 301.81 370.16 298.62
  Denmark 104.41 135.49 197.56 193.41 229.24
  Sweden 12.21 11.87 12.24 12.18 12.81
  Ireland 278.72 323.00 353.26 388.72 427.38
  Slovakia 138.86 140.84 148.95 145.02 147.80
  Norway 30.80 34.33 34.27 34.34 34.30
  Czechia 405.22 436.84 465.91 471.06 504.19
  Finland 57.06 86.30 112.54 87.64 100.45

Middle East
  Iran 440.40 488.77 476.36 451.23 457.53
  Israel 527.77 531.44 539.72 544.07 544.35

Asia 526.03 538.07 546.70 550.72 556.71
  China 545.89 556.29 570.10 574.97 580.14
  India 624.37 630.10 655.28 658.13 665.39
  Japan 426.12 450.45 448.68 482.91 503.63
  Indonesia 624.68 625.29 618.91 649.26 640.62
  Pakistan 294.18 313.72 286.38 345.58 371.84
  Thailand 507.13 480.96 489.26 503.34 521.11
  Taiwan 563.69 564.32 549.49 559.43 537.24
  Russia 329.08 351.95 354.78 353.93 355.29
  CIS

Oceania 480.97 511.53 531.23 539.64 548.45
  Australia and New Zealand

Rest of Asia and Oceania
World 421.85 435.21 443.93 447.11 450.76
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India. The results were present only for these locations because: 
i) there is a lack of complete data for all locations listed in 
Table 2, 3 and 4; ii) the results are similar (the graphs in Fig. 5 
are similar, with just a shift in the order of magnitude), so it is 
possible to avoid excessive repetition; iii) the major concrete 
and cement producers are captured; and iv) the difference 
between very large (US, China), large (India), medium (France) 
and small countries (Portugal) is captured.

The results are limited to the concrete produced as 
ready-mix concrete, except for the World, US, France and 
Portugal, that also include the cementious elements pro-
duced in the precast industry.

The sensibility analysis indicates that, in most cases, 
more than 95% of the variability is dictated by the 
CO2 absorption during the mixing. The only excep-
tion is China, where the ready-mix concrete consump-
tion is responsible for 15% of the variability, reducing 
the importance of the CO2 absorption to 84%. This is 

explained by the fact that back, in 2010, the proportion of 
ready-mix concrete in relation to the total concrete pro-
duced per year was only 35%, whereas in more developed 
countries (e.g., EU) the proportion was already above 
60%. For instance, in the US the proportion of concrete 
produced as ready-mix has been steady between 70 and 
75% for several years and in China it has been growing. 
Most probably, this is not observed in India because of 
the lack of data prior to 2020.

The balance is extremely positive, with the emissions 
from implementing CO2 injection during the mixing stage 
being roughly 11% of the amount of CO2 that is possible 
to store in the concrete. However, the processes developed 
at laboratory scale indicate CO2 absorption efficiencies 
ranging between 0.5 and 0.85, with an average value of 
0.675. If the CO2 lost to the atmosphere during the mix-
ing stage is accounted for as emissions, the balance is 
significantly worse, with an average world value of almost 

Fig. 3  Specific electricity emis-
sion factor for the world and 
maximum and minimum for 
the countries listed in Table 2, 
3 and 4
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Fig. 5  Balance between the CO2 stored and emitted during carbon curing in: (A) World; (B) United States; (C) European Union; (D) France; (E) 
Portugal; (F) China; and (G) India
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60%. This is clearly a bottleneck to the solution for which 
there no information disclosed in the industrial imple-
mentation by CarbonCure.

Conclusions

The present research effort aims at estimating the potential 
for using concrete for storing CO2 by its incorporation dur-
ing the mixing stage. The simulation model developed was 
built in the assumption that its capture will be required for 
various industries to meet increasingly stringent emissions 
targets, in particular the cement industry. This assumption 
implies that the energy consumption for capturing the CO2, 
and corresponding emissions, are not a burden on their use 
in concrete.

