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Abstract
Rapidly urbanizing cities in Latin America experience high levels of air pollution which are known risk factors for population 
health. However, the estimates of long-term exposure to air pollution are scarce in the region. We developed intraurban land 
use regression (LUR) models to map long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in 
the five largest cities in Colombia. We conducted air pollution measurement campaigns using gravimetric PM2.5 and passive 
NO2 sensors for 2 weeks during both the dry and rainy seasons in 2021 in the cities of Barranquilla, Bucaramanga, Bogotá, 
Cali, and Medellín, and combined these data with geospatial and meteorological variables. Annual models were developed 
using multivariable spatial regression models. The city annual PM2.5 mean concentrations measured ranged between 12.32 
and 15.99 µg/m3 while NO2 concentrations ranged between 24.92 and 49.15 µg/m3. The PM2.5 annual models explained 
82% of the variance (R2) in Medellín, 77% in Bucaramanga, 73% in Barranquilla, 70% in Cali, and 44% in Bogotá. The 
NO2 models explained 65% of the variance in Bucaramanga, 57% in Medellín, 44% in Cali, 40% in Bogotá, and 30% in 
Barranquilla. Most of the predictor variables included in the models were a combination of specific land use characteristics 
and roadway variables. Cross-validation suggests that PM2.5 outperformed NO2 models. The developed models can be used 
as exposure estimate in epidemiological studies, as input in hybrid models to improve personal exposure assessment, and 
for policy evaluation.
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Introduction

Air pollution is recognized as one of the leading environ-
mental risk factors for population health (GBD 2019 Risk 
Factors Collaborators 2020). It is estimated that 99% of 
the world population is living in places where air pollution 
levels for fine particulate matter (PM2.5) exceed the current 
safe guideline level defined by the World Health Organiza-
tion (WHO), and populations from low- and middle-income 
countries are exposed to the highest levels (World Health 
Organization 2021). In 2019, it was estimated that a total 
of 2.92 million deaths in females and 3.75 million deaths 

in males were attributable to ambient particulate matter and 
ozone air pollution. For Latin America and the Caribbean 
(LAC) region, and overall for low- and low-middle income 
countries, air pollution was the second most important risk 
factor (after malnutrition) that accounted for attributable 
disability-adjusted life-years (DALYs) rates over the past 
decade (GBD 2019 Risk Factors Collaborators 2020).

Particulate matter (PM2.5), nitrogen dioxide (NO2), and 
ozone (O3) are the ambient air pollutants most strongly associ-
ated with adverse health adverse effects in the short- and long-
term (World Health Organization 2021). The health effects 
from long-term exposure to air pollution are tenfold higher 
than the short-term effects represented by daily variations 
(Pope 2007). For long-term exposure there is also evidence that 
there are large within-city contrasts and their effects are prob-
ably higher than the effects related to variations between cities 
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(Crouse et al. 2015). Therefore, high-resolution spatial estima-
tions of long-term exposure to air pollutants, particularly in 
urban setting, are critical for epidemiological research studying 
the association between air pollution and health and an impor-
tant input for air quality management plans aimed to reduce air 
pollution adverse effects (Fann et al. 2011). There are different 
methods for estimating intraurban spatial variability of air pol-
lutants. These methods include models based on proximity to 
monitoring stations, interpolation methods, land use regression 
models (LUR), and dispersion and chemical transport models 
combined with satellite remote sensing (Dijkema et al. 2011; 
Hoek 2017; Hoek et al. 2008; Michael Jerrett et al. 2005; van 
Donkelaar et al. 2021).

LUR models combined monitoring of air pollutants with 
the development of stochastic models using physical landscape 
characteristics, meteorology, and population as predictor vari-
ables (Hoek et al. 2008). LUR models use standard multivaria-
ble spatial regression techniques that have lower computational 
requirements compared with dispersion or chemical transport 
models and are relatively easy to implement using geographic 
information systems (GIS), which made them a method of 
preference in developing intraurban surfaces of air pollutant 
exposure (Hoek et al. 2008). LUR models have shown to have 
a high predictive value and to be a cost-effective method to 
estimate intraurban variations of air pollutants in different 
regions including North America, Europe, and Asia (Allen 
et al. 2011; Chen et al. 2013; de Hoogh et al. 2016; Eeftens 
et al. 2012; Gurung et al. 2017; Kashima et al. 2018; Lee et al. 
2017; Stafoggia et al. 2022). Recently LUR has been used 
in these regions as input data for hybrid models combining 
dispersion models, satellite-based observations, land use, and 
surface monitoring data for PM2.5 and NO2 (Hoek 2017). Also, 
annual and monthly global estimates of ground level PM2.5 
and NO2 have been developed, combining satellite remote 
sensing with the GEOS-Chem chemical transport model and 
calibration using ground-level observations (van Donkelaar 
et al. 2021). These models provide spatially fine resolutions at 
0.01° × 0.01° and have shown to have a very good performance 
in North America and Europe but have very high uncertainty 
for tropical areas particularly in South America (Hoek 2017; 
van Donkelaar et al. 2021).

Despite LAC cities are growing rapidly and experienc-
ing high levels of air pollution, the estimates of long-term 
exposure to air pollution are scarce in the region. In most 
cities, the ground-level measurements of atmospheric pol-
lutants have poor consistency and coverage (Cunha-Zeri and 
Ometto 2021). Limitations include that traditional air quality 
stations require high financial funding in resource-limited 
countries which make them logistically prohibitive since it is 
not cost-effective. Consequently, given the limited resources 
of good air quality data, modeling emerges as a possible 
tool to derive management measures (Agudelo-Castañeda 
et al. 2023). However, high-resolution spatial estimations of 

long-term exposure to air pollutants are scarce in LAC and 
development of LUR models for some pollutants have been 
reported only for the cities of Mexico, Sao Paulo, Quito, and 
Medellín (Alvarez-Mendoza et al. 2019; Habbermann and 
Gouveia 2007; Londoño and Cañon 2015; Luminati et al. 
2021; Son et al. 2018).

Colombia is located at the extreme north of South Amer-
ica with an estimated population of 52 million inhabitants 
(Departamento Nacional de Estadística (DANE) 2020b) dis-
tributed across 32 departments and 1122 municipalities. The 
national air quality surveillance network has operated since 
1993 and currently includes 22 regional surveillance systems 
that are distributed in 77 municipalities of 19 departments. 
In 2021, the national monitoring network included 131 mon-
itoring stations for PM2.5 and 57 for NO2 (Instituto de Hidro-
logia Meteorología y Estudios Ambientales-IDEAM 2022). 
Data from monitoring stations provide useful information 
for temporal daily variations of pollutants but provide lim-
ited information on the spatial variability of pollution espe-
cially in densely populated urban settings that concentrate 
77% of the country’s population (Departamento Nacional 
de Estadística (DANE) 2020b). Data from monitoring sur-
veillance systems have been used in epidemiological studies 
assessing the short-term effects of pollutant concentrations 
on mortality and morbidity in the largest cities in Colom-
bia (Blanco-Becerra et al. 2014; Rodriguez-Villamizar et al. 
2018). However, there is a need for estimations of long-
term spatial variation of pollutants within cities. LUR mod-
els have provided high performance and less computational 
requirements compared to other methods for assessing long-
term exposures to air pollutants. Therefore, our objective 
was to develop intraurban LUR models for PM2.5 and NO2 
in the five largest cities in Colombia to estimate of long-term 
population exposure to air pollution for use in air quality 
health assessment and mitigation.

Methods

Study areas

The study was conducted in the urban areas of the five larg-
est cities in Colombia: Barranquilla, Bucaramanga, Bogotá, 
Cali, and Medellín (Fig. 1). The population varies across 
cities, Bogotá being the most populated city with an esti-
mated population of 7,834,167 million inhabitants in 2021. 
The estimated total population during 2021 was 1,297,082 
for Barranquilla; 614,269 for Bucaramanga; 2,264,748 for 
Cali; and 2,573,220 inhabitants for Medellín (Departamento 
Nacional de Estadística (DANE) 2020b). The altitude and 
average temperature also vary across cities, with Barran-
quilla being the warmer and closest to the sea level and 
Bogotá being the coldest and highest elevation. The physical 
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characteristics of these cities are presented in Table S1 in 
Supplementary material. Similar to other capital cities in 
South America, the roadways networks in these cities are 
complex and dense, and both industrial and residential 
neighborhoods coexist.

Air pollution measurement data

PM2.5 and NO2 concentrations were measured in the five 
cities for two consecutive weeks during both the dry and 
the rainy season in 2021. The selection of the dry and rainy 
seasons for each city was defined based on the total pre-
cipitation registered in local meteorological stations between 
2010 and 2019. The driest months correspond to January 
to March while the months with higher precipitation were 

April to May for most cities. The details of the sampling 
period for each city are presented in Table S1 in Supple-
mentary material.

