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Abstract
Currently, sustainable agriculture involves ecofriendly techniques, which include biofertilization. Biofertilizers increase plant 
productivity by improving soil fertility and nutrient content. A wide range of living organisms can be applied as biofertilizers 
and increase soil fertility without causing pollution due to their biodegradability. The organisms can be microorganisms like 
bacteria, microalgae, and micro fungi or macro organisms like macroalgae, macro fungi, and higher plants. Biofertilizers 
extracted from living organisms or their residues will be increasingly used rather than chemical fertilizers, which cause heavy 
metal accumulation in soil. Biofertilizer use aims for sustainable development in agriculture by maintaining the soil. This 
will mitigate climate change and related impacts and will also lower many serious diseases resulting from pollution such 
as cancer, liver and renal failure, and immune diseases. This review is a comprehensive overview of biofertilizers extracted 
from a range of living organisms from the Kingdoms Monera to Plantae and included bacteria, algae, fungi, and higher 
plants. Organisms that play a vital role in elevating soil nutrients in a safe, cheap, and ecofriendly manner are included in 
the review to promote their potential commercial application.
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Introduction

The world population is projected to increase to over 10 
billion people over the next 30 years. Therefore, food sup-
ply will need to rise by 60% in order to fulfil the predicted 
demand in 2050 (Pambuka et al. 2021, 2022; Kinge et al. 
2022). Food distribution and manufacturing must be handled 

in a more effective and sustainable manner to prevent sup-
ply shortages. To do this, farmers are using organic fertiliz-
ers, which are made from recycled material such as manure, 
agricultural residues, and town sewage, including human 
waste (Ju et al. 2005). The misuse of pesticides and inor-
ganic fertilizers contributed to the desertification of agricul-
tural land and diminishing crop productivity and increased 
serious human disorders (Bedair et al. 2022b). So, it is 
necessary to explore biofertilization to obtain healthy food 
(Ammar 2022).

The soil ecosystem has been severely harmed by inor-
ganic fertilizers, herbicides, and insecticides. Future crop 
growth will be hampered by this type of treatment on the 
soil. Currently, the use of natural plant bio stimulants is 
advocated as an inventive approach to meet the difficulties of 
sustainable agriculture and to assure optimal nutrient uptake, 
crop output, and resistance to abiotic stress (Povero et al. 
2016). In order to promote the growth of high yield crops, 
fertilizers are necessary. Many crops on most soils require 
significant amounts of fundamental nutrients that plants 
need for healthy growth and include nitrogen  (NH4

+ or 
 NO3), phosphorus  (H2PO4), calcium  (Ca2+), sulfur  (SO4

2−), 

Responsible Editor: Ta Yeong Wu

 * Esraa E. Ammar 
 esraa_ammar@science.tanta.edu.eg

1 Plant Ecology, Botany Department, Faculty of Science, 
Tanta University, Tanta 31527, Egypt

2 Biotechnology, Botany Department, Faculty of Science, 
Tanta University, Tanta 31527, Egypt

3 Chemistry Department, Faculty of Pharmacy, Al-Azhar 
University, Cairo 11675, Egypt

4 Department of Biochemistry, Faculty of Science, University 
of Jeddah, Jeddah, Saudi Arabia

5 Plant Protection Department, Faculty of Agriculture, Zagazig 
University, Zagazig 44511, Egypt

http://orcid.org/0000-0001-7979-6432
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-30260-x&domain=pdf


113120 Environmental Science and Pollution Research (2023) 30:113119–113137

1 3

magnesium  (Mg2+), potassium  (K+), iron  (Fe2+ or  Fe3+), and 
zinc  (Zn2+ or Zn(OH)2) (White and Brown 2010).

Regardless of the amount of nutrients in the crop, bio 
stimulants are natural compounds or microorganisms that 
are administered to plants to increase their nutritional effi-
ciency, resistance to abiotic stress, and qualitative attributes 
(Abdelsalam et al. 2022). As a subclass of bio stimulants, 
biofertilizers are microbial inoculants that can enhance the 
nutritional efficiency of plants by containing active or inac-
tive formulations of advantageous microorganisms (Deepak 
et al. 2015; Backer et al. 2018; Alori and Babalola 2018).

