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Abstract
During January 2013, a mining spill occurred in the Santa Maria mining region, releasing around 300,000  m3 of tailings on 
Los Remedios river, which was transported through the San Lorenzo river and finally to El Comedero (EC) dam. Twenty 
months later, we examined the concentrations of Hg and Se in the muscle, liver, gills, and guts of three fish species (Cypri-
nus carpio, Oreochromis aureus, Micropterus salmoides) captured in the EC dam to assess the performance of the cleaning 
operations. A high Se concentration in the liver of all species (carp, 1.2 ± 0.4; tilapia, 3.9 ± 2.1; bass, 3.5 ± 1.1 µg  g−1 ww) 
was consistently observed, while this behavior was only found in the blue tilapia for Hg (0.15 ± 0.11 µg  g−1 ww). Tilapia 
(benthic-detritivorous) exhibited the highest Se concentrations compared to the carp (omnivore) and the largemouth bass 
(piscivore). In contrast, the largemouth bass had the highest Hg levels in the muscle compared with the other fishes. Such 
differences could be related to the different metabolism and feeding habits among species. Compared to a tilapia study 
carried out three months after the mine spill during a mortality event, a decrease was evident in the liver for Se and Hg by 
7.2 and 4.7 times, respectively. This reveals that cleaning operations were more efficient for Se and less for Hg, and that a 
prolonged period was required for the partial recovery of the element levels in fish from sites impacted by mining. Consid-
ering the Mexican consumption scenarios for each fish species, it could be concluded that there will be no non-cancer risk 
by exposure to Hg or Se.

Keywords Oreochromis aureus · Cyprinus carpio · Micropterus salmoides · Heavy metals · Bioaccumulation · 
Biomagnification

Introduction

Mercury is one of the most common contaminants that 
induce poisoning in biota and humans; its bioaccumula-
tion leads to a diversity of toxic effects on various organs 

and tissues. It enters the aquatic environment through both 
natural and anthropogenic sources, where it is frequently 
biomagnified in the food chain (Páez-Osuna et al. 2017). 
In general, fish are more vulnerable to the severe toxicity 
of Hg as they are at an intermediate or higher trophic level 
in the aquatic food web (Molina-García et al. 2021); Hg 
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interferes with the expression of proteins and enzymes; 
compromises important pathways, such as apoptosis and 
glucose metabolism; and induces the expression of met-
allothioneins (Souza Vieira et al. 2023). The consump-
tion of fish that contain Hg becomes a relevant source of 
exposure in humans. Consequently, fish have been widely 
recognized as a significant dietary source of Hg exposure 
for coastal populations and high consumers during the last 
four decades, receiving continuous attention from health 
institutions and scientists (Ruelas-Inzunza et al. 2020). 
Conversely, Se plays a vital role in biogeochemistry and is 
an essential element in organisms; it is required for normal 
growth and development due to a cofactor of enzymes 
(e.g., glutathione peroxidase or thioredoxin reductase) 
(Molina-García et al. 2021). Despite such beneficial fea-
tures, elevated Se concentrations can biomagnify through-
out food webs and result in toxic effects (Páez-Osuna et al. 
2017). A well-known impact is that Se induces cytotoxic-
ity and genotoxicity through the generation of reactive 
oxygen species (ROS) (Ali et al. 2021). An essential fac-
tor in evaluating the risk associated with Hg exposure is 
its interaction with Se, that Se exerts a protective effect 
against Hg toxicity. Numerous studies indicate that Se and 
Hg behave antagonistically, so their co-occurrence reduces 
their toxic effects. However, the outcome strongly depends 
on the chemical forms and molar ratio of these elements 
(Ralston et al. 2007; Branco et al. 2012; Molina-García 
et al. 2021).

The recent accelerated development of the economy 
leads to the high demand for metal(loid)s and their com-
pounds, which are indispensable components in a wide 
range of everyday products such as construction mate-
rials, vehicles, computers, telephones, and paints (Kos-
soff et al. 2014). Consequently, mining has been rapidly 
developing during the last century resulting in consider-
able emissions and discharge of metal(loid)s. Mining pro-
duces massive volumes of waste, mainly tailings, which 
are often stored in impoundment dams; however, these 
dams can fail and have subsequent environmental, eco-
nomic, and human health impacts (Kossoff et al. 2014). 
The chemical composition of tailings depends on the 
mineralogy of the ore body, the processing fluids nature, 
the extraction process’s efficiency, and the degree of 
weathering during storage in the impoundment. Various 
metal(loid)s are present in tailings since no extraction 
process reaches 100% efficiency, in which As, Cu, Cd, 
Hg, Se, and Zn are generally present in elevated concen-
trations (Páez-Osuna et al. 2022).

In the northwest Mexico, mining is a traditional eco-
nomic activity mainly dedicated to producing Ag and Au. 
In the surroundings of the Gulf of California, particularly 
in the Baja California Sur, Sonora, and Sinaloa, numerous 

sites of mining interest were or are being exploited (Páez-
Osuna et al. 2017, 2022). Unexpectedly, nine accidents 
occurred during 2013–2021 (dam failures and leaks) with 
a variable magnitude between 300 and 300,000  m3, most 
of which originated on the gulf’s continental margin (Páez-
Osuna et al. 2017, 2022). In the particular case of the San 
Lorenzo basin located in Sinaloa and Durango, a mine spill 
(~ 300,000  m3) affected Los Remedios (LR) River (main 
tributary of San Lorenzo River), upper San Lorenzo River, 
and El Comedero (EC) dam (Fig. 1) in January 2013. This 
significantly impacted the waters and suspended sediments 
(Páez-Osuna et al. 2015), causing massive fish mortality 
(Páez-Osuna et al. 2022). In the subsequent week of the 
spill, the condition changed in the affected section (Fig. 1); 
an emergency soil clean-up procedure was developed after 
the accident, and the sludge covering the discharge site 
of LR River was mechanically removed from most of the 
affected land. Despite these cleaning operations, it is antici-
patable that the affected area could show contamination lev-
els by Hg and other elements associated with the mine spill.