For NO2, there were 80 sampling sites for Bogotá and 40 
for the other cities; while for PM2.5, there were 40 sampling 
sites for Bogotá and 20 for the other cities. Figure 1 shows the 
location of sampling sites distributed across the urban area 
of the cities. The density of sampling sites in the urban areas 
for NO2 measurements (samplers per km2) was 2.3 for Bar-
ranquilla, 0.8 for Bucaramanga, 4.4 for Bogotá, 3.5 for Cali, 
and 3.6 for Medellín; the density of sampling for PM2.5 was 
twice these values as we used half the number of monitors. 
The selection of sampling sites was conducted with participa-
tion of the study team and experts from the environmental and 
health departments of each city. The criteria for selecting the 

Fig. 1   Study areas and monitoring location within cities in Colombia. Note: Circles represent monitoring sites for both pollutants, PM2.5 and 
NO2, and triangles represent monitoring sites for NO2 only
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monitoring sites included (1) the representation of traffic, resi-
dential, industrial or other areas within the cities, and (2) the 
heterogeneity in the characteristics of the selected sites (i.e., in 
terms of types of traffic, density of residential areas or particu-
lar areas for cities such as port or industrial areas). The sam-
pling sites included one background urban site per city. The 
background site was located in the area of the city with the 
lowest concentrations of pollutants based on measurements, 
if they were available, or based on the experts’ knowledge of 
pollution within the city. In addition, sampling included 3–4 
sites per city that were installed in the same location as moni-
toring stations from the local air quality network to facilitate 
instrument intercomparisons. For quality control, two blank 
filters were used for each city.

Measurement campaigns were simultaneously conducted 
across all sampling sites in each city for 2 weeks. Two trained 
teams of field staff were responsible for installing and unin-
stalling monitoring samplers across the study cities. We meas-
ured gravimetric PM2.5 using Ultrasonic Personal Aerosol 
Sampler (UPAS) samplers (V2.0 Access Sensor Technolo-
gies, Fort Collins, CO, USA) that were installed between 2.5 
and 3 m above ground in all monitoring sites. The UPAS mon-
itors have been widely used for measuring gravimetric PM2.5 
in similar and higher pollution settings (Arku et al. 2020) and 
have shown good performance for collecting airborne PM for 
gravimetric analysis (Leith et al. 2020). We adapted an envi-
ronmental enclosure to protect the device during outdoor sam-
pling and added an external battery to increase the sampling 
time to 7 days at 25% duty cycle at a flow rate of 1 lpm. Each 
monitor was loaded with a 37-mm Teflon filter at the start of 
each measurement period. We replaced the UPAS and filters 
at each sampling site after 7 days to complete the 2 weeks 
monitoring period. Gravimetric analysis was conducted for 
all cities in a single laboratory certified for this competence 
(ISO/IEC 17025:1999) by the Instituto de Hidrología, Mete-
orología y Estudios Ambientales (IDEAM). Each filter and 
blank were weighted three times, and the average measure-
ment was reported for each filter. The reported limit of quan-
tification was 0.68 µg, and the limit of detection was 1.36 µg. 
The average PM2.5 concentration of the two weekly filters 
from the same site, and campaign was reported as the site 
concentration for statistical analysis.

For measuring NO2, we used passive diffusion Palmes Tubes 
(Gradko environmental, Hampshire, UK) that were installed for 
2 weeks with a height of 2.5–3 m above ground in all monitoring 
sites. For quality control, an extra two blank tubes were deployed 
in each city. The processing of all tubes was conducted in the 
manufacturers’ laboratory, and concentration measurements were 
reported as the average of duplicate measurements. The reported 
limit of detection was 0.031 µg of NO2 in tubes. The installation, 
operation, and deinstallation of the PM2.5 and NO2 monitoring 
devices including refrigeration of samples were conducted by 
trained personnel following the manufacturer’s instructions.

GIS predictor variables

Predictor variables were grouped into five categories: 
(1) land use (areas of different land uses); (2) population 
(including population counts and population density); (3) 
roads (including total length of roads and distance from sam-
pling sites to arterial roads); (4) traffic (including estimated 
average speed and traffic volume); (5) physical geography 
(altitude); and (6) meteorology (including average tempera-
ture, precipitation, relative humidity, and wind direction). 
All predictor variables were created for circular buffers with 
radii of 100 m, 200 m, and 500 m and centered at the moni-
toring sites. These predictor variables were obtained from 
the intersection between buffers and GIS layers. In total, 78 
independent variables were generated including variations 
of roadways variables. Maps were created using ESRI Arc-
GIS® 10.8.1 and ArcMap™ under license (ESRI® version, 
US). Table 1 provides the details of the predictor variables 
used to generate the LUR models.

Land use data were obtained from the local government’s 
planning office based on the most recent land use distri-
bution available. Altitude was measured in sampling sites 
directly using an altimeter during the first deployment of 
monitoring devices. Population data and roads classifica-
tion were obtained from the demographic and cartographic 
information of the census 2018 (Departamento Nacional 
de Estadística (DANE) 2020a). Meteorology data were 
obtained from meteorological monitoring stations from 
the local environmental authority including 16 stations in 
Bogotá, 22 stations in Medellín, and 8 stations in Cali. Pre-
cipitation and temperature raster surfaces were calculated 
using the Regnie model (Rauthe et al. 2013). Briefly, we 
used data from stations coupled with altitude from the digi-
tal terrain model (DTM) with 30 m resolution, the slope 
and land exposure (the direction or azimuth angle of the 
inclination of the slope) to calculate spatial precipitation 
and temperature mean values using a linear regression 
model. Barranquilla and Bucaramanga had less than four 
local meteorological stations that did not allow for a valid 
spatial estimation, and therefore, meteorological data was 
not included in LUR models for these two cities.

Traffic predictor variables were measured and estimated 
for the project. The traffic speed measurements were obtained 
during the same monitoring campaigns periods by using a 
cloud-based data method that included data pre-processing, 
speed computation, and output data formatting. During the 
pre-processing, the street network vector data from Open-
streetmap was edited to match the same network used by the 
Google Maps platform. Then, the network streets were split 
into 100-m links considering the road intersections setup. 
Then, the speed was computed for those links using their 
length and travel time. Travel times at the link level were 
obtained from the Google Maps platform using the distance 
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matrix API service, which provides predicted values at the 
time the service was used. Finally, the speed of each link was 
added to its attributes set, and the whole collection of links 
was used to create a GIS layer using Python scripts.

To estimate traffic volumes, we used speed-density-flow 
functions, which describe the relationships between traffic 
speed, density, and flow rate on a road segment. These func-
tions were obtained and used to estimate traffic conditions 
(National Research Council 2010). We computed speed-
density-flow functions for urban traffic for Bogota (73 road 
segments) and Medellín (199 road segments) using data 
from sensors and traffic cameras provided by the transporta-
tion authorities. We computed and validated the functions for 
three different traffic regimes: interrupted, semi-interrupted, 
and uninterrupted flow. We tested six theoretical functional 
forms (Greenshields, Drew, Pipes, May&Keller, Greenberg, 
and Underwood Model) (Gaddam and Rao 2019) by using ran-
dom sampling with replacement. The best model was selected 
based on the root mean square error (RMSE). The resulting 
functional forms were then used to estimate traffic volumes 
in the road network of Barranquilla, Cali, and Bucaramanga, 

taking into account the traffic regimes, and the number of lanes 
in each road segment.

Statistical analysis

We averaged pollutants’ concentrations measured dur-
ing both sampling campaigns to obtain annual means for 
each city. The comparison of measurements of the PM2.5 
sampling device with local monitoring stations was con-
ducted for 13 monitoring stations with data available (2 in 
Barranquilla, 4 in Bogotá, 4 in Cali, and 3 in Medellín). 
Comparison of concentrations was evaluated using Bland 
and Altman agreement coefficients and graphs (Bland and 
Altman 1986). The average annual measurements across the 
monitoring sites were also compared to the average annual 
estimation measurements from the real-time local monitor-
ing stations in the cities.

We developed LUR models to estimate intraurban spa-
tial variation of PM2.5 and NO2 within the five cities. We 
used multivariable spatial regression models that allow local 
estimations of a dependent variable Z, by implementing the 

Table 1   Land use regression predictor variablesa

a All predicted variables were created for buffers of 100 m, 200 m, and 500 m

Category Source Year Unit Variable names

Land use Land use plan for each city 2014 % of land use type (square meters) Industrial-IND
Residencial-RES
Dotacional-DOT
Central-CEN
Commercial-COM
Port-PORT
Mixed-MIX

Population National Census 2018 People per square meter Total population-POB
Population density-DEN

Roads Open Street Maps 2020 Kilometers Length by road type
Trunk road-TRUNK
Primary road-PRIM
Secondary road-SEC
Tertiary road-TER
Local road-LOC
Distance from site to 

road by road type
DTRUNK
DPRIM
DSEC
DTER
DLOC

Traffic Speed Distance Matrix API—Google
Speed-density-flow functions

2021 Kilometers per hour
Vehicles per hour

Traffic speed-VEL
Traffic volume-VOL

Physical geography
Altitude

2021 Meters above sea level (MASL) Altitude-ALT

Meteorology Monitoring Station 2021 Temperature °C
Precipitation mm
Relative humidity %
Wind direction

Temperature TPROM
Precipitation PPROM
Humidity (%) HR
Wind direction WD
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ordinary least squares (OLS) method, in the presence of 
possible explanatory variables ( Zj ) at the same point 

(

xi, yi
)

 
represented by the following equation (Londoño, 2018; 
Maantay and McLafferty 2011):

To represent the spatial dependency structure between the 
features being analyzed, the best combination of explanatory 
variables must be determined. In a first step, we removed highly 
correlated variables (> 0.7) and those variables in which zero 
values account for more than 90% of the sampling sites. Then, 
all the predictors are included in the model assessing their sta-
tistical significance (p value < 0.05) and the sign for their coef-
ficient (βi) (observing their agreement with the expected theo-
retical direction of effect). In addition, the selected variables 
must adequately specify the regression model, by evaluating 
the specification criteria of the OLS method. We estimated the 
adjusted R-squared to assess the performance of the models and 
the variance inflation factor to determine multicollinearity. All 
models were built with a combination of all the buffer variables 
(Eeftens et al. 2012; Van Nunen et al. 2017).

