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Abstract
Limited data have examined the association between air pollution and the risk of end-stage renal disease (ESRD) in patients 
with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). We aimed to investigate whether long-term expo-
sure to air pollutants is related to the development of ESRD among patients with T2DM and CKD. A total of 1,738 patients 
with T2DM and CKD hospitalized in Peking University Third Hospital from January 1, 2013, to December 31, 2021 were 
enrolled in this study. The outcome was defined as the occurrence of ESRD. Data on six air pollutants  (PM2.5,  PM10, CO, 
 NO2,  SO2, and  O3) from 35 monitoring stations were obtained from the Beijing Municipal Ecological and Environmental 
Monitoring Center. Long-term exposure to air pollutants during the follow-up period was measured using the ordinary Krig-
ing method. During a mean follow-up of 41 months, 98 patients developed ESRD. Multivariate logistic regression analysis 
showed that an increase of 10 μg/m3 in  PM2.5 (odds ratio [OR] 1.19, 95% confidence interval [CI] 1.03–1.36) and  PM10 
(OR 1.15, 95% CI 1.02–1.30) concentration were positively associated with ESRD. An increase of 1 mg/m3 in CO (2.80, 
1.05–7.48) and an increase of 1 μg/m3 in  SO2 (1.06, 1.00–1.13) concentration were also positively associated with ESRD. 
Apart from  O3 and  NO2, all the above air pollutants have additional predictive value for ESRD in patients with T2DM and 
CKD. The results of Bayesian kernel machine regression and the weighted quantile sum regression all showed that  PM2.5 was 
the most important air pollutant. Backward stepwise logistic regression showed that  PM2.5 was the only pollutant remaining 
in the prediction model. In patients with T2DM and CKD, long-term exposure to ambient  PM2.5,  PM10, CO, and  SO2 was 
positively associated with the development of ESRD.
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PM  Particulate matter
PM2.5  Particulate matter with an aerodynamic diameter 

less than 2.5 μm
PM10  Particulate matter with an aerodynamic diameter 

less than 10 μm
NO2  Nitrogen dioxide
CO  Carbon monoxide
SO2  Sulfur dioxide
T1DM  Type 1 diabetes mellitus
GDM  Gestational diabetes mellitus
eGFR  Estimated glomerular filtration rate
BMI  Body mass index
RAAS  Renin-angiotensin-aldosterone system
CAD  Coronary artery disease
HF  Heart failure
HGB  Hemoglobin
ALB  Albumin
FBG  Fasting blood glucose
HbA1c  Glycated hemoglobin
TC  Total cholesterol
TG  Triglyceride
HDL-C  High-density lipoprotein cholesterol
LDL-C  Low-density lipoprotein cholesterol
Scr  Serum creatinine
BUN  Blood urea nitrogen
MAP  Mean arterial pressure
SBP  Systolic blood pressure
DBP  Diastolic blood pressure
IQR  Interquartile range
RCS  Restricted cubic spline
ROC  Receiver operating characteristic
AUC   Area under the curve
NDKD  Nondiabetic kidney disease
BKMR  Bayesian kernel machine regression
WQS  Weighted quantile sum
PIP  Posterior inclusion probability

Introduction

Diabetes mellitus (DM) has become a global health prob-
lem with many adverse outcomes (Zimmet et al. 2016). 
Globally, the estimated prevalence of DM in 2021 was 
10.5% (536.6 million people), rising to 12.2% (783.2 mil-
lion) in 2045 (Sun et al. 2022). China has become the coun-
try with the largest number of DM patients, of which more 
than 90% are type 2 diabetes mellitus (T2DM) (Wang et al. 
2021). The increasing prevalence of DM aggravates the 
burden of chronic kidney diseases (CKD) and end-stage 
renal disease (ESRD) (GBD Chronic Kidney Disease 
Collaboration 2020). In developed countries, T2DM has 

become the leading cause of ESRD (Saran et al. 2020). In 
China, DM has become the second cause of ESRD after 
glomerulonephritis (Liu 2013).

ESRD is characterized by an irreversible decline in renal 
function and ultimately requires renal replacement therapy 
(RRT), including maintenance hemodialysis (HD), peritoneal 
dialysis (PD), and kidney transplantation, to maintain life. A 
population-based retrospective study involving over 25 mil-
lion inhabitants showed that the incidence rate of chronic 
RRT among people with DM was almost six times higher than 
among people without DM (Claessen et al. 2021). T2DM-
related ESRD not only leads to a reduction in life expectancy 
(Sattar et al. 2012) and quality of life (Chen et al. 2017) but 
also brings a heavy economic burden to patients and society 
(Chen et al. 2020).

Ambient air pollutants are a complex mixture of sus-
pended particulate matters (PMs) and gases, such as PM 
with an aerodynamic diameter less than 2.5 μm  (PM2.5) 
and less than 10 μm  (PM10), nitrogen dioxide  (NO2), car-
bon monoxide (CO), sulfur dioxide  (SO2), and ozone  (O3) 
(Shubham et al. 2022). Air pollution has been reported to 
be associated with chronic respiratory diseases (Annesi-
Maesano et al. 2021), cardiovascular diseases (de Bont 
et al. 2022), stroke (Verhoeven et al. 2021), and cancers 
(Collatuzzo and Boffetta 2023), which is also a major 
contributor to global mortality (Cohen et al. 2017). In 
recent years, a growing body of evidence has shown that 
increased exposure to ambient air pollutants corresponds 
to an increased risk of CKD (Bowe et al. 2017, 2018; Lin 
et al. 2018, 2020a; Blum et al. 2020; Yang et al. 2017; 
Wang et al. 2020), renal function decline (Bowe et al. 
2017, 2018; Wang et al. 2020; Chang et al. 2022), and 
ESRD (Bowe et al. 2017, 2018; Lin et al. 2020a, b). Air 
pollutants may cause kidney damage through various 
mechanisms, such as increasing blood pressure, aggravat-
ing oxidative stress and inflammatory responses, causing 
DNA damage, and inducing abnormal metabolic changes 
(Shubham et al. 2022).