In a previous study (Páez-Osuna et al. 2022), the con-
centration of six metal(loid)s in the fish Oreochromis 
aureus from EC dam was examined during a massive mor-
tality event that occurred 3 months after the mine tailing 
spill. Higher levels of As, Cd, Cu, Hg, Se, and Zn were 
found in the liver, revealing that fish were exposed to high 
concentrations of these elements. In the present study, we 
examined a set of samples from three fish species of EC 
dam to assess the accumulation of Hg and Se in the mus-
cle, gill, liver, and gut of the common carp Cyprinus car-
pio, the blue tilapia O. aureus, and the largemouth bass 
Micropterus salmoides, 20 months after the mine spill 
(~ 17 months after the massive fish mortality). We tested 
the hypothesis that three fish species with different feed-
ing habits exhibit variable accumulation of Hg and Se in 
an ecosystem previously affected by a mine-tailing spill. 
A second hypothesis is that a reduction of Hg and Se con-
centrations in fish should be reached 20 months after mine 
spill (17 months after massive mortality); and, finally, a 
complimentary hypothesis is that the reduction of Hg and 
Se must be sufficient so that the muscle does not represent 
a risk to the health of consumers. Thus, the aims of this 
study are (i) to determine the concentration of Hg and Se 
in the three fish species to evaluate the differences among 
fishes and tissues; (ii) to assess the performance of clean-
ing operations and pollution status through the fish O. 
aureus growing in the spill-affected dam 20 months after 
the accident, as well as to compare these results with those 
obtained in O. aureus during the massive mortality that 
occurred 3 months after the mine spill; and (iii) finally, to 
evaluate the potential health risk for humans that consume 
the muscle of these three fish species.
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Materials and methods

Study area and sampling

El-Comedero dam, located (24° 30′ N; 106° 45′ W) in the 
southeastern Gulf of California (NW Mexico), has a sur-
face ~ 9200 ha and a volume between 400 and 1900  Mm3, 
where depth can reach 70 m (Fig. 1). EC dam receives 
waters from the upper San Lorenzo River, which is formed 

in the Sierra Madre Occidental; one of its main tributaries 
is LR River, which received the discharge directly from 
the mining spill. Three fish species, including the common 
carp C. carpio, the largemouth bass M. Salmoides, and 
the blue tilapia O. aureus, were introduced into EC dam 
for economic, alimentary, and touristic purposes (Belt-
rán Álvarez et al. 2015). A total of 45 fish were collected 
in EC dam, including M. salmoides (n = 22), O. aureus 
(n = 16), and C. carpio (n = 7) (Table 1). Each specimen 

Cosalá

El Comedero
Dam

México

106°47'27" 106°20'29" 105°59'45"

24
°3

3'
13

"
24

°4
3'

50
"

106°38'16" 106°13'03" 105°55'19"

"43'74°42
"52'83°42

N

10 km

Los remedios 
River

San Lorenzo 
River Otáez

Fig. 1  Illustration of the spill-affected zone along Los Remedios River-San Lorenzo River (red); the right extreme corresponds to the discharge 
site where the mine-tailings dam failure occurred

Table 1  Morphometric 
variables of fish species caught 
in El Comedero dam

Different letters indicate significantly different (p < 0.05) mean concentrations between the variables of the 
fish species
SD standard deviation, n number of individuals

Species Total length (cm) Weight (g)

Min Max Mean ± SD Min Max Mean ± SD

C. carpio (n = 7) 36.5 47.0 40.3 ± 4.1 c 625 1725 1002 ± 400 c
O. aureus (n = 22) 21.0 34.0 26.3 ± 2.7 a 165 670   315 ± 102 a
M. salmoides (n = 16) 24.0 38.0 31.9 ± 4.1 b 170 740   490 ± 181 b
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was measured, weighed, and dissected to separate the 
liver, gills, guts, and a portion of the muscle. The sepa-
rated fish tissues were well kept in a freezer for posterior 
laboratory analysis.

Chemical analysis

All tissues were lyophilized (72  h, − 55  °C and 
75 ×  10−3 mbar), pulverized, and homogenized in a semiau-
tomatic agate mortar. The digestion (5 mL of concentrated 
(~ 70%) nitric acid, Instra-analyzed J.T. Baker) of dupli-
cate aliquots (~ 300 mg) was carried out using Teflon vials 
(Savillex) at 125 °C for 3 h (Bergés-Tiznado et al. 2015; 
Páez-Osuna et al. 2022). The livers were digested using 
2 mL of  H2O2 (30%) and 3 mL of concentrated nitric acid. 
The analysis of Se was carried out by atomic absorption 
spectrophotometry (AAS) with Zeeman correction back-
ground effect coupled to a graphite furnace oven (AAna-
lyst 800, PerkinElmer). A matrix modifier, a solution of 
Pd(HNO3)2 and Mg(NO3)2, was used in each sample atomi-
zation for this metalloid. Mercury was determined by AAS 
coupled to a cold vapor generator. Before Hg analysis, the 
samples were prepared by adding  HNO3 (50%) and  K2Cr2O7 
(1%). The accuracy of the employed procedure was assessed 
with a certified reference material DOLT-4 (dogfish liver, 
NRC-CNRC 2008). Recoveries were 93.3 ± 6.3% for Hg and 
106.5 ± 3.8% for Se, and precision fluctuated from 3.6 to 
5.5% for Se to 6.8 to 8.1% for Hg. One blank was analyzed 
for every ten samples using the same procedure to test for 
contamination.

Risk assessment

The Se/Hg molar ratio was calculated from individual results 
of Se and Hg of each tissue divided by the molecular weight 
of each element. The Se health benefit value  (HBVSe) was 
calculated for edible muscle with the equation (Ralston et al. 
2016):  HBVSe = ([Se − Hg] / Se) × (Se + Hg). Positive results 
indicate that Se exceeds Hg and benefits consumers; nega-
tive values mean the contrary (Ruelas-Inzunza et al. 2020). 
The magnitude of the value indicates Se surplus or deficit 
related to the theoretical consumption of fish muscle.

The non-cancer risk assessments were calculated by com-
paring an estimate of exposure to a reference dose (RfD) for 
oral exposures (EPA 2005) using the individual target hazard 
quotient (THQ) and the sum of THQs as the hazard index 
(HI): THQ = [EF × ED × FIR × C / RfD × BW × AT] ×  10−3 
and HI = ΣTHQ (Páez-Osuna et al. 2022). EF is an expo-
sure frequency of 365 days  year−1; ED is a 70-year expo-
sure period; C is the mean concentration of the element (mg 
 kg−1); BW is the population body weight of 75, 65, and 
20 kg for adult men, female, and children (3–5 years old), 
respectively; and AT is the average exposure of 25,500 days. 