We performed a geographically weighted regression (GWR) 
with the selected equation to examine the spatial heterogeneity 
of the relationship between air pollutants and other spatial vari-
ables and to estimate the multiple regression model parameters. 
Then, we created a regular point mesh with cells spaced by 
200 m over the cities’ surface, where the formula obtained by 
each annual regression model was applied, in order to predict 
air pollutant levels for each point. Then, a spatial interpolation 
method (spline) was applied to obtain the concentration sur-
face of the pollutant in the study area. Finally, we performed a 
leave-one-out cross validation (Eeftens et al. 2012; Wang et al. 
2016) for each LUR model in each city and compared the set 
of predicted values against the observed ones. Then, the cross-
validated square error and R2 were calculated for each model. 
The cross-validation was conducted using the “loocv” com-
mand in Stata® version 13 (Stata Corporation).

Results

Pollutants’ concentrations at sampling locations

There were 116 PM2.5 sampling sites with valid meas-
urements for both monitoring campaigns used for the 
estimation of the annual average concentrations. Three 
sites in Cali, four sites in Bogotá, and one in Medellin 
were excluded because they contribute only one success-
ful measurement. The mean PM2.5 concentrations during 
the dry season were slightly higher compared to the rainy 
season (see supplementary material Table S1). The annual 
PM2.5 mean concentration and range in sampling sites 

Z
�

xi, yi
�

= �0 +
∑n

j=1
�iZj

�

xi, yi
�

+ �j, �j ∼ N
�

0, v2
�

were 16.12 µg/m3 (7.42–22.22) for Medellín, 15.90 µg/m3 
(3.64–35.30) for Barranquilla, 15.79 µg/m3 (4.86–32.69) 
for Cali, 13.89  µg/m3 (4.39–25.52) for Bogotá, and 
12.93 µg/m3 (4.90–32.23) for Bucaramanga.

For NO2 sampling, 17 out of the 240 tubes deployed 
were removed due to vandalism or invalid measurements, 
leaving 223 observations for the analyses. The mean NO2 
concentrations during the dry season were slightly higher 
than those in the rainy season (see supplementary mate-
rial Table S1). The annual NO2 mean concentration and 
range in sampling sites were 49.09 µg/m3 (32.38–68.31) 
for Medellín, 34.92  µg/m3 (12.56–64.67) for Bucara-
manga, 39.12 µg/m3 (13.52–69.89) for Cali, 34.63 µg/m3 
(5.09–52.19) for Bogotá, and 24.92 µ/m3 (7.38–51.81) for 
Barranquilla.

The average of the differences in PM2.5 concentrations 
measured using the UPAS and those reported during 
the same sampling period by local monitoring stations 
was − 1.5 µg/m3 (95%CI − 6.8 to 3.9) during the dry sea-
son campaign (11 monitoring stations) and − 0.05 µg/m3 
(95% CI − 11.5 to 11.4) during the rainy season cam-
paign (13 monitoring stations). During the dry season 
campaign, higher differences were observed for two 
local monitoring stations, one in Medellín and one in 
Cali. During the rainy season campaign, higher dif-
ferences were observed for the three local monitoring 
stations from Medellín. Figure S1 shows the levels of 
agreement for PM2.5 measurements during the two moni-
toring campaigns. There was only one monitoring station 
in downtown Medellín with valid NO2 data for compari-
son of measurements obtained from Palmes tubes and 
local monitors. For this site-station pair, the differences 
was 5.71 and 2.59 µg/m3 during the dry and rainy sea-
son, respectively. In Bogotá during the second campaign 
(rainy season), there were four sites with valid paired 
measurements whose average difference was 6.70 µg/
m3, which was highly influenced by the discrepancy 
observed in one particular station located at Carrera 7a 
(excluding this station the average of the difference was 
2.86 µg/m3). The comparison of the PM2.5 average cam-
paign’s measurements from monitoring sites with the 
average annual measurements from monitoring stations 
during 2021 resulted in differences of − 0.84 µg/m3 for 
Bucaramanga, − 1.1 µg/m3 for Medellín, − 1.7 µg/m3 for 
Bogotá, 1.4 µg/m3 for Cali, and 1.7 µg/m3 for Barran-
quilla. For NO2, the difference between passive samplers 
and monitoring stations in Bogotá was 5.6 µg/m3.

LUR models

The final LUR models selected for the cities explained 
higher variability for PM2.5 compared with NO2 
(Tables 2 and 3, respectively). The models for PM2.5 
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explained between 44% (Bogotá) and 82% (Medellín) of 
pollutant’s spatial variability within cities. Most models 
showed a RMSE of approximately 1.5 µg/m3 except for 
Barranquilla where the error was approximately 4 µg/
m3. The contrasts between PM2.5 measured and predicted 
concentrations at monitoring sites for all cities are pre-
sented in Supplementary material Figure S2. Most of the 
predictor variables included in the PM2.5 LUR models 
were related to specific types of land uses and road-
ways’ attributes with predominance of 200 and 500 m 
buffers. In Bucaramanga, the LUR model only included 
roadways variables while Medellín was the only city 
where the model included a meteorological variable (see 
Table 2). There was no evidence of multicollinearity in 
the LUR models for both pollutants as the VIF values 
were all below 2.1. The maps of the predicted concentra-
tions for PM2.5 in the urban areas of the five cities are 
presented in Fig. 2.

The final selected models for NO2 explained between 
30% (Barranquilla) and 65% (Bucaramanga) of the 

pollutant’s spatial variability within cities. Most cities 
models showed a RMSE around 6 to 8 µg/m3 except for 
Cali where the error was close to 1.5 µg/m3. The meas-
ured values versus the predicted values of the models in the 
monitoring sites for NO2 in all cities are presented in Sup-
plementary material Figures S3. As expected, most of the 
predictor variables included in the NO2 LUR models were 
a combination of roadways variables with different buff-
ers. In Bucaramanga, the LUR model included population 
variables and, in Medellín, one meteorological variable (see 
Table 2). There was no collinearity in the LUR models for 
both pollutants as the VIF values were all below 1.7. The 
maps of the predicted concentrations for NO2 in the urban 
areas of the five cities are presented in Fig. 3.

Cross validation

Overall, the leave-one-out cross-validation R2s showed 
good stability, particularly for PM2.5. For PM2.5, the 

Table 2   Description of developed LUR models for PM2.5 in five cities in Colombia, 2021

RMSE Root mean square error, VIF variance inflation factor, ALT altitude, CEN, central land use, DEN population density; DOT Dotacional land 
use; DPRIM distance to primary roadway; DTRON distance to trunk roadway; IND industrial land use; LOC length local roadways; MIX mixed 
land use; PORT Port land use; PPROM precipitation average; PRIM length primary roadways; RES residential land use; SEC length secondary 
roadways; VEL vehicular speed; VOL vehicular volume. Numbers correspond to buffers of 100 m, 200 m, and 500 m

City LUR model No. sites Model R2 RMSE VIF R2 cross 
valida-
tion

Barranquilla PM2.5 = 19.83344–0.1489524*ALT–
0.0230902*DTRON500 + 44.43591*IND200 + 21.93109*CEN500 + 23.10317*PORT500

20 0.73 3.98 1.90 0.54

Bogotá Ln (PM2.5) = 2.4713 + 3.1439*DEN100 + 1.8045*IND200–0.8418*RES500 40 0.44 1.39 1.63 0.38
Bucaramanga Ln (PM2.5) = 2.199057 + 0.0014062 ∗ SEC100 + 0.0000327 ∗ LOC500–

0.0012659 ∗ DPRIM500 + 0.0215501 ∗ VEL100–0.000242 ∗ VOL200
20 0.77 1.23 1.78 0.46

Cali Ln (PM2.5) = 2.3387 + 0.00001 ∗ DOT200 + 1.0713 ∗ PRIM200 + 0.5943 ∗ SEC200–
0.0004 ∗ VOL100

17 0.70 1.28 2.06 0.51

Medellín PM2.5 = 13.77207–1.357455 ∗ PPROM–
5.589831 ∗ DOT100 + 2.269679 ∗ DEN200 + 70.23039 ∗ MIX500 + 0.0043842 ∗ VOL500

19 0.82 1.71 1.48 0.79

Table 3   Description of developed LUR models NO2 in five cities in Colombia, 2021

RMSE Root mean square error, VIF variance inflation factor, DEN population density, DOT Dotacional land use, DSEC distance to secondary 
roadway; LOC length local roadways; POB population size; PPROM precipitation average; PRIM length primary roadways; SEC length second-
ary roadways; TER length tertiary roadways; VEL vehicular speed; VOL vehicular volume, WPROM wind speed (mean). Numbers correspond to 
buffers of 100 m, 200 m, and 500 m