Most of the evidence has been focused on  PM2.5 (Bowe 
et al. 2018; Lin et al. 2018, 2020a, b; Blum et al. 2020) or 
 PM10 (Bowe et al. 2017; Yang et al. 2017; Wang et al. 2020), 
and only a few studies investigate the effect of gaseous pol-
lutants or multi-pollutants exposure on renal function (Bowe 
et al. 2017; Lin et al. 2018, 2020a; Chang et al. 2022). Fur-
thermore, data regarding the association between multiple 
air pollutants and the risk of ESRD in patients with T2DM 
and CKD are lacking. Therefore, the current study aimed to 
investigate the association between long-term exposure to 
six types of air pollutants  (PM2.5,  PM10, CO,  NO2,  SO2, and 
 O3) and the risk of ESRD in Chinese patients with T2DM 
and CKD.
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Materials and methods

Study population

We enrolled 15,067 patients diagnosed with diabetes who 
were hospitalized at Peking University Third Hospital 
between January 2013 and December 2021 in Beijing, China. 
After excluding patients with age < 18 or > 80 years, without 
CKD at baseline, with a follow-up period of fewer than six 
months, with a diagnosis of type 1 diabetes mellitus (T1DM) 
or gestational diabetes mellitus (GDM), with an estimated 
glomerular filtration rate (eGFR) < 30 mL/min/1.73  m2, 
with a previous medical history of kidney transplantation, 
and with a permanent residence outside Beijing, a total of 
1,738 patients with T2DM and CKD were finally included in 
this study. CKD was defined as a persistent decline in renal 
function (eGFR < 60 mL/min/1.73  m2) and/or the existence 
of albuminuria (urine protein ≥ 1 + in at least two out of three 
consecutive measurements within half a year) at baseline. 

The process for research population enrollment is described 
in Fig. 1.

Health data and definitions

Clinical data were obtained from Peking University Third 
Hospital’s electronic medical records system. Patients’ 
information, such as basic clinical characteristics, medica-
tion history, main complications or comorbidities, important 
laboratory indicators, and a coordinated residential address, 
were included in this study. Basic clinical characteristics 
included age, age of DM onset, DM duration, sex, body mass 
index (BMI), blood pressure, and smoking status. Medica-
tion history included the usage of insulin, renin–angioten-
sin–aldosterone system (RAAS) inhibitors, or lipid-lowering 
drugs for treatment. Main complications or comorbidities 
included a medical history of hypertension, coronary artery 
disease (CAD), stroke, hyperlipidemia, heart failure (HF), or 
anemia. Laboratory indicators included hemoglobin (HGB), 

Fig. 1  Enrollment flowchart for 
the study population
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serum albumin (ALB), fasting blood glucose (FBG), gly-
cated hemoglobin (HbA1c), total cholesterol (TC), triglyc-
eride (TG), high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), serum cre-
atinine (Scr), blood urea nitrogen (BUN), serum uric acid, 
eGFR, and urinary protein grade (0–4 +) at baseline.

The BMI was calculated by dividing body weight in 
kilograms by height in meters squared and categorized into 
normal weight (18.5–24 kg/m2), overweight (24–28 kg/m2), 
and obesity (≥ 28 kg/m2) (Zhou 2002). Nonsmokers, current, 
and former smokers were categorized based on self-reported 
smoking status. Nonsmokers were people who had never 
smoked before in their lives. Current smokers were individu-
als who had smoked on a regular basis in the preceding six 
months. Former smokers were classified as those who had 
quit smoking for at least six months (Barry et al. 2012). 
Hyperlipidemia was confirmed as the usage of lipid-lowering 
drugs currently, the existence of any self-reported history, or 
meeting the requirements of any of the following circum-
stances: serum LDL-C ≥ 4.14 mmol/L or TG ≥ 2.26 mmol/L 
or HDL-C < 1.04 mmol/L or TC ≥ 6.22 mmol/L (Liu et al. 
2018). Anemia was defined by the World Health Organization 
criteria as HGB levels below 120 g/L in women and 130 g/L 
in males (Kurella Tamura et al. 2016). Mean arterial pressure 
(MAP) was estimated by adding 1/3 of pulse pressure (systolic 
blood pressure [SBP]-diastolic blood pressure [DBP]) to DBP. 
eGFR was calculated using the Chronic Kidney Disease Epi-
demiology Collaboration equation (Levey et al. 2009).