FIR is the food ingestion rate under different scenarios based 
on the consumption of fish and shellfish per capita in Mexico 
during 2021 (SEMARNAT 2022). A specific tilapia con-
sumption of 11.5 g  week−1 (1.6 g  day−1) was utilized, fol-
lowed by carp consumption of 1.2 g  week−1 (0.2 g  day−1), 
and largemouth bass consumption of 16.1  g   week−1 
(2.3 g  day−1), corresponding to the amount consumed for 
other non-official registered species. Finally, a global con-
sumption of 10.83 kg per capita (ration of 207.7 g  week−1) 
was also used to assess the non-cancer risks. There would 
be a risk if THQ or HI > 1; additionally, the RfD data for 
Hg (0.0001  mg  kg  BW−1   day−1) and Se (0.005  mg  kg 
 BW−1  day−1) were obtained from the IRIS Assessment Base 
(EPA 2023). It is important to notice that the total Hg aver-
age as methyl-Hg was assumed to be conservative about 
risks. Finally, a safe intake or food ingestion rate (FIR) was 
calculated assuming THQ = 1 for the three species and two 
elements.

Data analysis

The databases were completed in Excel, and the variables 
were tested using STATISTICA (version 7, StatSoft Inc.). 
The data were normally distributed and homoscedastic. The 
results were statistically compared between tissues, species, 
elements, and molar ratios by a one-way ANOVA and Tukey 
post hoc tests. The associations or correlations established 
among the variables were assessed by a product-moment 
correlations test yielding an r statistic.

Results and discussion

The present study was carried out 20 months after the mine 
spill (~ 17 months after massive fish mortality). The tailing 
spill occurred ~ 150 km from EC dam on January 21, 2013, 
and the massive fish mortality emerged ~ 90 days later. Con-
sidering the morphology and current velocities, it is prob-
able that the spilled material was transported in ~ 35 days 
from the site of the spill to EC dam (Páez-Osuna et al. 2022). 
During the subsequent days of the spill, an emergency tail-
ing cleaning procedure was applied, and the tailing-sludge 
was mechanically removed from most of the affected areas 
in LR River. However, the affected zone could still present 
pollution by metal(loid)s even after this cleaning procedure.

Mercury and selenium in fish tissues

Specimens of the sampled fish species exhibited variable 
sizes, corresponding to pre-adults and adults (Table 1). 
However, the total length (F = 46.3, p < 0.05) and the weight 
(F = 31.5, p < 0.05) were different among species. In gen-
eral, element concentrations exhibited moderate variability 
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in the tissues. Selenium was consistently higher in the liver 
and lower in the guts and muscle of the three fish species 
(Table 2). Conversely, Hg was highest in the liver of the blue 
tilapia, while Hg was more elevated in the muscle of the 
common carp and largemouth bass; the lowest levels were 
evidenced in the guts of these two fish species. However, the 
differences in Hg concentrations among the tissues of the 
three species were relatively small, although the exception 
could be the relatively high concentrations in the muscle of 
the largemouth bass (Table 2).

Common carp. Hg had significantly higher accumula-
tion in the muscle (F = 5.5, p < 0.05), ranging from 0.04 to 
0.23 µg  g−1 (ww), followed by the liver (0.01–0.11 µg  g−1 
ww), gills, and guts (0.01–0.05  µg   g−1 ww) (Table  2). 
The liver of the carp had the significantly highest 
(0.76–2.00  µg   g−1 ww) concentrations of Se (F = 5.2, 
p < 0.05) in comparison to the other tissues, followed by the 
gills (0.39–1.20 µg  g−1 ww), muscle (0.31–1.08 µg  g−1 ww), 
and guts (0.40–0.97 µg  g−1 ww) (Table 2). Regarding the 
Se/Hg, values were > 1.0 in the four tissues, and the highest 
was found in the gills and the lowest in muscle, significantly 
different among muscle and the other three tissues (F = 3.5, 
p < 0.05). The  HBVSe varied significantly (F = 5.2, p < 0.05) 
in descending order liver > gills > muscle > guts (Table 2).

Blue tilapia Hg showed higher accumulation in the liver 
(range 0.01–0.48 µg  g−1 ww) (F = 14.8, p < 0.05), followed 
by the muscle (0.02–0.22 µg  g−1 ww), guts (0.02–0.15 µg  g−1 
ww), and gills (0.01–0.07 µg  g−1 ww), with comparable 
means (p > 0.05) (Table 2). Regarding Se levels, the highest 

mean concentrations were found in the liver (F = 50.0, 
p < 0.05) ranging from 1.55 to 10.05 µg  g−1, followed by 
the gills (0.67–2.34 µg  g−1 ww), muscle (0.37–1.14 µg  g−1 
ww), and the lowest in the guts (0.24–1.05 µg  g−1 ww). The 
molar Se/Hg ratios showed differences (F = 32.2, p < 0.05) 
between the tissues means of tilapia; the highest were found 
in the gills (66.1–232.2), followed by the liver (22.2–347.9), 
muscle (7.9–80.1), and guts (7.6–48.7 ww); means of Se/
Hg > 1 for all the tissues. The latter was also observed for the 
 HBVSe, with statistically higher (F = 50.0, p < 0.05) positive 
values in the liver than in the gills and guts, following the 
same behavior as the common carp.

Largemouth bass The mean concentrations of Hg among 
the largemouth bass tissues were significantly different 
(F = 25.9, p < 0.05) between the muscle and other tissues 
(Table 2), with higher levels in the muscle (0.07–0.56 µg  g−1 
ww), followed by the liver (0.03–0.24 µg  g−1 ww), gills 
(0.03–0.33 µg  g−1 ww), and guts (0.02–0.24 µg  g−1 ww). As 
with the other two species, the levels of Se in the liver were 
the highest (1.43–5.38 µg  g−1 ww) and significantly different 
(F = 57.6, p < 0.05) from the gills (1.17–2.99 µg  g−1 ww), 
guts (0.65–1.76 µg  g−1 ww), and muscle (0.46–1.38 µg  g−1 
ww). The average Se/Hg molar ratios in the tissues of the 
largemouth bass were different (F = 12.5, p < 0.05), and the 
highest were found in the liver (32.4–201.2), followed by the 
gills (10.2–114.4), guts (12.1–79.0), and muscle (2.8–45.3) 
(Table 2). The  HBVSe values were higher (F = 58.0, p < 0.05) 
positive values in the liver > gills > guts > muscle (Table 2).