Since synthetic fertilizers are of chemical origin, over 
application cause eutrophication, harmful to both soil and 
plants. Synthetic fertilizers find their way into the adjacent 
streams and rivers, where they contaminate water and harm 
fish and other aquatic animals (Sabry 2015). Plants, on the 
other hand, gradually and safely deliver nutrients to the soil. 
Many of the plants that are used to fertilize soil are initially 
planted as cover crops to prevent soil erosion from wind and 
rain. Enhancing soil fertility requires maintaining a healthy 
topsoil layer (Thornbro 2022), so scientists currently seek 
to find new technologies to manufacture new ecofriendly 
fertilizers from living organisms, especially microbes, which 
have the ability to biodegrade without any residues.

Biofertilizers enhance crop yield by about 10 to 40% and 
increase proteins, vital amino acids, vitamins, and nitrogen 
fixation (Bhardwaj et al. 2014; Shahwar et al. 2023). Biofer-
tilizers have been suggested as a replacement for mineral 
fertilizers. For instance, nitrogen- and/or sulfur-fixing micro-
organisms have been used in biofertilizers (Demoling et al. 
2007; Beneduzi et al. 2008; Singh and Reddy 2012; Heba 
et al. 2021) and include bacteria like Azotobacter, Azospiril-
lum, and Rhizobium as well as fungi like Aspergillus niger 
and A. tubingensis. Genetically altered bacterial strains have 
been created and tested as biological fertilizers (Sharma 
et al. 2013). As a natural substitute for synthetic fertilizers, 
bacterial and fungal biofertilizers have gained popularity. 
However, their current application has been reduced due to 
their low effectiveness compared to conventional fertilizers 
(Nehl et al. 1997; Deepak et al. 2015; Alori and Babalola 
2018). Many species of soil bacteria and fungi, which live 
in beneficial associations, act as ecofriendly soil fertilizers 
(Ammar et al. 2022; Aioub et al. 2022). Cyanobacteria such 
as Nostoc sp., Anabaena sp., and Oscillatoria angustissima 
are potential sources of biofertilizers (Ammar et al. 2022). 
Cover crops contribute to the safe and gradual delivery of 
nutrients to the soil and stop soil erosion from wind and rain. 
Maintaining a sound topsoil layer is necessary for increasing 
soil fertility.

Plants are frequently used in permaculture to increase 
soil fertility and residues of some plants such as Musa par-
adisiaca, Coffea arabica, and Lathyrus oleraceus can be 
used as soil fertilizers (Singh et al. 2013). Biofertilizers are 

compounds that include microorganisms and, when given to 
the soil, improve soil fertility and encourage plant develop-
ment. In order to boost the nutrient content of the soil and 
thus the production, biofertilization is a sustainable agricul-
tural practice. It has been discovered that soil microflora can 
increase soil fertility and boost biomass productivity and is 
acknowledged as an appropriate environmentally acceptable 
bio-based fertilizer used in agriculture to prevent pollution. 
Most cyanobacteria can fix nitrogen from the environment. 
There are three ways in which extracts of living organisms 
are applied as biofertilizers: foliar application (spray), soil 
amendment, and seed imbibition (Fig. 1).

This review summarizes the use of all types of eco-
friendly biofertilizers and highlights the efficacy of biofer-
tilizers above inorganic fertilizers. Natural biofertilizers offer 
high eco-economic value, reduce the risk of plant diseases, 
less harmful to people than inorganic fertilizers, minimize 
pollution, and improve soil fertility without heavy metal and 
residue accumulation over time due to their biodegradability 
(Ammar 2022).