Covariates

In order to increase the credibility of the research results, we 
adopted the sensitivity analysis method in the multivariate 
logistic regression analysis. Potential covariates were deter-
mined based on clinical experience and the current literature 
on predictors for renal function progression in patients with 
T2DM and CKD (Radcliffe et al. 2017). These covariates 
included sex, age of DM onset, duration of DM, hyperlipi-
demia, the treatment of lipid-lowering drugs, smoking status, 
insulin treatment, HF, baseline eGFR, MAP, BMI, anemia, 
urinary protein, and serum ALB. Each covariate was deter-
mined at the time of the first hospitalization of each patient.

Outcome measurements

The outcome was defined as the development of ESRD, 
including an eGFR of less than 15 mL/min/1.73  m2 or the com-
mencement of maintenance HD, PD, or kidney transplantation. 
The start of observation was defined as the first hospitalization 
for each patient, and the endpoint was the occurrence of ESRD 
or the last hospitalization or clinic visit for each patient.

Exposure assessment

The hourly measured ground concentrations of six types of 
air pollutants from 35 monitoring stations in Beijing since 
2013 were obtained from the Beijing Municipal Ecological 
and Environmental Monitoring Center (http:// www. bjmemc. 
com. cn/), including  O3 in μg/m3,  PM2.5 in μg/m3,  PM10 in 
μg/m3,  NO2 in μg/m3,  SO2 in μg/m3, and CO in mg/m3. 
The concentration of different air pollutants was converted 
into the daily maximum 8-h average for  O3 and the 24-h 
average for  PM2.5,  PM10,  NO2,  SO2, and CO. The locations 
of the air quality monitoring stations and the participant’s 
address (residential address) were geocoded by latitude 
and longitude. The ordinary Kriging method was applied 
to interpolate exposure concentrations onto a regular grid 
(400 m × 400 m) across Beijing. After transforming each 
participant’s address (residential address) into longitude 
and latitude data, using Baidu Map Open Platform (https:// 
lbs. baidu. com), the long-term exposure of each patient was 
obtained. Given that the baseline exposure may not com-
pletely and accurately represent the exposure of air pol-
lutants over the long-term follow-up, we calculated the 
annual mean exposure concentrations of these air pollutants 
between the participant’s enrollment and the last follow-up 
as the long-term exposure of air pollutants.

Statistical analysis

Continuous variables conformed to the normal distribution 
were expressed as the mean ± standard deviation, and a t-test 
was used for comparison between the two groups, whereas 
continuous variables not conformed to normal distribution 
were presented as median (interquartile range [IQR]) and 
were compared using Wilcoxon test. Categorical variables 
were shown as percentages with the chi-squared test or Fish-
er’s exact test for comparison between two groups.

The Bayesian kernel machine regression (BKMR) 
method and the weighted quantile sum (WQS) regression 
were used to estimate the overall environmental pollutants 
 (PM2.5,  PM10,  SO2,  NO2, CO, and  O3) on the risk of ESRD. 
Posterior inclusion probability (PIP) and weight were used 
to evaluate the importance of air pollutants. Restricted cubic 
spline (RCS) curves based on logistic regression were used 
to clarify the relationship between different air pollutants 
and the risk of ESRD. Univariable logistic regression analy-
sis was performed to investigate the unadjusted association 
between different air pollutants and ESRD risk. Then, four 
multivariate logistic regression models were established 
as follows: model 1, adjusted for sex, age of DM onset, 
duration of diabetes; model 2, adjusted for variables in 
model 1 plus hyperlipidemia, the usage of lipid-lowering 
drugs, smoking status, insulin treatment, and HF; model 
3, adjusted for variables in model 2 plus baseline eGFR, 

http://www.bjmemc.com.cn/
http://www.bjmemc.com.cn/
https://lbs.baidu.com
https://lbs.baidu.com
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MAP, and BMI; model 4, adjusted for variables in model 
3 plus anemia, urinary protein, and serum ALB at base-
line. We further conducted subgroup analysis stratified by 
age (< 60 or ≥ 60 years), sex (female or male), age of DM 
onset (< 58 or ≥ 58 years), BMI (< 24 or ≥ 24 kg/m2), anemia 
(yes or no), hyperlipidemia (yes or no), HF (yes or no), the 
usage of RAAS inhibitors (yes or no), baseline eGFR (< 45 
or ≥ 45 mL/min/1.73  m2), HbA1c (< 7 or ≥ 7%), and follow-
up time (< 60 or ≥ 60 months), because these factors have 
been previously reported to modify the effects of air pollu-
tion (Chan et al. 2018; Chang et al. 2022) or to be associated 
with CKD progression in T2DM patients (Radcliffe et al. 
2017; Braunwald 2019).

The correlation coefficient was used to evaluate the cor-
relation between different air pollutants (r > 0.5 was con-
sidered to be statistically significant). A backward-stepwise 
method was used to select the optimal model. The receiver 
operating characteristic (ROC) curve and the area under the 
curve (AUC) were used to evaluate the predictive efficacy 
of different air pollutants to predict the risk of ESRD, and 
the Delong test was used to evaluate whether the difference 
between the two ROC curves was statistically significant. A 
12000 bootstrap cohort based on the study population was 
used for internal validation. All analyses were performed 
using R (version 4.0.3).

Results

The primary clinical characteristics of the research 
population

All of the 1,738 patients with T2DM and CKD included in 
this study were permanent residents of Beijing. The location 
distributions of these patients and the air quality monitoring 
stations are depicted in Fig. 2.