City LUR model No. sites Model R2 RMSE VIF R2 cross 
valida-
tion

Barranquilla NO2 = 12.89591 + 25.45936 ∗ PRIM100–0.1583713 ∗ VEL100 + 0.0061518 ∗ VOL500 36 0.30 8.02 1.28 0.19
Bogotá Ln (NO2) = 2.8714 + 0.0001*PRIM500 + 0.0058*VEL100 + 0.2599*WPROM 73 0.40 1.26 1.19 0.34
Bucaramanga NO2 = 13.00243 + 291.5302 ∗ DEN100–

0.0013283 ∗ POB500 + 0.0025503 ∗ TER500 + 0.0020514 ∗ LOC500 + 0.0057464 ∗ VOL100
40 0.65 8.08 1.66 0.55

Cali Ln (NO2) = 3.47834312 + 0.49126931*PRIM200 + 0.39823891 ∗ SEC200 + 0.36505469 ∗ TER200–
0.01475995 ∗ VEL200

40 0.44 1.28 1.56 0.36

Medellín NO2 = 46.06516–3.625967 ∗ PPROM–0.0299678 ∗ DSEC200 + 0.0225605 ∗ VOL500 34 0.57 5.53 1.06 0.45
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difference between the model R2 and the validation R2 
was 19% for Barranquilla, 31% for Bucaramanga, 6% 
for Bogotá, 19% for Cali, and 3% for Medellín. For NO2, 
the difference between the model R2 and the validation 
R2 was 11% for Barranquilla, 10% for Bucaramanga, 6% 
for Bogotá, 8% for Cali, and 12% for Medellín. Validation 
R2s are presented in Tables 2 and 3 for PM2.5 and NO2, 
respectively.

Discussion

This is the first study to develop LUR models for multiple 
cities in a Latin American country, providing small-area esti-
mations of air pollutants for use in health risk assessments, 

epidemiological studies of long-term exposure to air pollu-
tion, and mitigation evaluation. The development of LUR 
models to estimate concentrations for PM2.5 and NO2 in 
five of the largest Colombian cities showed moderate to 
high explained variance, respectively. Generally, the mod-
els showed higher explained variance of PM2.5 compared 
with NO2. Among the cities, the lowest explained variance 
was obtained for Bogotá, while the highest was recorded for 
Medellín and Bucaramanga.

The LUR models for PM2.5 showed relatively small errors 
of the predicted concentrations (RMSE < 1.7 µg/m3) in the 
cities, except for Barranquilla. Moreover, the performance of 
the LUR models developed for PM2.5 was higher than that 
reported in previous studies in Colombia. Previous LUR 
models were available only for PM10 and PM2.5 in the city 

Fig. 2   Annual predicted concentrations for PM2.5 in five cities in Colombia, 2021
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of Medellín with an explained variability of 79% for PM10 
(Londoño and Cañon 2015) and monthly variations between 
26 and 79% for PM2.5 (Grisales 2020), using data from 2007 
and 2018, respectively. Our selected LUR model for PM2.5 
in Medellín explained 82% of the variability, the highest of 
the five cities, using a combination of meteorological, land 
use, population density, and traffic volume variables. The high 
performance of the LUR models for PM2.5 in Medellín com-
pared to other cities might be explained by the wide range 
of estimated concentrations in the city and the influence of 
the topography and meteorology in the Valley of Aburrá 
where Medellín is located, as well as the important contribu-
tion of vehicular emissions to local concentrations as have 
been described in studies of PM2.5 characterization in the 
city (Area Metropolitana del Valle de Aburrá and Politecnico 
Colombiano Jaime Isaza Cadavid 2021). In contrast, the low 

performance of the LUR models for PM2.5 in Bogotá com-
pared to other cities might be explained partially by the lower 
contribution of vehicular emissions and the increased contri-
bution of enriched fugitive dust (resuspension of crustal mate-
rial and soil dust) and secondary PM (Ramírez et al. 2018). 
A similar profile has also been documented for Barranquilla 
with an important contribution of ocean aerosols (Nuñez 
Blanco 2019), secondary organic aerosols and the effect of 
exposed land resuspension and road dust (Gómez-Plata et al. 
2022), which was represented in the developed LUR model 
for this city. Additional unexplained variability in PM2.5 con-
centrations in the cities might be related to regional wildfires 
contributions which have been substantial in northern South 
America and particularly in Bogotá (Ballesteros-González 
et al. 2020) (Casallas et al. 2022).

Fig. 3   Annual predicted concentrations for NO2 in five cities in Colombia, 2021
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The variation in explained variability reported for the 
Colombian cities is comparable to that of PM2.5 in other 
Latin American and European countries. In Ecuador, Alva-
rez et al. (Alvarez-Mendoza et al. 2019) developed LUR 
models for PM10 using remote sensing data, and the models 
showed an explained variability of 68% at its highest. San-
grador et al. (2008) developed LUR models for PM2.5 during 
the rainy season in 2003 for Mexico City, which showed an 
explained variability of 60%. Later, Son et al. (2018) devel-
oped LUR models for the same city for different temporal 
scales, and the best explained variability for monthly PM2.5 
models was 76%. In Europe, the ESCAPE project devel-
oped LUR models for PM2.5 in 20 study areas, where the 
explained variability varied from 35% in Manchester, UK, 
to 89% in Paris, France (Eeftens et al. 2012).

As expected, the best predictor variables in our LUR 
models for NO2 were road and traffic variables. However, the 
performance of the LUR models developed for NO2, how-
ever, was lower than that for PM2.5 and the reported from 
previous studies in other countries. In Sao Paulo, an annual 
LUR developed for NO2 explained 66% of the variability in 
urban concentrations, with variations for summer (75%) and 
winter (52%) seasons (Luminati et al. 2021). For the Western 
European countries, Vienneau et al. (2013) developed LUR 
models for NO2 with and without satellite-based NO2 and 
obtained explained variability between 48 and 58% without 
satellite-based NO2 and a modest additional improvement of 
5% when adding satellite-based data. In our models for NO2, 
despite including different variables and metrics of traffic 
and roads, the models could not capture a higher variabil-
ity in concentrations, which suggests secondary reactions 
might be an important source of NO2 in the cities. Although 
our NO2 LUR explained less variability compared to other 
reported models in cities, the LUR models explain more var-
iability than simple road proximity metrics or interpolation 
methods based on data from monitoring stations and similar 
variability than dispersion models, which have been demon-
strated in previous studies assessing exposure assessment for 
epidemiological studies (Allen et al. 2011; de Hoogh et al. 
2014; Jerrett et al. 2007).

The LUR models have been used in exposure assess-
ment and health research related to long-term exposure to 
air pollutants. By incorporating data on local sources of 
pollution, such as traffic or industrial activity, these models 
can provide more accurate and precise exposure estimates 
than traditional monitoring methods (Hoek et al. 2008). This 
is particularly important for assessing the health effects of 
chronic exposure to air pollution, which has been linked to 
a range of adverse health outcomes, including respiratory 
and cardiovascular disease, cancer, and neurological disor-
ders (Chen et al. 2013; Herting et al. 2019; Knibbs et al. 
2018; Lamichhane et al. 2017; Stafoggia et al. 2022). LUR 
models can also identify areas of high pollution levels and 

vulnerable populations, helping to inform policy and inter-
vention strategies to reduce exposure and improve public 
health (Vienneau et al. 2013).

Alternative methods for estimating surface concentra-
tions of air pollutants have been developed recently using 
satellite-based models and models using mobile air pollut-
ant measurements. A study conducted at the municipality 
level in Colombia compared air quality models based on 
satellite measurements for PM2.5 between 2014 and 2019. It 
showed that the Copernicus Atmospheric Monitoring Ser-
vice Reanalysis (CAMRA) and the Atmospheric Composi-
tion Analysis Group (ACAG) models had a low correlation 
and tended to overestimated surface concentrations when 
both models were compared to surface data from 28 cities 
in 2019. However, ACAG outperformed CAMSRA in terms 
of mean bias of the model and the spatial representation 
of the highest concentrations (Rodriguez-Villamizar et al. 
2022). Using a mobile monitoring campaign in the city of 
Bucaramanga in 2019, estimations of within-city spatial var-
iations in ultrafine particle and black carbon concentrations 
were predicted using a combination of LUR and convolu-
tional neural networks trained using satellite and street-level 
images, showing the improvement of prediction when using 
a hybrid approach (Lloyd et al. 2021). Following this hybrid 
approach, our locally developed LUR models can be further 
used to develop hybrid models with satellite or mobile data 
and produce better spatially calibrated models for estimating 
long-term exposure for PM2.5 and NO2 in the main cities in 
Colombia and explore their potential transferability across 
cities.

There are some strengths in our study that are worth men-
tioning. First, there was a good agreement between PM2.5 
measurements made with UPAS compared to the concentra-
tions reported by the local monitoring stations in the cities. 
For NO2, there were few monitoring sites to conduct a valid 
comparison in all cities, but data from local government 
stations in Bogotá had a good agreement with concentra-
tions reported from measurements with the Palmes tubes. 
Second, we followed the same standardized procedure for 
conducting measuring pollutants during the two campaigns 
in each city and the simultaneous measurement within cities 
avoid the potential error related to using measures in differ-
ent time scales. Third, we included basic predictor variables 
for developing LUR models in the cities (land use, roads, 
traffic, population, and meteorology) available in the cities in 
Colombia and might be used further to developed multi-city 
models as those developed for Europe (Wang et al. 2014).