Bacteria as biofertilizers

Bacterial biofertilizers can increase plant growth and devel-
opment through a series of various mechanisms (Kumar 
et al. 2022). These include the production of plant nutri-
ents or phytohormones that can be absorbed by plants, the 
mobilization of soil compounds so that they are readily 
available for the plant to use as nutrients, and lastly, the 
protection of plants under stressful conditions. The later 
mechanisms help in counteracting the negative effects of 
stressor defense against plant pathogens, reducing plant dis-
eases or death of the plant. Many plant growth-promoting 
rhizobacteria (PGPR) have been utilized for a long time as 
biofertilizers all over the world. They help to increase crop 
yields and soil fertility, which has the potential to help make 

Fig. 1  Applied ways of biofertilizer
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agriculture and forestry more sustainable. The market for 
bacterial-based biofertilizers is expanding, and the produc-
tion and application of bacterial inocula technologies are 
constantly being developed and improved (Garcia-Gonzalez 
and Sommerfeld 2016). For instance, Azotobacter has been 
extensively researched under laboratory and field conditions 
and has been employed as a biofertilizer for more than a 
century. Azotobacter fixes nitrogen (endophytically) in the 
rhizosphere and roots of rice, that promotes the growth and 
development of rice. The findings demonstrated that Azo-
tobacter fixes atmospheric nitrogen in the rhizosphere and 
as an endophyte in rice and produces phytohormones and 
plant growth stimulants. In addition to fixing nitogen, these 
bacteria break down insoluble phosphate and boost plant 
growth (Tualar 2013; Dar et al. 2021;  Daniel et al. 2022) 
(Tables 1 and 2).

On the other hand, Cyanobacteria are the oldest and 
most productive prokaryote group on earth and include a 
wide range of organisms. Cyanobacteria biomass or extracts 
greatly enhanced the physical and chemical properties of 
soil. Cyanobacteria are also widely recognized for producing 
biologically active compounds that are effective against plant 
pathogens and in the phytoremediation of industrial waste-
water (Bedair et al. 2022a, b). Therefore, as natural biofer-
tilizers, they contribute significantly to nutrient cycling, 
phosphorus bioavailability,  N2-fixation, environmental 
protection, and disease control, and improve plant growth 
and production. Radiative energy is also transformed into 
chemical energy by cyanobacteria. Through photosynthesis, 
these biological systems produce oxygen. Food, energy, sec-
ondary metabolites, cosmetics, and pharmaceuticals are all 

products of these species. By lowering  CO2 levels through 
environmentally benign large-scale growth of cyanobacte-
ria, several high-value items can be produced. Thus in the 
long run, Cyanobacteria biofertilizers could take the place 
of chemical fertilizers (Gören-Sağlam 2021; Mishra et al. 
2021; Bhuyan et al. 2022) (Tables 1 and 2). For instance, 
Anabaena azollae is a heterocystous filamentous cyanobac-
terium that fixes nitrogen and grows symbiotically in specific 
leaf cavities of the tiny eukaryotic water fern Azolla pinnata. 
Anabaena azollae is grown and used in synthetic medium 
such as BG-110. Azollae is a promising natural bio-source 
with potential uses in industry, medicine, and agriculture. 
Indole acetic acid, gibberellic acid, bioactive like fatty acids, 
polysaccharides, and phenolic compounds were isolated 
from A. azollae and reported to have microbicidal activi-
ties in vitro and in vivo. Additionally, the high nitrogenase 
activity of A. azollae has long been recognized as a predic-
tor biofertilization capacity. The enhanced dehydrogenase 
activity and associated polysaccharide excretion increased 
soil fertility by expanding the microbial populations (Adhi-
kari et al. 2020; Bao et al. 2021; Abd El-Aal 2022) (Fig. 2, 
Tables 1 and 2).

Similarly, Nitrobacter biofertilizer reduces gas emissions 
in rice farming, which is one of the main sources of  CH4 
emissions. It generates between 5 and 19% of the world’s 
overall  CH4 emissions. Using the closed chamber method, 
the weekly  CH4,  CO2, and  N2O gas fluxes were measured 
during a rice-growing season. The treatment of straw plus 
biofertilizers decreased the emissions of  CH4,  N2O, and 
 CO2 by 9.2, 14.78, and 27.68%, respectively, compared 
to straw alone. When compared to only applying straw, 

Table 1  Nitrogen-fixing bacteria as biofertilizer

Bacteria Example Crop plant Effect References

Free living Azotobacter Rice Promote plant growth Dar et al. (2021)
Symbiotic Anabaena azollae Rice Increases soil fertility by expanding the 

microbial populations in the soil
Adhikari et al. (2020); 