Table 2  Total mercury and 
selenium (mean ± SD, wet 
weight) concentrations and 
molar ratios in tissues species 
caught in El Comedero dam

Different letter indicates significantly different (p < 0.05) mean concentrations between tissues of each spe-
cies element
SD standard deviation

Tissue Se Se Hg Hg HBVSe Molar ratio

µg  g−1 nmol  g−1 µg  g−1 nmol  g−1 Se/Hg Hg/Se

Common carp
Muscle 0.7 ± 0.3a 8.6 ± 3.6 0.09 ± 0.06b 0.4 ± 0.3 8.5 ± 3.7a 26.0 ± 14.7a 0.1 ± 0.1
Liver 1.2 ± 0.4b 14.6 ± 5.2 0.04 ± 0.03a,b 0.2 ± 0.2 14.6 ± 5.2b 92.4 ± 35.2a,b  < 0.1
Gills 0.8 ± 0.3a,b 9.6 ± 3.4 0.02 ± 0.01a 0.1 ± 0.1 9.6 ± 3.4a,b 118.3 ± 67.5b  < 0.1
Guts 0.6 ± 0.2a 7.3 ± 2.3 0.02 ± 0.01a 0.1 ± 0.1 7.3 ± 2.3a 107.7 ± 88.3a,b  < 0.1
Blue tilapia
Muscle 0.6 ± 0.2a,b 7.7 ± 2.3 0.07 ± 0.05a 0.4 ± 0.2 7.7 ± 2.3a,b 29.2 ± 17.3a  < 0.1
Liver 3.9 ± 2.1c 49.7 ± 26.0 0.15 ± 0.11b 0.8 ± 0.6 49.7 ± 26.0c 93.7 ± 74.5b  < 0.1
Gills 1.4 ± 0.4b 18.1 ± 5.4 0.03 ± 0.01a 0.1 ± 0.1 18.1 ± 5.4b 135.3 ± 47.6c  < 0.1
Guts 0.5 ± 0.2a 6.4 ± 2.8 0.07 ± 0.03a 0.3 ± 0.1 6.4 ± 2.8a 20.8 ± 11.5a 0.1 ± 0.0
Largemouth bass
Muscle 0.8 ± 0.3a 10.7 ± 3.9 0.38 ± 0.16b 1.9 ± 0.8 10.2 ± 4.2a 10.4 ± 12.9a 0.2 ± 0.1
Liver 3.5 ± 1.1c 44.0 ± 13.6 0.15 ± 0.06a 0.8 ± 0.3 43.9 ± 13.6c 70.6 ± 40.3c  < 0.1
Gills 1.8 ± 0.6b 22.6 ± 7.1 0.13 ± 0.07a 0.6 ± 0.4 22.6 ± 7.1b 50.7 ± 34.8b,c  < 0.1
Guts 0.9 ± 0.3a 11.8 ± 3.8 0.11 ± 0.06a 0.5 ± 0.3 11.8 ± 3.7a 31.1 ± 20.6a,b  < 0.1
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The accumulation pattern in the tissues was different in 
the three fish species; a high concentration was consistently 
observed in the liver of all fish species, while this behavior 
was only found for Hg in the tilapia. The pattern in which 
the liver accumulates higher metal(loid) levels has been 
typically observed in numerous studies regarding freshwa-
ter (Yap et al. 2015; Páez-Osuna et al. 2022) and marine 
(Ruelas-Inzunza et al. 2011, 2020) species. In addition to 
the organ specificity in the uptake, storage, regulation, and 
excretion abilities, the different types of exposure associated 
with the feeding habits of each fish species are also impor-
tant. Tilapia is a predominantly omnivore benthic species 
that consume phytoplankton, zooplankton, copepods, clad-
ocerans, small invertebrates, and detritus (Froese and Pauly 
2022). This species exhibited the highest Se concentrations 
in the liver compared to the carp, an omnivore that mainly 
consumes plankton, fish larvae, and plants (Froese and Pauly 
2022), but similar to Se in the liver of the largemouth bass. 
Nevertheless, the largemouth bass had higher Se accumula-
tion in the other tissues. The latter might be related to this 
species diet, which includes fishes and crustaceans, and it 
can also be cannibalistic (Froese and Pauly 2022).

In contrast, the largemouth bass had the highest Hg lev-
els in the muscle, gills, and guts compared with other fish 
species. Interestingly, the liver of the tilapia and the large-
mouth bass accumulated the same Hg mean concentration 
(Table 2). The high accumulation in the liver is related to 
the capture and assimilation of metal(loid)s through food 
and water, as it is directly associated with metabolism and 
respiration (Ruelas-Inzunza et al. 2011). The ability of the 
liver to accumulate these elements is a result of the activity 
of the metallothioneins, which interact with these elements 
reducing their toxicity (Páez-Osuna et al. 2022). The met-
allothionein induction in fish is high in organ tissues such 
as the liver and kidney, which are involved in metal(loid) 
uptake, storage, and excretion (Viarengo et al. 2007).

The tilapia results suggest that the liver of O. aureus is 
highly active in the uptake, storage, and detoxification of 
Se and perhaps moderately active for Hg. Therefore, this 
organ has been considered useful as a potential biomonitor 
of metal pollution since liver concentrations could be pro-
portional to those in the environment (Yap et al. 2015). How-
ever, it is important to mention that the blue tilapia could be 
particularly useful for monitoring metal(loid) bioavailability 
in the detritus and the benthic environment where this fish 
generally feeds.