The median age of the study population is 67 (59, 74) 
years. 1,254 (72.15%) of the patients were male and 98 
(5.64%) of the patients had outcome events. Notably, com-
pared with patients without outcomes, patients who devel-
oped ESRD had an earlier age of DM onset, a larger propor-
tion of female patients, a longer duration of DM, a higher 
level of blood pressure, a higher prevalence of anemia, lower 
levels of serum ALB and eGFR, and higher levels of HbA1c, 
blood lipids, Scr, BUN, and urinary protein. The exposure 
differences of the five air pollutants between patients with 
and without outcomes were significant. Individuals who 
developed ESRD had higher average exposure concentra-
tions of  PM2.5,  PM10, CO,  NO2, and  SO2 during follow-up 
than those without outcomes. There was no significant dif-
ference of  O3 concentration between patients with or without 
outcomes. Table 1 describes the primary clinical character-
istics of the research population.

Association between different air pollutants 
and the risk of ESRD

The results of the BKMR method showed that the esti-
mated risk of ESRD increased with a simultaneous 
increase of the six air pollutants, from 25th percentile to 
75th percentile after adjusting for sex, age of DM onset, 
duration of diabetes, hyperlipidemia, using of lipid-lower-
ing drugs, smoking status, insulin treatment, HF, baseline 
eGFR, MAP, BMI, anemia, urinary protein, and serum 
ALB, indicating a positive joint effect of pollutant mix-
tures (Fig. 3A). The WQS regression also showed that the 
WQS index of overall air pollutants was positively associ-
ated with ESRD risk (odds ratio [OR] = 1.46, 95%confi-
dence interval [CI] 1.11–1.93). The RCS curve showed a 
linear relationship between the WQS index and the risk of 
ESRD (Fig. 3B).

Fig.  S1 demonstrated the univariate concentra-
tion–response functions and 95% CIs for each pollutant with 
the other pollutants fixed at the median values. We observed 
a significantly increasing concentration–response relation-
ship for  PM2.5,  PM10,  SO2, and CO. A significantly decreas-
ing concentration–response relationship was observed for 
 NO2, while  O3 has no significantly relationship with the risk 
of ESRD. The interactive analysis of BKMR method showed 
that other environmental pollutants  (PM10,  SO2, CO, and 
 O3) have different influence towards ESRD when  PM2.5 and 
 NO2 were at different level, indicating there was a interactive 
effect (Fig. S2).

In the dose–response analysis, we used the RCS curves 
to describe the relationship between six types of air pollut-
ants and ESRD risk. After fully adjusting for covariates, 
including sex, age of DM onset, duration of diabetes, hyper-
lipidemia, using of lipid-lowering drugs, smoking, insulin 
treatment, HF, baseline eGFR, MAP, BMI, anemia, urinary 
protein, and serum ALB, a positive relationship was found 
between five types of air pollutants  (PM2.5,  PM10, CO,  NO2, 
and  SO2) and the risk of ESRD, while  O3 showed no signifi-
cant association (Fig. 4).

In the univariate logistic regression analysis, the most 
substantial crude effect was found in the association between 
an increase of 1 mg/m3 in CO during follow-up and the 
risk of developing ESRD (OR = 3.14, 95% CI 1.03–1.36, 
P = 0.013), followed by an increase of 10 μg/m3 in  PM2.5 
(OR = 1.20, 95% CI 1.06–1.36, P = 0.004). Other air pollut-
ants  (PM10 and  SO2) were also found to have a significantly 
positive association with ESRD risk, except for  O3 and  NO2. 
Furthermore, four multivariate adjustment models were 
established in this study. After fully adjusting for potential 
confounders, the positive association between  PM2.5,  PM10, 
CO, and  SO2 and the risk of ESRD remained robust. Details 
of the univariate and multivariate logistic regression results 
are presented in Table 2.
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To clarify which environmental pollutant has the most 
significant impact on ESRD risk, we calculated the poste-
rior inclusion probability (PIP) using BKMR method and 
weights using WQS regression. In the BKMR model,  PM2.5 
has the highest PIP value (0.688). In the WQS regression, 
 PM2.5 also has the highest weight (0.428), indicating that 
 PM2.5 has a stronger correlation with ESRD risk among the 
six types of air pollutants (Fig. S3).

Subgroup analysis

Figure 5 presented the associations between  PM2.5,  PM10, 
CO, and  SO2 exposure and the risk of ESRD based on 
age, sex, age of DM onset, anemia, hyperlipidemia, HF, 
the usage of RAAS inhibitors, baseline eGFR, BMI, 
HbA1c, and follow-up time. A 10 μg/m3 increment in 
 PM2.5 during the follow-up period was associated with 
higher increased odds of developing ESRD in patients 
with a lower baseline eGFR (OR 1.32 vs. 1.12, P for 

interaction < 0.001), a higher BMI (OR 1.27 vs. 1.03, 
P for interaction < 0.001), the usage of RAAS inhibi-
tors (OR 1.23 vs. 1.10, P for interaction = 0.038), and a 
longer follow-up period (OR 1.66 vs. 1.16, P for interac-
tion < 0.001), similar results were also found in CO and 
 SO2. Apart from baseline eGFR, usage of RAAS inhibi-
tors, and follow-up time, a 10 μg/m3 increment in  PM10 
during the follow-up period was also found to be associ-
ated with a higher increased odds of incident ESRD in 
patients with an age ≥ 60 years (OR 1.42 vs. 1.15, P for 
interaction = 0.017) and HbA1c < 7% (OR 1.29 vs. 1.11, 
P for interaction = 0.039).