One limitation of the LUR models developed for the cit-
ies is the limited number of sampling sites which was 20 for 
PM2.5 and 40 for NO2, except for Bogotá which doubled the 
number. These numbers are below the lower range of recom-
mended monitoring sites (between 80 and 100) for modeling 
intraurban variations in complex urban settings using LUR 
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(Basagaña et al. 2012). As a result, the models developed 
using many predictors might have resulted in more unsta-
ble performance as was observed in the cross-validation. 
A second limitation of this study is the absence of valid 
traffic data for the cities during the campaign measurement, 
which has shown to improve the LUR model performance, 
particularly for NO2 (Beelen et al. 2013). To overcome this 
limitation, we measured traffic speed derived from satellite 
instruments and used previously available traffic count data 
for the largest cities to calculate density functions which 
were then transferred to the other cities to estimated traffic 
density. Despite the density functions in the cities seemed to 
reflect the traffic patterns in the cities and were included as 
significant predictive variables, their inclusion did not help 
to explain a higher variability in the models for NO2. Third, 
we did not include meteorological variables in the develop-
ment of LUR models for the cities of Bucaramanga and Bar-
ranquilla due to limited number of meteorological stations 
and data to produce a valid estimated surface. Although the 
models’ performance for PM2.5 were good particularly for 
Bucaramanga, including meteorological variables might 
have increased the models’ performance as they have been 
reported as important predictors for intraurban variations in 
other countries (Cheewinsiriwat et al. 2022; Olvera Alva-
rez et al. 2018). Another limitation of our study is that we 
did not include local emission sources and regional sources 
(such as forest fires) in the prediction models. These varia-
bles have shown to influence the concentration of particles in 
the cities (Casallas et al. 2022). Moreover, street NO2 levels 
may vary in building density or location, influencing their 
dispersion. Also, some atmospheric chemical reactions may 
reduce or transform NO2 concentrations. In urban areas, NO2 
emitted mostly from traffic within a radius of 100–300 m 
showed a correlation, although the high reactivity of NO2 
and rapid photodissociation may transform this pollutant in 
a reduced period (Agudelo-castañeda et al. 2020).

Conclusion

In this study, we developed LUR models to predict PM2.5 
and NO2 exposure in five main cities in Colombia. The LUR 
models showed a large intraurban variability of pollutant 
concentrations in all cities. The annual models for PM2.5 
outperformed the models for NO2 and provided robust mod-
els that can be used in epidemiological studies, particularly 
cohort studies, assessing the effects of long-term air pollu-
tion on human health. The newly developed LUR models 
might be further used to create hybrid models in combina-
tion with other data sources to improve personal exposure 
assessment.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11356-​023-​31306-w.

Acknowledgements  The authors thank Oscar Jiménez, Hermes Betan-
cur, Jefferson Fernánez, Angie Rojas, Paola Barbosa, Kelly Burbano, 
Ronald Correa, Daniela Ortiz, Martha Mendoza, Wilmer Urango, Luz 
Obando, and Orlando Guaduña for their contributions during the moni-
toring field work in the cities.

Author contribution  Conceptualization and methodology: LR-V, SM, 
JC, DA-C, VH, DM, JPJ, LB-C, OR-S, JOV, SW, JB, NR; field work 
and data collection: LL, OMR, MV, WS, AZO, MC, HS; formal anal-
ysis and investigation: LR-V, YR, and SCG; writing—original draft 
preparation: LR-V, YR, and SCG; writing—review and editing: DA-C, 
VH, DM, JPJ, LB-C, OR-S, JOV, SW, JB, NR, LL, OMR, MV, WS, 
AZO, MC, HS; funding acquisition: LR-V, SM, JC, DA-C, VH, DM, 
JPJ, LB-C, OR-S, JOV, NR.

Funding  Open Access funding provided by Colombia Consortium 
This research was funded by the Ministry of Science and Technology 
MINCIENCIAS in Colombia, grant number 905–2019.

Data availability  The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

Declarations 

Ethics approval and consent to participate  Not applicable.

Consent for publication  Not applicable.

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agudelo-Castañeda D, Arellana J, Morgado-Gamero WB, De Paoli F, 
Carla Portz L (2023) Linking of built environment inequalities 
with air quality: a case study. Trans Res Part D: Trans Environ 
117(1):103668. https://​doi.​org/​10.​1016/j.​trd.​2023.​103668

Agudelo-castañeda D, Paoli FD, Morgado-gamero WB, Mendoza M, 
Parody A, Maturana AY, Teixeira EC (2020) Assessment of the 
NO2 distribution and relationship with traffic load in the Carib-
bean coastal city. Sci Total Environ 720:137675. https://​doi.​org/​
10.​1016/j.​scito​tenv.​2020.​137675

Allen RW, Amram O, Wheeler AJ, Brauer M (2011) The transfer-
ability of NO and NO2 land use regression models between cities 
and pollutants. Atmos Environ 45(2):369–378. https://​doi.​org/​10.​
1016/j.​atmos​env.​2010.​10.​002

https://doi.org/10.1007/s11356-023-31306-w
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.trd.2023.103668
https://doi.org/10.1016/j.scitotenv.2020.137675
https://doi.org/10.1016/j.scitotenv.2020.137675
https://doi.org/10.1016/j.atmosenv.2010.10.002
https://doi.org/10.1016/j.atmosenv.2010.10.002


3218	 Environmental Science and Pollution Research (2024) 31:3207–3221

1 3

Alvarez-Mendoza CI, Teodoro AC, Torres N, Vivanco V (2019) 
Assessment of remote sensing data to model PM10 estimation in 
cities with a low number of air quality stations: a case of study in 
Quito, Ecuador. Environ - MDPI 6(7):85. https://​doi.​org/​10.​3390/​
envir​onmen​ts607​0085

Area Metropolitana del Valle de Aburrá A, Politecnico Colombiano 
Jaime Isaza Cadavid P (2021) Aporte de fuentes y caracterización 
del PM2.5 en el Valle de Aburrá, Colombia, 2019–2021. Informe 
final proyecto ARCAL RLA7023-Convenio interadministrativo 
671 de 2021. 474 pag. Available in: https://​www.​metro​pol.​gov.​
co/​ambie​ntal/​calid​ad-​del-​aire/​Bibli​oteca-​aire/​Estud​ios-​calid​ad-​
del-​aire/​Infor​me-​Final-​Carac​teriz​acion-​Fase-​IV.​pdf

Arku RE, Brauer M, Ahmed SH, AlHabib KF, Avezum Á, Bo J, 
Choudhury T, Dans AM, Gupta R, Iqbal R, Ismail N, Kelishadi 
R, Khatib R, Koon T, Kumar R, Lanas F, Lear SA, Wei L, Lopez-
Jaramillo P, … Hystad P (2020) Long-term exposure to outdoor 
and household air pollution and blood pressure in the Prospective 
Urban and Rural Epidemiological (PURE) study. Environ Pollut 
(Barking, Essex : 1987) 262:114197.https://​doi.​org/​10.​1016/j.​
envpol.​2020.​114197

Ballesteros-González K, Sullivan AP, Morales-Betancourt R (2020) 
Estimating the air quality and health impacts of biomass burning 
in northern South America using a chemical transport model. Sci 
Total Environ 739:139755. https://​doi.​org/​10.​1016/j.​scito​tenv.​
2020.​139755

Basagaña X, Rivera M, Aguilera I, Agis D, Bouso L, Elosua R, Foraster 
M, de Nazelle A, Nieuwenhuijsen M, Vila J, Künzli N (2012) 
Effect of the number of measurement sites on land use regression 
models in estimating local air pollution. Atmos Environ 54:634–
642. https://​doi.​org/​10.​1016/j.​atmos​env.​2012.​01.​064

Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli 
X, Tsai MY, Künzli N, Schikowski T, Marcon A, Eriksen KT, 
Raaschou-Nielsen O, Stephanou E, Patelarou E, Lanki T, Yli-
Tuomi T, Declercq C, Falq G, Stempfelet M, … de Hoogh K 
(2013) Development of NO2 and NOx land use regression models 
for estimating air pollution exposure in 36 study areas in Europe 
– the ESCAPE project. Atmos Environ 72:10–23. https://​doi.​org/​
10.​1016/J.​ATMOS​ENV.​2013.​02.​037

Blanco-Becerra LC, Miranda-Soberanis V, Hernández-Cadena L, Bar-
raza-Villarreal A, Junger W, Hurtado-Díaz M, Romieu I (2014) 
Effect of particulate matter less than 10μm (PM10) on mortality in 
Bogota, Colombia: a time-series analysis, 1998–2006. Salud Pub-
lica Mex 56(4):363–370. https://​doi.​org/​10.​21149/​spm.​v56i4.​7356

Bland JM, Altman DG (1986) Statistical methods for assessing agree-
ment between two methods of clinical measurement. Lancet (lon-
don, England) 1(8476):307–310

Casallas A, Castillo-Camacho MP, Guevara-Luna MA, González Y, 
Sanchez E, Belalcazar LC (2022) Spatio-temporal analysis of PM(2.5) 
and policies in Northwestern South America. Sci Total Environ 
852:158504. https://​doi.​org/​10.​1016/j.​scito​tenv.​2022.​158504

Cheewinsiriwat P, Duangyiwa C, Sukitpaneenit M, Stettler MEJ (2022) 
Influence of land use and meteorological factors on PM2.5 and 
PM10 concentrations in Bangkok, Thailand. Sustainability (Swit-
zerland) 14(9). https://​doi.​org/​10.​3390/​su140​95367

Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve 
PJ (2013) Long-term exposure to traffic-related air pollution and 
cardiovascular mortality. Epidemiology 24(1):35–43. https://​doi.​
org/​10.​1097/​EDE.​0b013​e3182​76c005

National Research Council (2010) Highway capacity manual 2010. 
Transportation Research Board, Washington D.C.