A decrease was observed in the values found in the 
liver of O. aureus for both metal(loid)s: Se 152 ± 46 and 
Hg 3.81 ± 1.21 µg  g−1 dw in April 2013, 3 months after 
the mine spill (Páez-Osuna et al. 2022) versus the levels 
found in the present study, 20 months after the mine spill: 
Se 21.1 ± 11.3, and Hg 0.81 ± 0.59 µg  g−1 dw. Therefore, 
Se decreased 7.2 ± 4.0 times and Hg 4.7 ± 2.0 times. This 

indicates that the cleaning operations and the natural depu-
ration performance were more efficient for Se but less for 
Hg. The baseline levels in O. aureus are unavailable in the 
study area; however, an experimental study indicates that 
the control liver accumulates 0.31 µg Hg  g−1 (Allen 1994). 
Therefore, the Hg found (Hg 0.81 ± 0.59 µg  g−1) 20 months 
after the mine-tailing spill is still relatively high.

In general, the concentrations of Se and Hg were higher in 
the piscivore fish (largemouth bass) than in the other fishes. 
This could be related to the different feeding habits of the 
three fish species; the carp is omnivorous but feeds on a 
variety of benthic organisms and plants (Froese and Pauly 
2022), exhibiting the lowest Hg level in the guts. Given that 
the largemouth bass is at the top of the food chain of EC 
dam, it possibly reflects the biomagnification of Se and Hg 
in the guts (diets). However, once Se and Hg are ingested, 
the uptake occurs in the intestines through membranes via 
transporter proteins or/and ionic channels in the studied 
fishes (Le Croizier et al. 2018). Thus, dietary accumulation 
occurs first in the digestive tract; after reaching the liver, 
both metal(loid)s are released into the general blood cir-
culation system and finally reach secondary accumulation 
organs, such as the muscle. However, Hg accumulates higher 
in the liver of a piscivore fish, contrary to the blue tilapia, in 
which these two metal(loid)s are primarily accumulated in 
the liver compared to the muscle. This contrasting behavior 
reveals the different metabolism involved in three fish spe-
cies with distinctive feeding habits.

Metal(loid)s and biological parameter correlations

The morphometric variables of TL and weight in the com-
mon carp were not significantly correlated (p > 0.05) to the 
measured elements in the studied tissues. The Se/Hg molar 
ratio data in the guts (r = 0.90) and gills (r = 0.77) were posi-
tively correlated (p < 0.05) to the common carp`s weight; 
TL was correlated (r = 0.90, p < 0.01) to Se/Hg molar ratio 
in the carp’s guts (Fig. 2a). The TL and weight were not 
statistically correlated to the measured Hg and Se in the 
tissues of the blue tilapia. None of the blue tilapia biom-
etric data was significantly associated (p > 0.05) with the 
measured elements in the studied tissues. TL was correlated 
to Hg in the muscle, liver, and guts of the largemouth bass 
(Fig. 3a–c) and Se in the muscle and liver (Fig. 3d, e). The 
same significant correlations (p < 0.05) were found between 
the weight and Hg in muscle (r = 0.73), liver (r = 0.71), and 
guts (r = 0.53), as well with Se in the muscle (r =  − 0.86) 
and liver (r = 0.69) of the largemouth bass. The Se/Hg molar 
ratios in the muscle, liver, and guts were negatively cor-
related (p < 0.05) to the TL and weight of the organisms 
(Fig. 2b–d). Interestingly, when the largemouth bass meas-
ures between 28 to 38 cm (310 to 760 g), the Se/Hg in the 
muscle remains relatively constant. Similarly, there was a 



5405Environmental Science and Pollution Research (2024) 31:5399–5414 

1 3

significant correlation (p < 0.05) between  HBVSe and the 
body size and weight of the largemouth bass (Fig. 4), nega-
tive for muscle and positive for the liver. This indicates a 
transference of Se to Hg from the muscle to the liver as 
individuals grow and gain weight (age).

The size effect on the accumulation of Hg and Se may be 
a function of any age-dependent parameters, such as changes 
in metabolism with age, different stages, or feeding habit 
differences (Páez-Osuna et al. 2022). Concentrations of 
Hg typically increase with fish age when the rate of dietary 
uptake is faster than elimination (Chételat et al. 2020). In the 
largemouth bass (piscivore species), the TL was positively 
correlated to Hg in the muscle, liver, and guts, and Se in the 
liver (Fig. 3a, b, c, e). Young mature individuals tend to con-
sume more and larger fish prey, leading to bioaccumulation 
of Hg and Se which results in biomagnification. Conversely, 
the levels of Se in the muscle were negatively correlated to 
TL, showing a decreasing pattern as the individuals become 
larger, which can be related to the feeding habit differences 

between older and younger individuals (Páez-Osuna et al. 
1995). This behavior has been observed in other species, 
such as sharks; growing processes often allow a higher Hg 
intake from larger prey, and Hg levels also typically increase 
proportionally with the predator’s body size (Lyons et al. 
2013).

Comparison with other regions

Ideally, metal(loid) concentrations should be compared 
with organisms of the same stage, age, size, and sex. 
However, it is difficult since, in most studies, the sampled 
and available organisms exhibit heterogeneous character-
istics, and frequently the studies do not determine either 
age/stage, or sex. In the present discussion, we compiled 
metal(loid) data for the same species of the common carp 
and bass. In contrast, data from the same genera as the 
tilapia whose feeding habit is similar were included. In 
addition, succinct information was also included on the 
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Fig. 2  Variation of Se/Hg molar ratios with length (TL) in guts of the carp (a), and muscle (b), liver (c), and guts (d) of the largemouth bass
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type of pollution present in the region where the fish were 
collected to enhance the discussion. The comparison table 
data is shown in dry weight (dw) to present a homogenized 
summary.

Concentrations of Hg and Se in the tissues of the common 
carp found in this study were contrasted with those reported 
in other areas (Table 3). Compared to Hg, data on Se are 
limited for this fish, although it is clear that there needs to 
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Fig. 3  Variation of the concentration of Hg in muscle (a), liver (b), and guts (c) with length (TL), as well as Se in muscle (d) and liver (e) with 
the size of the largemouth bass
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be more consistency regarding levels in the muscle and liver. 
It is evident that the carp of EC dam exhibit intermediate 
concentrations in both tissues; the carp from the Keban dam 
(Turkey) and those from Tai and Baiyangdian lakes (China) 
showed higher concentrations of Se, where a chrome factory 
(Danabas et al. 2020), as well as industrial and agricultural 
effluents, is present (Zhang et al. 2019a). The case of Hg 
in the muscle and liver was similar; the carp from EC dam 
exhibited low or intermediate levels compared with most 
compiled studies (Table 3).