Abd El-Aal (2022)
Associative symbiotic Azospirillum Wheat, maize Alleviation of abiotic stress Raffi and Charyulu (2021)

Table 2  Phosphate solubilizing bacteria as biofertilizer

Plant growth-promoting 
rhizobacteria (PGPR)

Host plant Effect Reference

Azotobacter chroococcum Wheat Better performance with phosphate-solubilizing mutants Nosheen et al. (2021)
Bacillus megaterium Sugarcane Yield and yield components of sugarcane growing in pots are 

promoted
Chungopast et al. (2021)

Bradyrhizobium japonicum Soybean Reduces negative impacts of drought stress on the growth effi-
ciency of soybean plants

Sheteiwy et al. (2021)

Pantoea agglomerans Tomato Improved growth Mei et al. (2021)
Pseudomonas fluorescens Sweet potato Increased yield Santana-Fernández et al. (2021)
Rhizobium leguminosarum Faba bean Enhanced production of faba bean Fikadu (2022)
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the application of straw plus biofertilizers reduced global 
warming potential by 10.75%. The treatment with straw plus 
biofertilizer reduced the greenhouse gas index by 8.27% as 
compared to the control. The findings suggested that using 
biofertilizer could be environmentally friendly and promote 
local food security (Rani et al. 2021; Yulianingsih et al. 
2021) (Tables 1 and 2). For example, Nitrobacter biofer-
tilizer was researched using a two-factor factorial experi-
ment with randomized block design with different varieties 
of shallots and at varying concentrations. The results dem-
onstrated that Nitrobacter biofertilizer treatment produced 
favorable outcomes for the quantity of bulbs per cluster and 
dried bulbs per plot (tonnes per ha bulbs) (Saharuddin et al. 
2018).

Also, Rhizobium is used as biofertilizer in agriculture 
to promote plant development as an addition to chemical 
fertilizers. Microorganisms that can dissolve potassium 
have been utilized as cyanobacteria, nitrogen-fixing bacte-
ria, phosphate mineralizing bacteria, and a variety of crops 
using biofertilizers. Rhizobacteria’s ability to survive in soil 
is influenced by a variety of abiotic and biotic factors. The 
bacteria are mixed with a carrier to improve their rate of 
survival in soil and to increase their viability and effective-
ness (Khosravi and Rahmani 2022.; Negash and Wondimu 
2022) (Tables 1 and 2).

Silicate bacteria obviously play a part in the weathering 
of silicate minerals, but the main degrading factor appears to 
be the formation of acids by the microbes that live on stone. 
It is believed that heterotrophic bacteria and fungus secrete 
organic acids like oxalic, citric, or gluconic acids, which are 
more significant weathering agents. The effectiveness of two 
strains of B. circulans and one strain of Arthrobacter tume-
scens, silicate bacteria, in mobilizing potassium from cer-
tain aluminsilicates (orthoclase, microcline, mica-mucovite, 

and nile silt). These silicate bacteria clearly enhanced the 
weathering of the studied materials, mobilizing significant 
quantities of potassium. Due to physical and chemical degra-
dation, the aseptic incubation of moist silicate minerals with 
silicate bacteria gradually increased the levels of soluble 
and amorphous silica. The order of release of water-soluble 
silica was micamuscovite, nile silt, microcline, and ortho-
clase. Muscovite experienced the biggest changes in soluble 
and amorphous aluminum content, while silt experienced 
the least changes. The dissolution of all the silicate miner-
als was positively impacted by nitrogen amendment, which 
indirectly increases soil fertility by raising the percentage of 
clay and minerals (Raturi et al. 2021; Afify 2022).

Algae as biofertilizers

The best substitutes for synthetic fertilizers are biofertiliz-
ers. Algal species hold considerable promise for bioferti-
lizer technology in terms of affordability and environmen-
tal friendliness (Chatterjee et al. 2017). The algal pathway 
provides significant byproducts, and its effectiveness as a 
biofertilizer is its physicochemical behavior, and that soil 
health is enhanced. Algae are the most advantageous and in-
demand bio resource of the twenty-first century due to their 
technological and commercial viability and environmental 
advantages (Mahapatra et al. 2018) (Fig. 3).