As shown in Fig.  5, It is noteworthy that whether 
the follow-up time was shorter (< 60 months) or longer 
(≥ 60 months), exposure to  PM2.5,  PM10, CO, and  SO2 
were all positively associated with an increased risk of 
ESRD. Further analysis found that, regardless of the dura-
tion of follow-up, long-term exposure to  PM2.5,  PM10,  SO2, 
and CO could increase the risk of ESRD (Fig. 6B-E), and 

Fig. 2  Location distribution 
of the study population and 
air quality monitoring stations 
in Beijing. The solid blue dot 
represents the location of the 
patient's residence, and the solid 
red triangle represents the loca-
tion of the air quality monitor-
ing station
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Table 1  Baseline characteristics of the study population

Characteristics Overall (n = 1,738) Patients with outcomes (n = 98) Patients without out-
comes (n = 1,640)

P-value

Basic clinical characteristics
Age (years) 67 (59, 74) 62 (55, 72) 67 (60, 74)  < 0.001
Age of DM onset (years) 66 (59, 73) 61 (53, 71) 66 (59, 73)  < 0.001
Age of DM onset category (n, %) 0.001
 < 58 years 282 (16.2%) 28 (28.6%) 254 (15.5%)
 ≥ 58 years 1,456 (83.8%) 70 (71.4%) 1,386 (84.5%)
Sex (male, %) 1,254 (72.15%) 56 (57.1%) 1,198 (73%) 0.001
Duration of diabetes category (n, %)  < 0.001
 < 12 months 1,157 (66.6%) 44 (44.9%) 1,113 (67.9%)
 ≥ 12 months 581 (33.4%) 54 (55.1%) 527 (32.1%)
BMI (kg/m2) 25.5 (23.6, 27.6) 25.3 (22.9, 27.9) 25.5 (23.7, 27.6) 0.596
BMI category (n, %) 0.286
 < 24 503 (28.9%) 34 (34.7%) 469 (28.6%)
24 – 28 857 (49.3%) 41 (41.8%) 816 (49.8%)
 ≥ 28 378 (21.7%) 23 (23.5%) 355 (21.6%)
SBP (mmHg) 135 (124, 149) 147 (125, 159) 135 (124, 148)  < 0.001
DBP (mmHg) 78 (70, 84) 81 (75, 90) 78 (70, 84)  < 0.001
MAP (mmHg) 97 (90, 104) 101 (93, 114) 96 (90, 103)  < 0.001
MAP category (n, %)  < 0.001
 < 100 mmHg 1,062 (61.1%) 47 (41.8%) 1,021 (62.3%)
 ≥ 100 mmHg 676 (38.9%) 57 (58.2%) 619 (37.7%)
Smoking status (n, %) 0.604
Nonsmoker 878 (50.5%) 49 (50%) 829 (50.5%)
Former smoker 696 (40.0%) 37 (37.8%) 659 (40.2%)
Current smoker 164 (9.4%) 12 (12.2%) 152 (9.3%)
Medication history
Insulin (n, %) 590 (33.95%) 47 (48%) 543 (33.1%) 0.004
RAAS inhibitors (n, %) 1,027 (59.09%) 73 (74.5%) 954 (58.2%) 0.002
Lipid-lowering drugs 1,365 (78.54%) 68 (69.4%) 1,297 (79.1%) 0.032
Main complications or comorbidities
Hypertension (n, %) 1,358(78.14%) 88 (89.8%) 1,270 (77.4%) 0.006
CAD (n, %) 986 (56.73%) 40 (40.8%) 946 (57.7%) 0.002
Stroke (n, %) 302 (17.38%) 20 (20.4%) 282 (17.2%) 0.498
Hyperlipidemia (n, %) 881 (50.69%) 46 (46.9%) 835 (50.9%) 0.509
HF (n, %) 198 (11.39%) 14 (14.3%) 184 (11.2%) 0.445
Anemia (n, %) 529 (30.4%) 50 (51%) 479 (29.2%)  < 0.001
Laboratory findings
HGB (g/L) 134 (121, 145) 120 (106, 136) 134 (122, 146)  < 0.001
Serum ALB (g/L) 39.9 (36.9, 42.8) 36.5 (32.3, 40.2) 40.1 (37.2, 42.9)  < 0.001
ALB category (n, %)  < 0.001
 < 30 g/L 91 (5.2%) 19 (19.4%) 72 (4.4%)
 ≥ 30 g/L 1,647 (94.8%) 79 (80.6%) 1,568 (95.6%)
FBG (mmol/L) 7.1 (5.9, 8.9) 7.2 (5.4, 9.5) 7.1 (5.9, 8.9) 0.97
HbA1c (%) 7.6 (6.7, 8.9) 8.0 (6.9, 10.0) 7.6 (6.7, 8.8) 0.011
HbA1c category (n, %) 0.358
 < 7% 561 (32.3%) 27 (27.6%) 534 (32.6%)
 ≥ 7% 1,177 (67.7%) 71 (72.4%) 1,106(67.4%)
TC (mmol/L) 4.11 (3.42, 4.96) 4.99 (4.09, 5.57) 4.07 (3.40, 4.87)  < 0.001
TG (mmol/L) 1.62 (1.18, 2.31) 1.99 (1.48, 2.62) 1.61 (1.16, 2.30) 0.001
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the incidence of ESRD gradually increased with the pro-
longation of follow-up time (Fig. 6A).