Regarding the blue tilapia, the information on Se is 
also limited. However, the levels found in the tilapia from 
EC dam are high compared to those registered in most 
studies (Table 4). Only the high levels of Se in the liver 
(152 ± 46 µg  g−1 dw) previously reported in EC dam during 
the mass mortality event (Páez-Osuna et al. 2022) are remark-
able, as they stand out from any other concentration reported 
(Table 4). The Hg levels in the muscle and liver of the blue 
tilapia showed intermediate concentrations. These concen-
trations are low compared to the tilapias (O. niloticus and 

Tilapia zillii) from contaminated sites such as the Barekese 
dam (Ghana) and the wastewater ponds (Egypt), which are 
influenced by artisanal mining (Gymah et al. 2018) and 
wastewater (Khallaf et al. 2003), respectively (Table 4).

Concerning the largemouth bass, the data on Se is also 
limited, particularly in the liver; in muscle, the Se concen-
trations from EC dam were intermediate compared to those 
from diverse regions with several types of contamination 
(Table 5). At the same time, Se in the liver was higher in 
the fishes of EC dam compared to those from Reed River 
(South Carolina, USA), which are influenced by agriculture 
and urbanism (Otter et al. 2012). The fish from EC dam 
exhibited intermediate concentrations of Hg in the mus-
cle; high Hg levels correspond to fish from the Henderson 
Lake (Louisiana, USA), NW Florida rivers (USA), Sipsey 
River (Alabama, USA), and the Sacramento-San Joaquin 
Delta Region (California, USA), where atmospheric depo-
sition, agriculture, municipal incinerators, coal-fired power 
plants, industry, and Au and Hg mining activity are present 
(Table 5).
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From this robust contrast, it is possible to generalize that 
the three fish species collected in EC dam 20 months after 
showed intermediate levels of Se and Hg in both the liver 
and muscle. The concentrations recorded in EC dam for the 
blue tilapia deserve particular attention since, in a previous 
study (Páez-Osuna et al. 2022), there was massive mortal-
ity of fish whose concentrations in the liver were extremely 
high (Table 4). Compared with this study, the decrease was 
marked 7.2 ± 4.0 times for Se and 4.7 ± 2.0 times for Hg.

Risk assessment

From the perspective of human health by consuming the edible 
fraction of fish, there are a variety of criteria to discern accept-
able levels. The fish fillet (muscle) is commonly the focus 
since it is the primary support of the human diet. In Mexico, 
the local human population consumes tilapia fillet produced 
nationally, which in 2018 was 116,000 t (FAO 2021), with an 
average consumption per capita of 0.60 kg in 2021 (SEMAR-
NAT 2022). Therefore, it is crucial to generate information 
on tilapia fisheries occur in areas influenced by mining, as in 
NW Mexico. Thus, by considering the Mexican consumption 

scenarios for each species (Table 6), it could be said that there 
will be no non-cancer risk by exposure to Hg or Se. Nonethe-
less, if an edible portion of 207.7 g per week of blue tilapia or 
common carp is consumed, only children (20 kg BW) could 
be at Hg risk (THQ and HI > 1). Nevertheless, the hazard risk 
was evidenced for all the population strata if the same portion 
of 207.7 g is eaten in a week (Table 6). A safe weekly intake 
of blue tilapia muscle would be less than 196.9, 640.0, and 
738.4 g, and 56.6, 509.1, and 587.4 g of common carp mus-
cle for children, women, and men, respectively. These weekly 
meals concerning the bass must be reduced to less than 36.7 g 
for children, 119.4 g for women, and 137.8 g for men to avoid 
risks from Hg exposure. It must be noted that consuming the 
flesh of any of the studied species would represent no risk at 
all from Se exposure; instead, it could be a nutritional benefit.

The Hg levels in the muscle of the three fish species were 
(Table 2) far below the maximum permissible limit (MPL) 
(1.0 µg  g−1 ww as methyl-Hg (MeHg); Mexican norm NOM-
242-SSA1-2009, DOF 2011). Regarding Se, all individu-
als of the blue tilapia, 50% of the individuals of the carp 
and 33% of the largemouth bass, were above the threshold 
(0.3 µg  g−1 ww) for fish and fish products established in 

Table 3  Ranges and mean concentration (µg  g−1 dw) of mercury and selenium in the common carp around the world

-, not analyzed; moisture levels considered to change from wet weight to dry weight, muscle 83.2%, liver 80.5%, and guts 74.3%

Tissue Se Hg Type of pollution Region Reference

Muscle
Liver

-
-

0.23 ± 0.03
0.92 ± 0.14

Mining and heavy industrial Jinsha River, Yangtze River, China Li et al. (2018)

Muscle
Liver

-
-

0.23 ± 0.04
0.13 ± 0.01

Small number of industries Tuojiang River, Yangtze, River, 
China

Li et al. (2018)

Muscle
Liver

4.6–8.4
4.3–6.5

7.7–8.4
7.9–8.6

Chrome factory Keban dam, Turkey Danabas et al. (2020)

Muscle - 0.10–0.23 Eutrophic Wujiangdu dam, SW China Jing et al. (2021)
Muscle - 2.74 ± 1.49 Limited contamination Wetlands of Yellow River Delta, 

China
Cui et al. (2011)

Muscle - 0.54 ± 0.30 Mining, domestic wastewater, 
agriculture

Upper Mekong River, China Zhang et al. (2019a)

Muscle 6.8 0.037 Atmospheric deposition, industrial 
and agricultural effluents

Tai and Baiyangdian Lakes, China Zhang et al. (2019b)

Muscle 0.069–5.89 0.031–0.366 Agriculture, wastewater treatment 
plants

Tablas de Daimiel Park, Spain Fernández-Trujillo et al. (2021)

Muscle
Liver

-
-

2.86–4.76
1.67–2.98

Agriculture Busko Blato Reservoir, Bosnia and 
Herzegovina

Has-Schon et al. (2015)

Muscle - 0.095 ± 0.018 Atmospheric deposition, agricul-
tural, and urban emissions