Microalgae as biofertilizer

Eukaryotic green algae and prokaryotic blue algae are 
common photosynthetic microalgae. Due to their capac-
ity to improve macro- and micronutrient consumption and 
enrich soil nutrients, they offer significant potential for use 

Fig. 2  Cultivation of cyanobac-
teria for using in bio fertiliza-
tion
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in modern agriculture. Microalgae can create plant growth 
hormones, polysaccharides, antimicrobial compounds, and 
other metabolites to support plant growth in addition to 
enhancing soil fertility and quality (Guo et al. 2020). Micro-
algae are an important source of biofertilizers for agriculture 
(Dineshkumar et al. 2019). The bioactivities and physico-
chemical characteristics of microalgal generated extracts 
(bioactive and high-value products) are used to classify 
them. Microalgae offer a number of advantageous qualities. 
Due to the inherent bioactive chemicals that increase plant 
productivity, they have received widespread recognition for 
agricultural uses (Bello et al. 2021). Microalgal bioferti-
lizers can replace chemical fertilizers since they are easily 
renewable, less expensive, and can assist farmers in growing 
healthy organic crops and fostering an environment free of 
harmful chemicals (Dineshkumar et al. 2020). In place of 
artificial fertilizers, cyanobacteria are an effective bioferti-
lizer that promotes plant development and crop production 
while improving the soil’s quality by adding organic mat-
ter to the soil (Maqubela et al. 2009). Additionally, algal 
biomass is a rich source of metabolites (Renuka et al. 2018; 
Jamal Uddin et al. 2019) (Table 3).

Algae are plentiful and easy to find in a moist environ-
ment. Algae and the substances they produce can aid in the 
commencement of seed germination and the growth of plant 
roots, which affects temperature, resilience to abiotic stress, 
and the capacity of plants to absorb nutrients (Zafar et al. 
2022). Algal biofertilizers have potential to reduce synthetic 
nitrogen fertilizer use. The cyanobacteria may be able to 
fix up to 22.3–53.1 kg of nitrogen per hectare, which could 
prevent the need for 25–50% of chemical nitrogen fertilizer 
(Issa et al. 2014). Algal biofertilizers are able to increase 
seed germination rate. Winter wheat and cress seed germi-
nation were both improved by supercritical fluid extracts of 
spirulina biomass (Michalak et al. 2016). Also, they have 
the ability to increase crop yield by enhancing soil fertility, 

providing plant growth hormones and plant tissue coloni-
zation. They improve the quality of fruits and vegetables. 
Despite some challenges, algae have a promising future as 
biofertilizers (Table 3).

Macroalgae as biofertilizer

The complex and widely distributed group of photosynthetic 
organisms known as seaweed is essential to aquatic environ-
ments (Egan et al. 2013). The aquatic plant kingdom Thallo-
phyta includes seaweeds, commonly referred to as macroal-
gae, which are regarded as a vital component of the marine 
ecology and lives in coastal waters (Nabti et al. 2017). There 
are thought to be 9000 species of macroalgae. Based on the 
existence of photosynthetic pigment, storage capacity, and 
other factors, macroalgae can be divided into three primary 
groups based on components of food products’ cell walls 
and include Rhodophyta (red), Phaeophyta (brown), and 
Chlorophyta (green) (Khan et al. 2009; Zafar et al. 2022). 
Seaweeds are typically found clinging to the bottom of rather 
shallow coastal waters. A new generation of natural organic 
fertilizers called seaweed extract contains an effective nutri-
ent source that encourages faster seed germination, increased 
crop yield, and increased crop resistance (Selvam and Siva-
kumar 2013; Suriya et al. 2018). Seaweed extracts enhance 
biological characteristics of the soil and raise output under 
biotic and abiotic stress (Yanebis Pérez Madruga 2020). 
Brown macroalgae, such as Ascophyllum nodosum (L.), are 
most frequently utilized in agriculture (Khan et al. 2009; 
Tuhy et al. 2013; Díaz-Leguizamón et al. 2016). In addition 
to A. nodosum, other brown algae such as Ecklonia maxima 
(Osbeck) Papenfuss, Fucus spp., Laminaria spp., Sargassum 
spp., and Turbinaria spp. serve as biofertilizers. Mediter-
ranean red algae like Corralina, Green algae, Pterocladia 
pinnata (Hudson) Papenfuss, and Jania rubens (L.) J.V. 
such as Enteromorpha intestinalis (L.) Nees, Cladophora 