Evaluation of the prognostic performance 
of different air pollutants for ESRD

Since there were strong correlations (r > 0.5) between each 
of the five air pollutants except  O3 (Fig. 6F), we first evalu-
ated the diagnostic efficacy of each air pollutant separately. 
Air pollution indicators could significantly improve the 
predictive performance of the basic clinical model (model 
1, including sex, age of DM onset, duration of DM, hyper-
lipidemia, the treatment of lipid-lowering drugs, smoking 
status, insulin treatment, HF, baseline eGFR, MAP, BMI, 
anemia, urinary protein, and serum ALB), except for  PM2.5 
(0.850 vs. 0.840, P > 0.05, Fig. 6G). In the bootstrap cohort, 
air pollution indicators, including  PM2.5, can significantly 
improve the predictive performance of the basic model 
(Fig. 6H). In order to identify the air pollution with the 

strongest prognostic efficacy for ESRD and establish the 
optimal model, we used the backward stepwise method for 
variable screening, including  PM2.5,  PM10,  SO2, CO, and 
variables in model 1. Finally, four indicators were included 
in the optimal model, with  PM2.5 being the most effec-
tive environmental indicator among all the air pollutants 
(Fig. 6I).

Discussion

In the current study, we investigated the association between 
long-term exposure to six types of ambient air pollutants 
 (PM2.5,  PM10, CO,  NO2,  SO2, and  O3) and the risk of ESRD 
in Chinese patients with T2DM and CKD. We confirmed 
the significant long-term risks of  PM2.5,  PM10, CO, and 
 SO2 for progression to ESRD. These positive associations 
remained robust in fully adjusted models, suggesting these 
associations were independent. Different effects were shown 

Table 1  (continued)

Characteristics Overall (n = 1,738) Patients with outcomes (n = 98) Patients without out-
comes (n = 1,640)

P-value

HDL-C (mmol/L) 0.96 (0.82, 1.12) 0.9 6(0.84, 1.20) 0.96 (0.82, 1.12) 0.630
LDL-C (mmol/L) 2.44 (1.87, 3.08) 2.76 (2.14, 3.46) 2.43 (1.86, 3.04) 0.001
LDL category (n, %) 0.003
 < 2.6 mmol/L 737 (42.4%) 56 (57.1%) 681 (41.5%)
 ≥ 2.6 mmol/L 1,001 (57.6%) 42 (42.9%) 959 (58.5%)
Scr (μmol/L) 98.0 (90.0, 110.0) 112.0 (99.0, 128.0) 97.0 (90.0, 108.3)  < 0.001
BUN (mmol/L) 6.8 (5.6, 8.2) 8.5 (6.6, 10.4) 6.7 (5.5, 8.1)  < 0.001
Serum uric acid (μmol/L) 381 (324, 445) 387 (331, 467) 381 (323, 444) 0.255
eGFR (mL/min/1.73  m2) 52.1 (45.0, 57.5) 45.0 (37.7,53.6) 52.3 (45.4, 57.6)  < 0.001
eGFR category (n, %)  < 0.001
Stage 1 (≥ 90) 56 (3.2%) 2 (2%) 54 (3.3%)
Stage 2 (60 – 89) 133 (7.7%) 11 (11.2%) 122 (7.4%)
Stage 3a (45 – 59) 1,113 (64%) 36 (36.7%) 1,077 (65.7%)
Stage 3b (30 – 44) 436 (25.1%) 49 (50%) 387 (23.6%)
Urinary protein grade (n, %)  < 0.001
0 – 1 + 1,241 (71.4%) 20 (20.4%) 1,221 (74.5%)
2 + – 4 + 497 (28.6%) 78 (79.6%) 419 (25.5%)
PM2.5 (µg/m3) 49.50 (38.67, 62.36) 55.55 (43.46, 66.02) 49.22 (38.32, 62.01) 0.002
PM10 (µg/m3) 81.40 (69.17, 94.58) 85.14 (74.34, 97.75) 81.12 (68.80, 94.09) 0.016
CO (mg/m3) 0.81 (0.65, 0.99) 0.88 (0.72, 1.06) 0.80 (0.64, 0.98) 0.005
NO2 (µg/m3) 40.93 (33.25, 47.68) 42.27 (36.02, 49.78) 40.81 (33.15, 47.58) 0.049
SO2 (µg/m3) 5.96 (3.74, 8.93) 7.36 (5.05, 10.20) 5.91 (3.70,8.84) 0.001
O3 (µg/m3) 92.74 (90.26, 94.96) 93.01 (91.57, 94.79) 92.71 (90.18, 94.99) 0.394

Abbreviations: DM: diabetes mellitus; BMI: body mass index; RAAS: renin–angiotensin–aldosterone system; CAD: coronary artery disease; 
HF: heart failure; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; HGB: hemoglobin; ALB: albumin; 
FBG: fasting blood glucose; HbA1c: glycated hemoglobin; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; 
LDL-C: low-density lipoprotein cholesterol; Scr: serum creatinine; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate;  PM2.5: 
particulate matter with an aerodynamic diameter less than 2.5 μm;  PM10: particulate matter with an aerodynamic diameter less than 10 μm; CO: 
carbon monoxide;  NO2: nitrogen dioxide;  SO2: sulfur dioxide.  O3: ozone
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Fig. 3  Overall effects of environmental pollutants including  PM2.5, 
 PM10,  SO2, CO,  NO2, and  O3. A: The BKMR method showed the 
estimated change in risk of ESRD when six pollutants were set at 
particular percentiles (ranging from 25 to 75th) compared to when 

all pollutants were all at their 50th percentile; B: RCS curve of WQS 
index, which was calculated by WQS regression, indicating the over-
all effort of all the six environmental pollutants