Trebon region, Czech Republic Kral et al. (2017)

Muscle - 0.083–0.143 Limited pollution (towns and vil-
lages)

Shadegan I. wetland, Iran Rahmanikhah et al. (2020)

Muscle
Liver

-
-

0.14 ± 0.02
0.58 ± 0.09

Mining, heavy industry Jinsha River, China Li et al. (2018)

Muscle
Liver

-
-

0.14 ± 0.02
0.50 ± 0.05

Small number of industries Tuo River, China Li et al. (2018)

Muscle - 0.46 ± 0.33 Wastewater streams Lake Zapotlán, Mexico Malczyk and Branfireun (2015)
Muscle
Liver

3.3 ± 1.4
4.2 ± 1.4

0.42 ± 0.28
0.14 ± 0.10

Mining tailing spill (after 
20 months)

El Comedero dam, NW Mexico This study
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Table 4  Ranges and mean concentration (µg  g−1 dw) of selenium and mercury in tilapia around the world

-, not analyzed; moisture levels considered to change from wet weight to dry weight, muscle 83.2%, liver 80.5%, and guts 74.3%

Species Se Hg Type of pollution Region Reference

O. niloticus
Liver - 47.8 Wastewater ponds Shanawan canal, Al-Minu-

fiya, Egypt
Khallaf et al. (2003)

O. niloticus
Muscle - 0.11–0.43 Agricultural and industrial Manzala lake, Egypt Sallam et al. (2019)
O. niloticus
Liver 9.8 (4.7–15.0) - Urban sewage and agri-

culture
Lake Phewam, Nepal Rosseland et al. (2017)

O. niloticus
Muscle - 3.33 Artisanal mining and 

agriculture
Barekese dam, Ghana Gymah et al. (2018)

Tilapia zillii
Muscle - 5.42
O. niloticus
Muscle - 0.02–0.53 Domestic and industrial Senegal River, Mauritania El Mahmoud-Hamed et al. 

(2019)
O. niloticus
Muscle 0.007–0.008 0.059–0.071 Industrial Koka lake, Ethiopia Dsikowitzky et al. (2013)
Liver 0.001–0.017 0.024–0.111
O. niloticus
Muscle 0.001–0.002 0.045–0.241 Textile, ceramics munici-

pal
Awasa lake, Ethiopia Dsikowitzky et al. (2013)

Liver 0.002–0.003 0.089–0.164
Sarotherodon melan-

otheron
Muscle - 1.54 Agriculture, industrial Awba dam, Nigeria Adeogun et al. (2020)
O. mossambicus
Muscle -  < 0.1 Mining activities Yonki dam, Papua New 

Guinea
Kapia et al. (2016)

O. mossambicus Huang et al. (2003)
Muscle - - As in groundwater Farms SW coastal area 

Taiwan
O. mossambicus
Muscle 2.50 ± 0.36 - As in groundwater Farms south Taiwan Lin et al. (2005)
O. mossambicus
Muscle 23.5 ± 4.6 - As in groundwater, indus-

trial and agriculture
Farms west coast Taiwan Ling et al. (2013)

Oreochromis spp.
Muscle

- 0.21 ± 0.12 Wastewater streams Lake Zapotlán, Mexico Malczyk and Branfireun 
(2015)

O. aureus
Muscle - 0.12–0.36 Mining area Picachos dam, NW 

Mexico
Ruelas-Inzunza et al. (2015)

Liver - 0.57
O. aureus
Muscle 10.7 ± 0.4 0.32 ± 0.01 Mining tailing spill (mor-

tality event)
El Comedero dam, NW 

Mexico
Páez-Osuna et al. (2022)

Liver 152 ± 46 3.81 ± 1.21
O. aureus
Muscle 3.2 ± 1.1 0.38 ± 0.27 Mining tailing spill (after 

20 months)
El Comedero dam NW 

Mexico
This study

Liver 21.1 ± 11.3 0.81 ± 0.59
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Chile (FAO 1983). Moreover, 100% of the muscle samples 
of the three fish species were below the limit of New Zealand 
(2.0 µg  g−1 ww) for any foodstuff (FAO 1983). This Se cri-
terion is inconsistent and should be considered with caution.

It is important to highlight that in fish, most Hg is MeHg. 
In contrast with inorganic Hg (Hg[II]), MeHg can readily 
accumulate in aquatic organisms due to its high assimilation 

efficiency and low efflux rate from the body. It is also widely 
recognized as the predominant Hg form in fish tissue (Wang 
and Wang 2018). For example, in tilapia, diverse MeHg 
contributions to total Hg have been reported: 82% in Oreo-
chromis niloticus (Sharma et al. 2013) and 53% in T. zillii 
(Rahmanikhah et al. 2020). However, experimental studies 
have determined that different diets can modulate the trophic 

Table 5  Ranges and mean concentration (µg  g−1 dw) of mercury and selenium in the largemouth bass fish around the world

-, not analyzed; moisture levels considered to change from wet weight to dry weight, muscle 83.2%, liver 80.5%, and guts 74.3%

Tissue Se Hg Type of pollution Region Reference

Muscle - 3.16 Au and Hg mining activity Sacramento-San Joaquin Delta 
Region, California, USA

Davis et al. (2008)

Muscle - 5.18 Atmospheric deposition and indus-
trial

Sipsey River, Alabama, USA Prarthana and Findlay (2017)

Muscle - 1.13 Atmospheric deposition Black Warrior River, Alabama, USA Prarthana and Findlay (2017)
Muscle - 1.90–6.07 Atmospheric deposition, municipal 

incinerators, coal-fired power 
plants

NW Florida rivers, USA Karouna-Renier et al. (2011)

Muscle 1.01–1.67 1.13–1.73 Atmospheric deposition, agriculture, 
and industry

Atchafalaya River, Louisiana, USA Reyes-Avila et al. (2019)

Muscle 0.54–1.07 2.92–3.69 Atmospheric deposition, agriculture, 
and industry

Henderson Lake, Louisiana, USA Reyes-Avila et al. (2019)

Muscle - 1.96 Nuclear weapons production, atmos-
pheric deposition, industry

Savannah River, South Carolina and 
Georgia, USA

Burger et al. (2002)

Muscle - 0.51–0.53 Atmospheric deposition, agriculture, 
industry

Lower Mississippi River, USA Watanabe et al. (2003)