Fig. 3  Algae as biofertilizer
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dalmatica Kützing, Ulva lactuca L. is also employed as a 
biostimulant for plant growth (Aghofack et al. 2015; Mireya 
Hernández-Herrera et al. 2016; Yanebis Pérez Madruga 
2020). Algal extracts and inorganic (Coppens et al. 2016; 
Ronga et al. 2019; El-Moursy et al. 2019) (Coppens et al. 
2016; Salim 2016; Wafaa et al. 2017; Ronga et al. 2019) 
fertilizers can be combined, which might promote sustain-
able agricultural productivity. They can be used in various 
ways, including foliar sprays (Ronga et al. 2019), soil addi-
tives (Hashem et al. 2019; Omer et al. 2019), and on seeds 
(Das et al. 2019; Ronga et al. 2019; Hernández-Herrera et al. 
2019). Demonstrating a broad range of applications, many 
beneficial effects are found, such as improved germination, 
radicular system development, better fruit quality, increased 
leaf area and chlorophyll content, improved crop output, 
vitality, strong resilience to biotic and abiotic stress, and 
extended postharvest shelf-life products (Khan et al. 2009; 
El-Baky et al. 2010; Paudel et al. 2012; Guzmán-Murillo 
et al. 2013; Mireya Hernández-Herrera et al. 2016; Coppens 
et al. 2016; Oancea et al. 2017; Hernández-Herrera et al. 
2018, 2019; Das et al. 2019; Patel et al. 2019; Sunarpi et al. 
2019; Hashem et al. 2019; Ronga et al. 2019; El-Moursy 
et al. 2019). Macroalgae have the ability to increase crop 
yield, improve seed germination, improve soil characteris-
tics, increase growth and quality of crops, and improve abi-
otic stress tolerance (Yanebis Pérez Madruga 2020).

Some marine macroalgae are used as biofertilizers by 
mixing their pulverized form with the soil. They contain 
unexplored reservoirs of naturally occurring physiologically 
active chemicals (Nabti et al. 2017). They serve as abundant 
sustainable botanical bioresources (Khan et al. 2009). Due 
to their high quantities of organic matter, which enriches 
soil with nutrients, marine macroalgae are effective biofer-
tilizers (Kumareswari and Rani 2015; Layek et al. 2018). 
Additionally, when applied in sufficient amounts, they were 
superior and a more acceptable alternative to chemical and 
mineral fertilizers (Mirparsa et al. 2016). Marine macroal-
gae have numerous uses as eco-friendly fertilizers in con-
temporary agriculture and horticulture crop enhancement 
(in finely powdered form) (Hernández-Herrera et al. 2018). 
The application of seaweed as a soil amendment was effec-
tive on enhancing plant growth (Hernández-Herrera et al. 
2014; Hashem et al. 2019). Many parts of the world employ 
seaweed manure to improve in agricultural soil (Eyras et al. 
2013; Ramya et al. 2015) (Table 4).

While, another marine macroalgae are used as liquid 
biofertilizers and are sprayed over the soil and plants. Due 
to their high levels of organic matter, micro and macro ele-
ments, vitamins, and other nutrients, liquid fertilizers made 
from natural sources, such as seaweed, are effective fertilizer 
alternatives for agricultural crops. Fatty acids and growth 
regulators are abundant (Crouch and vanStaden 1993). In 
agriculture and horticulture, bioactive compounds derived Ta
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from marine algae are used, and numerous positive results in 
terms of improvement to productivity and quality have been 
observed (Crouch and vanStaden 1993; Blunden et al. 1996; 
Suriya et al. 2018). Seaweed extracts have the potential to 
replace chemical fertilizers with environmentally friendly 
liquid biofertilizers, which is essential for organic agricul-
tural techniques leading to sustainable agriculture (Ramya 
et al. 2015). A variety of liquid fertilizers from seaweed are 
applied as a foliar spray (Thirumaran et al. 2009; Ramya 
et al. 2015) (Table 5).