Crouse DL, Peters PA, Villeneuve PJ, Proux M-O, Shin HH, Gold-
berg MS, Johnson M, Wheeler AJ, Allen RW, Atari DO, Jerrett 
M, Brauer M, Brook JR, Cakmak S, Burnett RT (2015) Within- 
and between-city contrasts in nitrogen dioxide and mortality in 
10 Canadian cities; a subset of the Canadian Census Health and 

Environment Cohort (CanCHEC). J Eposure Sci Environ Epide-
miol 25(5):482–489. https://​doi.​org/​10.​1038/​jes.​2014.​89

Cunha-Zeri G, Ometto J (2021) Nitrogen emissions in Latin America: a con-
ceptual framework of drivers, impacts, and policy responses. Environ Dev 
38(October 2019):100605. https://​doi.​org/​10.​1016/j.​envdev.​2020.​100605

de Hoogh K, Gulliver J, van Donkelaar A, Martin RV, Marshall 
JD, Bechle MJ, Cesaroni G, Pradas MC, Dedele A, Eeftens M, 
Forsberg B, Galassi C, Heinrich J, Hoffmann B, Jacquemin B, 
Katsouyanni K, Korek M, Künzli N, Lindley SJ, … Hoek G 
(2016) Development of West-European PM2.5 and NO2 land 
use regression models incorporating satellite-derived and chem-
ical transport modelling data. Environ Res 151:1–10. https://​doi.​
org/​10.​1016/j.​envres.​2016.​07.​005

de Hoogh K, Korek M, Vienneau D, Keuken M, Kukkonen J, Nieu-
wenhuijsen MJ, Badaloni C, Beelen R, Bolignano A, Cesaroni 
G, Pradas MC, Cyrys J, Douros J, Eeftens M, Forastiere F, 
Forsberg B, Fuks K, Gehring U, Gryparis A, … Bellander T 
(2014) Comparing land use regression and dispersion model-
ling to assess residential exposure to ambient air pollution for 
epidemiological studies. Environ Int 73:382–392. https://​doi.​
org/​10.​1016/j.​envint.​2014.​08.​011

Departamento Nacional de Estadística (DANE) (2020a) Geoportal 
Censo Nacional de Población y Vivienda 2018. https://​geopo​
rtal.​dane.​gov.​co/. Accessed 5 Feb 2021

Departamento Nacional de Estadística (DANE) (2020b) Proyecci-
ones de Población. https://​www.​dane.​gov.​co/​index.​php/​estad​
istic​as-​por-​tema/​demog​rafia-y-​pobla​cion/​proye​ccion​es-​de-​pobla​
cion. Accessed 5 Feb 2021

Dijkema MB, Gehring U, van Strien RT, van der Zee SC, Fischer 
P, Hoek G, Brunekreef B (2011) A comparison of different 
approaches to estimate small-scale spatial variation in outdoor 
NO2 concentrations. Environ Health Perspect 119(2):670–675. 
https://​doi.​org/​10.​1289/​ehp.​09018​18

Eeftens M, Beelen R, De Hoogh K, Bellander T, Cesaroni G, Cirach M, 
Declercq C, Dedele A, Dons E, De Nazelle A, Dimakopoulou K, 
Eriksen K, Falq G, Fischer P, Galassi C, Gražulevičiene R, Hein-
rich J, Hoffmann B, Jerrett M, … Hoek G (2012) Development of 
land use regression models for PM2.5, PM 2.5 absorbance, PM10 
and PMcoarse in 20 European study areas; results of the ESCAPE 
project. Environ Sci Technol 46:11195–11205. https://​doi.​org/​10.​
1021/​es301​948k

Fann N, Bell ML, Walker K, Hubbell B (2011) Improving the linkages 
between air pollution epidemiology and quantitative risk assess-
ment. Environ Health Perspect 119(12):1671–1675. https://​doi.​
org/​10.​1289/​ehp.​11037​80

Gaddam HK, Rao KR (2019) Speed–density functional relation-
ship for heterogeneous traffic data: a statistical and theoretical 
investigation. J Mod Trans 27(1):61–74. https://​doi.​org/​10.​1007/​
s40534-​018-​0177-7

GBD 2019 Risk Factors Collaborators (2020) Global burden of 87 risk 
factors in 204 countries and territories, 1990–2019: a systematic 
analysis for the Global Burden of Disease Study 2019. Lancet 
(London, England) 396(10258):1223–1249. https://​doi.​org/​10.​
1016/​S0140-​6736(20)​30752-2

Gómez-Plata L, Agudelo-Castañeda D, Castillo M, Teixeira EC (2022) 
PM10 source identification: a case of a Coastal City in Colombia. 
Aerosol Air Qual Res 22(10):1–17. https://​doi.​org/​10.​4209/​aaqr.​
210293

Grisales S (2020) Modelos de regresión de usos del suelo para la car-
acterización espacial de la contaminación del aire por PM2.5 
en la ciudad de Medellín-Colombia, 2018 [Universidad de 
Antioquia, Medellín, Colombia]. https://​hdl.​handle.​net/​10495/​
16376. Accessed 5 Feb 2020

Gurung A, Levy JI, Bell ML (2017) Modeling the intraurban vari-
ation in nitrogen dioxide in urban areas in Kathmandu Valley, 

https://doi.org/10.3390/environments6070085
https://doi.org/10.3390/environments6070085
https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Estudios-calidad-del-aire/Informe-Final-Caracterizacion-Fase-IV.pdf
https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Estudios-calidad-del-aire/Informe-Final-Caracterizacion-Fase-IV.pdf
https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Estudios-calidad-del-aire/Informe-Final-Caracterizacion-Fase-IV.pdf
https://doi.org/10.1016/j.envpol.2020.114197
https://doi.org/10.1016/j.envpol.2020.114197
https://doi.org/10.1016/j.scitotenv.2020.139755
https://doi.org/10.1016/j.scitotenv.2020.139755
https://doi.org/10.1016/j.atmosenv.2012.01.064
https://doi.org/10.1016/J.ATMOSENV.2013.02.037
https://doi.org/10.1016/J.ATMOSENV.2013.02.037
https://doi.org/10.21149/spm.v56i4.7356
https://doi.org/10.1016/j.scitotenv.2022.158504
https://doi.org/10.3390/su14095367
https://doi.org/10.1097/EDE.0b013e318276c005
https://doi.org/10.1097/EDE.0b013e318276c005
https://doi.org/10.1038/jes.2014.89
https://doi.org/10.1016/j.envdev.2020.100605
https://doi.org/10.1016/j.envres.2016.07.005
https://doi.org/10.1016/j.envres.2016.07.005
https://doi.org/10.1016/j.envint.2014.08.011
https://doi.org/10.1016/j.envint.2014.08.011
https://geoportal.dane.gov.co/
https://geoportal.dane.gov.co/
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion
https://doi.org/10.1289/ehp.0901818
https://doi.org/10.1021/es301948k
https://doi.org/10.1021/es301948k
https://doi.org/10.1289/ehp.1103780
https://doi.org/10.1289/ehp.1103780
https://doi.org/10.1007/s40534-018-0177-7
https://doi.org/10.1007/s40534-018-0177-7
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.4209/aaqr.210293
https://doi.org/10.4209/aaqr.210293
https://hdl.handle.net/10495/16376
https://hdl.handle.net/10495/16376


3219Environmental Science and Pollution Research (2024) 31:3207–3221	

1 3

Nepal. Environ Res 155:42–48. https://​doi.​org/​10.​1016/j.​envres.​
2017.​01.​038

Habbermann M, Gouveia N (2007) Application of land use regression 
to predict the concentration of inhalable particulate matter in de 
São Paulo city, Brasil. Eng Sanit Ambient 17(2):155–162

Herting MM, Younan D, Campbell CE, Chen J-C (2019) Outdoor air 
pollution and brain structure and function from across childhood 
to young adulthood: a methodological review of brain MRI stud-
ies. Front Public Health 7:332. https://​doi.​org/​10.​3389/​fpubh.​
2019.​00332

Hoek G (2017) Methods for assessing long-term exposures to outdoor 
air pollutants. Curr Environ Health Rep 4(4):450–462. https://​doi.​
org/​10.​1007/​s40572-​017-​0169-5

Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs 
D (2008) A review of land-use regression models to assess spatial 
variation of outdoor air pollution. Atmos Environ 42(33):7561–
7578. https://​doi.​org/​10.​1016/j.​atmos​env.​2008.​05.​057

Instituto de Hidrologíaa Meteorología y Estudios Ambientales-IDEAM 
(2022) Informe del estado de la calidad del aire en Colombia 
2021. Available in: http://​www.​ideam.​gov.​co/​web/​conta​minac​ion-
y-​calid​ad-​ambie​ntal/​infor​mes-​del-​estado-​de-​la-​calid​ad-​del-​aire-​
en-​colom​bia?p_​p_​id=​110_​INSTA​NCE_​3uZc3​mUViy​Ru&p_​p_​
lifec​ycle=​0&p_​p_​state=​norma​l&p_​p_​mode=​view&p_​p_​col_​id=​
column-​1&p_​p_​col_​count=​1&_​110_​INSTA​NCE_​3uZc3​mUViy​
Ru_​struts_​actio​n=%​2Fdoc​ument_​libra​ry_​displ​ay%​2Fview_​file_​
entry​&_​110_​INSTA​NCE_​3uZc3​mUViy​Ru_​fileE​ntryId=​12567​
3668

Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert 
NL, Brook JR, Finkelstein N, Finkelstein MM (2007) Modeling 
the intraurban variability of ambient traffic pollution in Toronto, 
Canada. J Toxicol Environ Health A 70(3–4):200–212. https://​doi.​
org/​10.​1080/​15287​39060​08830​18

Jerrett M, Arain A, Kanaroglou P, Beckerman B (2005) A review and 
evaluation of intraurban air pollution exposure models. 185–204. 
https://​doi.​org/​10.​1038/​sj.​jea.​75003​88

Kashima S, Yorifuji T, Sawada N, Nakaya T, Eboshida A (2018) Com-
parison of land use regression models for NO2 based on routine 
and campaign monitoring data from an urban area of Japan. Sci 
Total Environ 631–632:1029–1037. https://​doi.​org/​10.​1016/j.​scito​
tenv.​2018.​02.​334

Knibbs LD, Cortes de Waterman AM, Toelle BG, Guo Y, Denison 
L, Jalaludin B, Marks GB, Williams GM (2018) The Austral-
ian Child Health and Air Pollution Study (ACHAPS): a national 
population-based cross-sectional study of long-term exposure 
to outdoor air pollution, asthma, and lung function. Environ Int 
120:394–403. https://​doi.​org/​10.​1016/j.​envint.​2018.​08.​025

Lamichhane DK, Kim HC, Choi CM, Shin MH, Shim YM, Leem JH, 
Ryu JS, Nam HS, Park SM (2017) Lung cancer risk and residen-
tial exposure to air pollution: a Korean population-based case-
control study. Yonsei Med J 58(6):1111–1118. https://​doi.​org/​10.​
3349/​ymj.​2017.​58.6.​1111

Lee M, Brauer M, Wong P, Tang R, Tsui TH, Choi C, Cheng W, Lai 
P-C, Tian L, Thach T-Q, Allen R, Barratt B (2017) Land use 
regression modelling of air pollution in high density high rise cit-
ies: a case study in Hong Kong. Sci Total Environ 592:306–315. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2017.​03.​094

Leith D, L’Orange C, Mehaffy J, Volckens J (2020) Design and perfor-
mance of UPAS inlets for respirable and thoracic mass sampling. 
J Occup Environ Hyg 17(6):274–282. https://​doi.​org/​10.​1080/​
15459​624.​2020.​17415​95

Lloyd M, Carter E, Diaz FG, Magara-Gomez KT, Hong KY, Baumgartner 
J, Herrera GVM, Weichenthal S (2021) Predicting within-city spatial 
variations in outdoor ultrafine particle and black carbon concentra-
tions in Bucaramanga, Colombia: a hybrid approach using open-
source geographic data and digital images. Environ Sci Technol 
55(18):12483–12492. https://​doi.​org/​10.​1021/​acs.​est.​1c014​12

Londoño L (2018) Metodología para caracterizar espacio-temporal-
mente la concentración de material particulado en Valles intra-
montanos con información escasa [Universidad de Antioquia, 
Medellín, Colombia]. https://​bibli​oteca​digit​al.​udea.​edu.​co/​handle/​
10495/​9413. Accessed 5 Feb 2020

Londoño L, Cañon J (2015) Metodologia para la aplicación de modelos 
de regresión de usos de suelo en la estimación local de la concen-
tración mensual de PM10 en Medellín, Colombia. Rev Politécnica 
11(21):29–40

Luminati O, Ledebur de Antas de Campos B, Flückiger B, Brentani 
A, Röösli M, Fink G, de Hoogh K (2021) Land use regression 
modelling of NO(2) in São Paulo, Brazil. Environ Pollut (Bark-
ing, Essex : 1987) 289:117832.https://​doi.​org/​10.​1016/j.​envpol.​
2021.​117832

Maantay J, McLafferty S (2011) Geospatial analysis of environmental 
health.Springer.https://​doi.​org/​10.​1007/​978-​94-​007-​0329-2

Nuñez Blanco Y (2019) Estimación de fuentes de material particu-
lado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, 
Colombia. Universidad de la Costa, Barranquilla, Colombia

Olvera Alvarez HA, Myers OB, Weigel M, Armijos RX (2018) The 
value of using seasonality and meteorological variables to model 
intra-urban PM2.5 variation. Atmos Environ 182(March):1–8. 
https://​doi.​org/​10.​1016/j.​atmos​env.​2018.​03.​007

Pope CA 3rd (2007) Mortality effects of longer term exposures to fine 
particulate air pollution: review of recent epidemiological evi-
dence. Inhalation Toxicol 19(Suppl 1):33–38. https://​doi.​org/​10.​
1080/​08958​37070​14929​61

Ramírez O, Sánchez de la Campa AM, Amato F, Catacolí RA, Rojas 
NY, de la Rosa J (2018) Chemical composition and source appor-
tionment of PM(10) at an urban background site in a high-altitude 
Latin American megacity (Bogota, Colombia). Environ Pollut 
(Barking, Essex : 1987) 233:142–155. https://​doi.​org/​10.​1016/j.​
envpol.​2017.​10.​045

Rauthe M, Steiner H, Riediger U, Mazurkiewicz A, Gratzki A (2013) 
A Central European precipitation climatology - Part I: genera-
tion and validation of a high-resolution gridded daily data set 
(HYRAS). Meteorol Z 22(3):235–256. https://​doi.​org/​10.​1127/​
0941-​2948/​2013/​0436

Rodriguez-Villamizar LA, Belalcazar-Ceron LC, Castillo MP, Sanchez 
ER, Herrera V, Agudelo-Castañeda DM (2022) Avoidable mortal-
ity due to long-term exposure to PM(2.5) in Colombia 2014–2019. 
Environ Health: Global Access Sci Source 21(1):137. https://​doi.​
org/​10.​1186/​s12940-​022-​00947-8

Rodriguez-Villamizar LA, Rojas-Roa NY, Blanco-Becerra LC, Her-
rera-Galindo VM, Fernández-Niño JA (2018) Short-term effects 
of air pollution on respiratory and circulatory morbidity in Colom-
bia 2011−2014: a multi-city, time-series analysis. Int J Environ 
Res Public Health 15(8). https://​doi.​org/​10.​3390/​ijerp​h1508​1610

Sangrador JT, Nuñez ME, Villarreal AB, Cadena LH, Jerrett M, 
Romieu I (2008) A land use regression model for predicting 
PM2.5 in Mexico City. Epidemiology 19(S259):1

Son Y, Osornio-Vargas AR, O’Neill MS, Hystad P, Texcalac-Sangrador 
JL, Ohman-Strickland P, Meng Q, Schwander S (2018) Land use 
regression models to assess air pollution exposure in Mexico City 
using finer spatial and temporal input parameters. Sci Total Envi-
ron 639:40–48. https://​doi.​org/​10.​1016/j.​scito​tenv.​2018.​05.​144

Stafoggia M, Oftedal B, Chen J, Rodopoulou S, Renzi M, Atkinson RW, 
Bauwelinck M, Klompmaker JO, Mehta A, Vienneau D, Andersen 
ZJ, Bellander T, Brandt J, Cesaroni G, de Hoogh K, Fecht D, Gul-
liver J, Hertel O, Hoffmann B, … Janssen NAH (2022) Long-term 
exposure to low ambient air pollution concentrations and mortality 
among 28 million people: results from seven large European cohorts 
within the ELAPSE project. Lancet Planetary Health 6(1):e9–e18. 
https://​doi.​org/​10.​1016/​S2542-​5196(21)​00277-1

van Donkelaar A, Hammer MS, Bindle L, Brauer M, Brook JR, Garay 
MJ, Hsu NC, Kalashnikova OV, Kahn RA, Lee C, Levy RC, 

https://doi.org/10.1016/j.envres.2017.01.038
https://doi.org/10.1016/j.envres.2017.01.038
https://doi.org/10.3389/fpubh.2019.00332
https://doi.org/10.3389/fpubh.2019.00332
https://doi.org/10.1007/s40572-017-0169-5
https://doi.org/10.1007/s40572-017-0169-5
https://doi.org/10.1016/j.atmosenv.2008.05.057
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estado-de-la-calidad-del-aire-en-colombia?p_p_id=110_INSTANCE_3uZc3mUViyRu&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_110_INSTANCE_3uZc3mUViyRu_struts_action=%2Fdocument_library_display%2Fview_file_entry&_110_INSTANCE_3uZc3mUViyRu_fileEntryId=125673668
https://doi.org/10.1080/15287390600883018
https://doi.org/10.1080/15287390600883018
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1016/j.scitotenv.2018.02.334
https://doi.org/10.1016/j.scitotenv.2018.02.334
https://doi.org/10.1016/j.envint.2018.08.025
https://doi.org/10.3349/ymj.2017.58.6.1111
https://doi.org/10.3349/ymj.2017.58.6.1111
https://doi.org/10.1016/j.scitotenv.2017.03.094
https://doi.org/10.1080/15459624.2020.1741595
https://doi.org/10.1080/15459624.2020.1741595
https://doi.org/10.1021/acs.est.1c01412
https://bibliotecadigital.udea.edu.co/handle/10495/9413
https://bibliotecadigital.udea.edu.co/handle/10495/9413
https://doi.org/10.1016/j.envpol.2021.117832
https://doi.org/10.1016/j.envpol.2021.117832
https://doi.org/10.1007/978-94-007-0329-2
https://doi.org/10.1016/j.atmosenv.2018.03.007
https://doi.org/10.1080/08958370701492961
https://doi.org/10.1080/08958370701492961
https://doi.org/10.1016/j.envpol.2017.10.045
https://doi.org/10.1016/j.envpol.2017.10.045
https://doi.org/10.1127/0941-2948/2013/0436
https://doi.org/10.1127/0941-2948/2013/0436
https://doi.org/10.1186/s12940-022-00947-8
https://doi.org/10.1186/s12940-022-00947-8
https://doi.org/10.3390/ijerph15081610
https://doi.org/10.1016/j.scitotenv.2018.05.144
https://doi.org/10.1016/S2542-5196(21)00277-1