In this context, the balance is highly positive. The world 
average CO2 emissions for compressing, transporting, 
vaporizing and injecting the captured CO2 into the concrete 
mixing at ready-mix concrete plants or precast concrete fac-
tories are just roughly 11% of the amount of CO2 that is 
possible to store into concrete. Since the CO2 emissions 
from injecting CO2 during concrete mixing are mostly from 
electricity consumption, the values vary between 2.4%, in 
France, to 14%, in India, due to the differences in the energy 
sources mix for electricity generation.

Considering that the CO2 emission from cement produc-
tion amounted to 1 626 ×  106 t in 2020 (Global Carbon Altas 
2022), injecting CO2 during concrete mixing could only pro-
vide storage for a little more than 1%. As such, this will not 
solve the CO2 waste management problem that implement-
ing carbon cure in large scale will create.

Table 5  Full simulation inputs 
and results

Parameter Median Max Min

Electricity
  Emission factor [g CO2 / kWh]
    World 443.93 450.76 421.85
      US 388.02 403.69 348.54
      EU 301.95 316.79 264.54
        France 59.23 70.40 56.85
        Portugal 94.30 102.01 82.68
    China 570.10 580.14 545.89
    India 655.28 665.39 624.37
  Consumption [kWh / kg CO2]
    Liquefaction 0.09 0.14 0.08
    Vaporization 0.007 0.0088 0.0053
    Injection 0.037 0.041 0.033

Fuel (transportation)
  Distance [km]
    World 288.79 450.14 77.82
      US 417.42 450.14 77.82
      EU 128.82 450.14 77.82
        France 152.64 450.14 77.82
        Portugal 151.33 450.14 77.82
    China 151.80 450.14 77.82
    India 143.19 450.14 77.82
  Emission factor [g CO2 / t.km] 82.00 300.00 40.00
  Efficiency [kg CO2 / kg transported] 0.650 0.715 0.585

Specific emission carbon mixing [kg CO2 emitted / kg CO2 used]
  World 0.074 0.183 0.052
    US 0.074 0.174 0.043
    EU 0.047 0.158 0.033
      France 0.016 0.110 0.009
      Portugal 0.021 0.116 0.012

Appendix  See Table 5
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Table 5   (continued) Parameter Median Max Min

    China 0.084 0.208 0.067

    India 0.095 0.225 0.076
Ready-mix concrete

  Consumption  [106  m3 / year]
    World 3984.04 5568.08 2400.00
       US 274.00 286.00 265.00
      EU 246.23 260.00 230.03
        France 38.70 40.30 36.10
        Portugal 4.50 5.90 3.20
    China 2024.00 2848.00 1200.00
    India 537.00 537.00 537.00
  Cement content [kg /  m3]
    World 293.55 298.68 292.22
      US 270.00 270.00 270.00
      EU 284.00 288.00 282.00
        France 297.50 298.00 297.00
        Portugal 200.00 244.00 195.00
    China 292.66 298.27 291.27
    India 292.66 298.27 291.27

Precast concrete
  Consumption  [106  m3 / year]
    World 4200.00 4620.00 3780.00
      US 25.23 27.75 22.71
      EU
        France 12.15 13.37 10.94
        Portugal 3.42 3.76 3.08
    China
    India
  Cement content [kg /  m3]
    World 366.67 403.34 330.00
      US 396.40 436.04 356.76
      EU
        France 329.10 362.01 296.19
        Portugal 280.82 308.91 252.74
    China
    India

Mixing performance
  Absorption [kg CO2 / kg cement] 0.0085 0.016 0.001
  Efficiency [kg CO2 absorbed / kg CO2 mixed] 0.675 0.85 0.5
  Storage  [106 kg / year]
    World 23,031.1 56,423.9 1948.7
      US 713.8 1429.1 79.7
      EU 594.4 1198.1 64.9
        France 131.9 269.6 14.0
        Portugal 15.8 41.6 1.4
    China 5034.9 13,591.7 349.5
    India 1335.8 2562.8 156.4
  Emissions  [106 kg / year]
    World 2540.49 12,175.34 202.10
      US 78.13 293.14 6.88
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