Fig. 4  Association between the risk of ESRD and different air pollut-
ants. The solid red line represented OR of the air pollutant across the 
whole range after fully adjusting for covariates, including sex, age of 
DM onset, duration of diabetes, hyperlipidemia, using of lipid-low-

ering drugs, smoking status, insulin treatment, HF, baseline eGFR, 
MAP, BMI, anemia, urinary protein, and serum ALB. The red dot 
line represents the 95% CI of OR. The frequency distribution of the 
air pollutant concentration is shown by histograms
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by different air pollutants when stratified by age, baseline 
eGFR, BMI, the usage of RAAS inhibitors, HbA1c, and 
follow-up time. Furthermore, on the basis of the clinical 
model incorporating traditional predictors (model 1), add-
ing the above four types of air pollutants  (PM2.5,  PM10, CO, 
or  SO2) can significantly improve the predictive efficiency 
of the model for predicting ESRD. Using BKMR method, 
WQS regression, and backward stepwise logistic regression, 
we found that  PM2.5 was the most important environmental 
predictor for ESRD, indicating the importance of incorporat-
ing  PM2.5 exposure into the regular clinical care of patients 
with T2DM and CKD.

A recent prospective cohort study including 6,628 adult 
patients with CKD investigated the association between 
long-term exposure to  PM2.5 and the risk of ESRD and 
found that the adjusted hazard ratio (95% CI) for progres-
sion to ESRD was 1.19 (1.08–1.31) per 7.8 μg/m3 increment 
in  PM2.5, which was similar to our results (Lin et al. 2020b). 
However, this study did not investigate other air pollutants 
and included the general population with CKD. In our study, 
apart from  PM2.5, we also explored the association between 
five other types of air pollutants  (PM10, CO,  NO2,  SO2, and 
 O3) and the risk of ESRD and further confirmed the sig-
nificantly negative impact of long-term exposure to  PM10, 
CO, and  SO2 on renal function. It is noteworthy that our 
study focused on a specific group of patients with T2DM 
and CKD, which was reported to have a significantly higher 
incidence rate of chronic RRT than people without diabetes 
(Claessen et al. 2021) and also have a higher mortality rate 
(Alicic et al. 2017). Additionally, at present, there is limited 
epidemiological evidence of the association between air pol-
lution and ESRD risk in patients with T2DM and CKD. 
Therefore, our study provided an evidentiary base to incor-
porate  PM2.5,  PM10, CO, and  SO2 exposure into the regular 
clinical care of patients with T2DM and CKD.

Given that the baseline exposure to air pollution may 
not completely and accurately represent the exposure over 
the long-term follow-up, we used the annual mean expo-
sure concentrations of different air pollutants between the 
patient’s enrollment and the last follow-up, which was simi-
lar to several previous studies using ESRD as the endpoint 
(Bowe et al. 2017, 2018; Lin et al. 2020a). Furthermore, 
we discussed the impact of the duration of follow-up on the 
association between air pollution and the risk of ESRD. We 
found that the negative impact of air pollution on renal func-
tion remained significant regardless of the duration of fol-
low-up, and these effects tended to be stronger in those with 
a relatively long follow-up period, indicating that reducing 
exposure time is of great significance for delaying ESRD 
progression in patients with T2DM and CKD.

Moreover, our study investigated the additional predic-
tive value of  PM2.5,  PM10, CO, and  SO2 outperforming the 
conventional clinical model (model 1) both in the derivation Ta
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and the internal validation cohort. After using the BKMR 
method, WQS regression, and the backward stepwise logis-
tic regression to select the variables,  PM2.5 was found to be 
the most important environmental pollutant. Previous stud-
ies suggested that ambient  PM2.5 could be a novel environ-
mental risk factor for incident CKD or ESRD (Bowe et al. 
2018; Lin et al. 2020a, b; Blum et al. 2020; Yang et al. 2017; 
Chang et al. 2022; O'Neill et al. 2008; Mehta et al. 2016; 

Weaver et al. 2019). However, limited data exist on the asso-
ciation between long-term exposure to  PM2.5 and ESRD risk 
in countries or regions with high levels of  PM2.5, especially 
in the Chinese mainland, where high levels of  PM2.5 remain 
a very severe environmental challenge (Huang et al. 2018). 
Our research findings may further promote public health 
efforts to provide greater protection for patients with T2DM 
and CKD in reducing ESRD risks associated with long-term 

Fig. 5  The associations between long-term exposure to  PM2.5,  PM10, CO, and  SO2 and ESRD risk in patients with different subgroups



5440 Environmental Science and Pollution Research (2024) 31:5429–5443

1 3

exposure to  PM2.5 and provide evidence to implement more 
reinforced air quality control of ambient  PM2.5.