3220	 Environmental Science and Pollution Research (2024) 31:3207–3221

1 3

Lyapustin A, Sayer AM, Martin RV (2021) Monthly global esti-
mates of fine particulate matter and their uncertainty. Environ 
Sci Technol 55(22):15287–15300. https://​doi.​org/​10.​1021/​acs.​
est.​1c053​09

Van Nunen E, Vermeulen R, Tsai MY, Probst-Hensch N, Ineichen A, Davey 
M, Imboden M, Ducret-Stich R, Naccarati A, Raffaele D, Ranzi A, 
Ivaldi C, Galassi C, Nieuwenhuijsen M, Curto A, Donaire-Gonzalez D, 
Cirach M, Chatzi L, Kampouri M, … Hoek G (2017) Land use regres-
sion models for ultrafine particles in Six European Areas. Environ Sci 
Technol 51:3336–3345. https://​doi.​org/​10.​1021/​acs.​est.​6b059​20

Vienneau D, de Hoogh K, Bechle MJ, Beelen R, van Donkelaar A, 
Martin RV, Millet DB, Hoek G, Marshall JD (2013) Western 
European land use regression incorporating satellite- and ground-
based measurements of NO2 and PM10. Environ Sci Technol 
47(23):13555–13564. https://​doi.​org/​10.​1021/​es403​089q

Wang M, Beelen R, Bellander T, Birk M, Cesaroni G, Cirach M, Cyrys 
J, de Hoogh K, Declercq C, Dimakopoulou K, Eeftens M, Eriksen 

KT, Forastiere F, Galassi C, Grivas G, Heinrich J, Hoffmann B, 
Ineichen A, Korek M, … Brunekreef B (2014) Performance of 
multi-city land use regression models for nitrogen dioxide and 
fine particles. Environ Health Perspect 122(8):843–849. https://​
doi.​org/​10.​1289/​ehp.​13072​71

Wang M, Brunekreef B, Gehring U, Szpiro A, Hoek G, Beelen R (2016) 
A new technique for evaluating land-use regression models and their 
impact on health effect estimates. Epidemiology (Cambridge, Mass) 
27(1):51–56. https://​doi.​org/​10.​1097/​EDE.​00000​00000​000404

World Health Organization (2021) WHO global air quality guidelines: 
particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, 
sulfur dioxide and carbon monoxide. World Health Organization. 
https://​apps.​who.​int/​iris/​handle/​10665/​345329. Accessed 1 Oct 
2021

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Laura A. Rodriguez‑Villamizar1   · Yurley Rojas2 · Sara Grisales3 · Sonia C. Mangones4 · Jhon J. Cáceres2 · 
Dayana M. Agudelo‑Castañeda5 · Víctor Herrera1,6 · Diana Marín7 · Juan G. Piñeros Jiménez3 · 
Luis C. Belalcázar‑Ceron4 · Oscar Alberto Rojas‑Sánchez8 · Jonathan Ochoa Villegas9 · Leandro López1 · 
Oscar Mauricio Rojas10 · María C. Vicini11 · Wilson Salas12 · Ana Zuleima Orrego13 · Margarita Castillo14 · 
Hugo Sáenz15 · Luis Álvaro Hernández15 · Scott Weichenthal16 · Jill Baumgartner16 · Néstor Y. Rojas4

 *	 Laura A. Rodriguez‑Villamizar 
	 laurovi@uis.edu.co

	 Yurley Rojas 
	 yurleyrg18@gmail.com

	 Sara Grisales 
	 sara.grisales@udea.edu.co

	 Sonia C. Mangones 
	 scmangonesm@unal.edu.co

	 Jhon J. Cáceres 
	 jcaceres@uis.edu.co

	 Dayana M. Agudelo‑Castañeda 
	 mdagudelo@uninorte.edu.co

	 Víctor Herrera 
	 vicmaher@uis.edu.co

	 Diana Marín 
	 dianamarcela.marin@upb.edu.co

	 Juan G. Piñeros Jiménez 
	 juan.pineros@udea.edu.co

	 Luis C. Belalcázar‑Ceron 
	 lcbelalcazarc@unal.edu.co

	 Oscar Alberto Rojas‑Sánchez 
	 orojas@ins.gov.co

	 Jonathan Ochoa Villegas 
	 jonathan.ochoa@usbmed.edu.co

	 Oscar Mauricio Rojas 
	 oscar.rojas@amb.gov.co

	 María C. Vicini 
	 maria.vicini@cdmb.gov.co

	 Wilson Salas 
	 calidadairedagma@cali.gov.co

	 Ana Zuleima Orrego 
	 ana.orrego@metropol.gov.co

	 Margarita Castillo 
	 margarita.castillo@barranquillaverde.gov.co

	 Hugo Sáenz 
	 hugo.saenz@ambientebogota.gov.co

	 Luis Álvaro Hernández 
	 alvaro.hernandez@ambientebogota.gov.co; 

lhernandezgo@unal.edu.co

	 Scott Weichenthal 
	 scottandrew.weichenthal@mcgill.ca

	 Jill Baumgartner 
	 jill.baumgartner@mcgill.ca

	 Néstor Y. Rojas 
	 nyrojasr@unal.edu.co

1	 Departamento de Salud Pública, Universidad Industrial de 
Santander, Carrera 32 29‑31, Bucaramanga, Colombia

2	 Escuela de Ingeniería Civil, Industrial de Santander, Carrera 
27 Calle 9 Ciudad Universitaria, Bucaramanga, Colombia

3	 Facultad Nacional de Salud Pública, Universidad de 
Antioquia, Calle 62 52‑59, Medellín, Colombia

https://doi.org/10.1021/acs.est.1c05309
https://doi.org/10.1021/acs.est.1c05309
https://doi.org/10.1021/acs.est.6b05920
https://doi.org/10.1021/es403089q
https://doi.org/10.1289/ehp.1307271
https://doi.org/10.1289/ehp.1307271
https://doi.org/10.1097/EDE.0000000000000404
https://apps.who.int/iris/handle/10665/345329
http://orcid.org/0000-0002-5551-2586


3221Environmental Science and Pollution Research (2024) 31:3207–3221	

1 3

4	 Facultad de Ingeniería, Universidad Nacional de Colombia, 
Carrera 45 26‑85 Edificio 401, Bogotá, Colombia

5	 Departamento de Ingeniería Civil y Ambiental, Universidad 
del Norte, Km 5 Vía Puerto Colombia, Barranquilla, 
Colombia

6	 Facultad de Ciencias de La Salud, Universidad Autónoma 
de Bucaramanga, Calle 157 15‑55 El Bosque, Floridablanca, 
Colombia

7	 Escuela de Medicina, Universidad Pontificia Bolivariana, 
Calle 78B 72ª‑159, Medellín, Colombia

8	 División de Investigación en Salud Pública, Instituto 
Nacional de Salud, Avenida Calle 26 51‑20, Bogotá, 
Colombia

9	 Facultad de Ingenierías, Universidad San Buenaventura, 
Carrera 56C 51‑110, Medellín, Colombia

10	 Área Metropolitana de Bucaramanga, Calle 89 Transveral 
Oriental Metropolitana, Bucaramanga, Colombia

11	 Corporación Para La Defensa de La Meseta de Bucaramanga, 
Carrera 23 37‑63, Bucaramanga, Colombia

12	 Departamento Administrativo de Gestión del Medio 
Ambiente, Alcaldía de Santiago de Cali, Avenida 5AN 
20‑08, Cali, Colombia

13	 Área Metropolitana del Valle de Aburrá, Carrera 53 40ª‑31, 
Medellín, Colombia

14	 EPA Barranquilla Verde, Carrera 60 72‑19, Barranquilla, 
Colombia

15	 Secretaría Distrital de Ambiente, Alcaldía de Bogotá, 
Avenida Caracas 54‑38, Bogotá, Colombia

16	 Department of Epidemiology, Biostatistics & Occupational 
Health, McGill University, 2001 McGill College Avenue, 
Montreal, Canada


	Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia
	Abstract
	Introduction
	Methods
	Study areas
	Air pollution measurement data
	GIS predictor variables
	Statistical analysis

	Results
	Pollutants’ concentrations at sampling locations
	LUR models
	Cross validation

	Discussion
	Conclusion
	Anchor 15
	Acknowledgements 
	References