Muscle 3.15–15.9 0.54–1.49 Agriculture and mining (coal, Cu, 
U)

Colorado River and its tributaries, 
USA

Hick et al. (2007)

Muscle 2.44–6.82 0.060–0.096 Agriculture, wastewater treatment 
plants

Tablas de Daimiel Park, Spain Fernández-Trujillo et al. (2021)

Muscle
Liver

0.9–1.3
4.2–6.6

-
-

Agriculture, forest, urban Reedy River watershed, South 
Carolina, USA

Otter et al. (2012)

Muscle - 0.33–0.96 Domestic and industrial discharges, 
agriculture

Mechraa-Hammadi dam, Morocco Mahjoub et al. (2021)

Muscle
Liver

3.4 ± 1.3
15.7 ± 4.9

1.60 ± 0.67
0.67 ± 0.27

Mining tailing spill (after 
20 months)

El Comedero dam, NW Mexico This study

Table 6  Non-cancer risk assessment by population group from specific and total fish per capita rations for blue tilapia, common carp, and large-
mouth bass; children BW = 20 kg, women BW = 65 kg, and men BW = 75 kg

BW body weight

Element THQ blue tilapia (11.5 g  week−1) THQ common carp (1.2 g  week−1) THQ largemouth bass (16.1 g  week−1)

Children Women Men Children Women Men Children Women Men

Hg 0.058 0.018 0.016 0.007 0.002 0.002 0.438 0.135 0.117
Se 0.010 0.003 0.003 0.001  < 0.001  < 0.001 0.020 0.006 0.005
HI 0.068 0.021 0.019 0.008 0.002 0.002 0.458 0.141 0.122
Total fish consumption rate
Element THQ blue tilapia (207.7 g  week−1) THQ common carp (207.7 g  week−1) THQ largemouth bass (207.7 g  week−1)
Hg 1.055 0.325 0.281 1.326 0.408 0.354 5.652 1.739 1.507
Se 0.181 0.056 0.048 0.202 0.062 0.054 0.252 0.078 0.067
HI 1.236 0.380 0.330 1.528 0.470 0.408 5.904 1.817 1.574
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Hg transfer in fish and that MeHg bioaccumulation is influ-
enced by food quality and quantity (Wang and Wang 2018).

The Se/Hg molar ratio in the four tissues of the three fish 
species were > 1 (Table 2), indicating that Se is incorporated 
in selenoproteins (Páez-Osuna et al. 2022). Due to the high 
affinity between Hg and Se, the formation of a Hg-Se com-
plex has been suggested as the mechanism responsible for the 
protective effect of Se (Ralston et al. 2016). Comparatively, it 
was observed that the blue tilapia exhibited the highest values 
among the muscle of the three species; that is, the Se protec-
tion is greater in this species and less in the bass (Table 2). The 
variation of Se/Hg molar ratio with size was observed in the 
largemouth, which was negatively correlated (p < 0.05) with 
the TL and weight in the muscle, liver, and guts (Fig. 2). The 
antagonistic effect of Se on Hg has been explained (Branco 
et al. 2012); a resultant excess Se induces an amplified produc-
tion of selenoproteins, with the selenocysteine in this protein 
acting as a trap for  CH3Hg preventing its access to different 
organs. Also, Se binding  CH3Hg during co-exposure enhances 
its excretion. Considering the highest values of the Se/Hg molar 
ratio of the four tissues in the three fish species, it is evident that 
the blue tilapia appears more efficient in this context.

The HBVSe in the four tissues of the three fish species 
were positive (Table 2). Some results are unexpected given 
that these fishes were exposed in lesser or greater quanti-
ties to the remnants of the mining material transported from 
the spill point, and hypothetically could be used for human 
consumption. However, this consumption needs to be con-
sidered due to the possible levels of other materials and ele-
ments that could be accumulated in the fish and were not 
analyzed in the present study.

Conclusions

This study is the first to track Hg and Se levels in exposed 
fish 3 and 20 months after a mining spill. The accumulation 
patterns of Hg and Se in the tissues differed in the three fish 
species, which confirms the hypothesis that fish with dif-
ferent feeding habits exhibit variable Hg and Se accumula-
tion. These results highlight that body size, habitat use, and 
feeding habits contribute to defining the different patterns 
of Hg accumulations in the three fish species. Regarding the 
largemouth bass, it is deduced that diet shifts towards higher 
Hg content prey items increased Hg accumulation rates in 
larger fish. Compared to a study conducted 90 days after the 
mine spill during a massive mortality of tilapia in EC dam 
(Páez-Osuna et al. 2022), Se and Hg decreased in the liver 
7.2 ± 4.0 and 4.7 ± 2.0 times, respectively, 20 months after 
the spill (present study). This confirms the second hypoth-
esis; a reduction of Se and Hg concentrations in fish should 
be reached after the mine spill. These results have impor-
tant implications, because they indicate the prolonged time 

required for partial recovery of element levels in fish from a 
site impacted by mining.

The Se/Hg molar ratio in the four tissues of the three fish 
species were > 1, indicating Se’s protective role on Hg, which 
is more efficient in the blue tilapia. Conversely, the  HBVSe in 
the four tissues of the three fish species were positive, indicat-
ing that Se exceeds Hg and is beneficial to consumers. The 
safe weekly intakes proposed for children were less than 196.9, 
156.6, and 36.7 g for the muscle of blue tilapia, common carp, 
and largemouth bass, respectively. The ration per week rec-
ommended for the blue tilapia would be 640.0 and 738.4 g, 
for common carp 509.1 and 587.4 g, and for largemouth bass 
119.4 and 137.8 g, for women and men, respectively. These 
rations are recommended considering that other materials 
associated with the mining spill are absent or harmless. It 
is highly suggested that many biota species and samples be 
used for the best evaluation of the performance of the cleaning 
operations after the mine-tailing spill. The reduced number of 
fish species and samples is a weakness of this work, though the 
results are optimistic. Two research needs are identified from 
this study: the first is related to the examination of the changes 
in the biodiversity and other ecological impacts in the study 
area during different periods after the mine-tailing spill, and 
the second is to examine MeHg in these three fish species to 
more precisely quantify health risks for consumers.
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