Previous studies indicated that ambient air pollutants 
might cause renal vascular impairment, mesangial expan-
sion, intraglomerular hypertension, advanced glomerulo-
sclerosis, tubular atrophy, and renal fibrosis, which may 
contribute to the progression of kidney diseases (Yan et al. 
2014; Tavera Busso et al. 2018; Al Suleimani et al. 2017). 
The mechanisms underlying air pollutants to renal function 
decline are not entirely clear and may be involved in many 
aspects. For example,  PM2.5 can enter the lungs and further 
pass into the bloodstream, and then penetrate blood-organ 
barriers and thereby impact distant organs like the kidneys 
(Chen et al. 2022). Experimental evidence suggested that 
 PM2.5 could cause disturbances of renal hemodynamics, 
exacerbate renal vascular damage, aggravate oxidative stress 
and inflammation, promote DNA damage, and thereby pro-
mote the development of acute kidney injury or CKD (Al 
Suleimani et al. 2017; Nemmar et al. 2010, 2016). Future 
studies are still needed to elucidate the mechanisms by 
which different air pollutants affect renal function.

In this study, we included patients with T2DM and CKD. 
Notably, air pollution is also a major risk factor for T2DM, 
a leading driver of CKD. According to an analysis of data 
from the Global Burden of Disease Study 2019, about 20% 
of the global burden of T2DM can be attributed to ambient 
 PM2.5 exposure, which contributes to 13.4% (9.49–17.5) of 

deaths and 13.6% (9.73–17.9) of disability-adjusted life-
years due to T2DM (GBD 2019 Diabetes and Air Pollution 
Collaborators 2022). A recent study included a cohort of 
2,444,157 veterans from the United States and investigated 
whether DM mediates the association between  PM2.5 and 
CKD (Bowe et al. 2020). They found that DM mediates a 
certain proportion of the positive association between  PM2.5 
and the risk of various kidney outcomes, especially ESRD, 
suggesting that more precise estimates of the burden of DM 
and the burden of kidney disease attributable to ambient 
 PM2.5 will be considered in future studies.

Notablely, apart from the covariates that we have 
already adjusted in this study, there are some potential 
confounding factors, such as genetic factors, diet, and 
indoor air pollution, which were also previously reported 
to be associated with renal function decline. Genetic poly-
morphisms and epigenetic variations were found to deter-
mine the individual susceptibility to renal function pro-
gression (Tampe and Zeisberg 2014). In addition, genetic 
risk was also reported to modify the association between 
air pollutants exposure and CKD (Wang et  al. 2022). 
Healthy diets, such as coffee, dairy, and plant-based foods 
may lower the risk of CKD, while unhealthy diets, such as 
sugar-sweetened beverages and red meat, may accelerate 
renal function decline (van Westing et al. 2020). Moreover, 
there are several studies exploring the association between 
indoor air pollution and renal function progression, which 

Fig. 6  Subgroup analysis of follow-up time and evaluation of prog-
nostic efficacy of different air pollutants. A-E. Subgroup analysis of 
follow-up time in the association between  PM2.5,  PM10,  SO2, or CO 
and the risk of developing ESRD; F. Correlation analysis between dif-

ferent air pollutants; G-H. The prognostic performance of different air 
pollutants for ESRD in the derivation and internal validation cohort. 
I. The optimal model established by a backward stepwise method 
based on  PM2.5,  PM10,  SO2, CO, and variables in model 4
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have yielded inconsistent results (Singh et al. 2016; Xue 
et al. 2022; Kanagasabai et al. 2022). In our study, we 
could not further analyze these confounding factors due 
to data inavailability. Future studies are needed to further 
explore the impact of these confounding factors on renal 
function in patients with T2DM and CKD.

Based on a retrospective cohort in Beijing, China, we 
first provided an evidentiary base for the positive associa-
tion between long-term exposure to different air pollutants 
and the risk of ESRD in Chinese patients with T2DM and 
CKD. Moreover, we evaluated the additional predictive 
value for ESRD outperforming the conventional clinical 
model. However, our study also has several limitations. First, 
this is a single-center study with a relatively small sample 
size, which may affect the generalizability of our results to 
a broader population with T2DM and CKD. Second, this is 
a retrospective cohort study, which may suffer from bias in 
report and selection. Research with a prospective design is 
warranted in future studies. Third, we applied the ordinary 
Kriging method to estimate exposure from air pollutant con-
centration of the air quality monitoring station nearest the 
participant’s residential address. We could not fully consider 
the daily activity trajectory of the subjects due to the limita-
tion of data. Fourth, we were unable to further distinguish 
patients with diabetic nephropathy and nondiabetic kidney 
disease (NDKD) due to the lack of renal biopsy data. Future 
studies are needed to further compare the different effects 
of air pollution on the progression of diabetic nephropathy 
and NDKD.

Conclusions

Our study evaluated the long-term effects of ambient  PM2.5, 
 PM10,  NO2, CO,  SO2, and  O3 on ESRD risk in Chinese 
patients with T2DM and CKD and revealed a significantly 
positive association between  PM2.5,  PM10, CO, and  SO2 and 
risk of ESRD. These associations remained robust after 
multiple adjustments. Besides, these air pollution indica-
tors showed additional predictive value outperforming the 
conventional clinical model, and  PM2.5 was found to be the 
most important environmental pollutant. Therefore, our find-
ings support the independent association between long-term 
exposure to different air pollutants and the risk of ESRD 
and provide an evidentiary base to incorporate air pollutant 
exposure, especially  PM2.5, into the regular clinical care of 
patients with T2DM and CKD.
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