Fungi as biofertilizer

Fungi are one of the most significant taxonomic families of 
eukaryotic and heterotrophic living organisms on Earth and 
include mildew, mold, mushrooms, yeast, and puffballs They 
are advantageous for crop protection, plant growth, and crop 
yield (Arora 2019; Devi et al. 2020; Ahmad et al. 2022).

In order to enhance, add, conserve, and transform nutri-
ents from an unusable form to a usable form, biofertilizers 
are made of biologically active bacterial and fungal strains 
(Rastegari et al. 2020a, b). Helpful fungi benefits the plant by 
producing siderophores, gluconase antagonists, antibiotics, 
and cell wall lysing enzymes like cellulases and glycosidase, 
among other directed multifarious plant growth-promoting 
characteristics. Micronutrients (phosphorus, potassium, and 
zinc) are also solubilized, and auxin, gibberellins, cytokinin, 

and ethylene are produced (Arora 2019; Abo Nouh 2019; 
Devi et al. 2020; Ahmad et al. 2022).

Micro fungi as biofertilizers

Globally, the use of chemical fertilizers in agriculture has 
significantly increased over the past two decades, but exces-
sive fertilizer use is having increasingly negative effects on 
the environment of the soil and water bodies. As a result, the 
idea of using mycorrhizal fungi as a biofertilizer is a promis-
ing one from the perspectives of cost effectiveness, energy 
conservation, and environmental friendliness (Nath Yadav 
and Yadav 2020; Kour et al. 2020; Thakur 2020). Mycor-
rhiza is a massive, useful, and underutilized resource for soil 
ecosystem management. It is a diverse group of fungi that is 
mostly found on the roots of plants (Singh et al. 2019; Nath 
Yadav and Yadav 2020; Kour et al. 2020; Thakur 2020). 
Biofertilizers are broadly classified as  N2 fixing (free-living, 
symbiotic, and associative symbiotic), phosphate solubiliz-
ing (bacteria and fungi), phosphate mobilizing (arbuscular 
mycorrhiza, ecto mycorrhiza, ericoid mycorrhizae, orchid 
mycorrhiza, and plant growth-promoting rhizobacteria) 
(Rastegari et al. 2020b). After nitrogen, phosphorus is the 
second-most crucial macronutrient for plants (Arora 2019; 
Devi et al. 2020; Ahmad et al. 2022). The amount of solu-
ble phosphorus in soil is insufficient for plants’ metabolic 
processes, and a shortfall could result in slower development 
and decreased leaf biomass, (Arora 2019; Devi et al. 2020; 

Table 4  Marin macroalgae as biofertilizer (powder)

Macroalgae Algal strain Form of 
algal biofer-
tilizer

Application Mode of action Treated plant References

Green algae Ulva lactuca Powder Soil amendment Accelerates growth 
and alleviates the 
effect of high salt 
levels

Brassica napus L Hashem et al. (2019)

Brown algae Cystoseira spp. Powder Soil amendment Alleviates harmful 
effects of salinity on 
canola plants and 
stimulates the growth 
and productivity

Brassica napus L Hashem et al. (2019)

Red algae Gelidium crinale Powder Soil amendment Promotes growth 
hormones, improving 
salt stress tolerance

Brassica napus L Hashem et al. (2019)

Green algae Halimeda microloba Powder Soil drench Increases growth and 
yield of plants

Abelmoschus esculen-
tus (L.) Moench

Muniswami et al. (2021)

Brown algae Turbinaria ornata Powder Soil drench Increases number of 
flowers, pods, length, 
and weight of pods 
compared to foliar 
spray

Abelmoschus esculen-
tus (L.) Moench

Muniswami et al. (2021)

Brown algae Sargassum sp. Powder Soil drench Increase in length and 
weight of pods

Abelmoschus esculen-
tus (L.) Moench

Muniswami et al. (2021)
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Ahmad et al. 2022). Several chemical fertilizers were used 
to meet the shortfall but were harmful to the environment. 
As a result, fungi are considered as an alternative strategy, 
because fungi are naturally occurring organisms that provide 
soluble phosphorus without endangering the environment 
(Arora 2019; Devi et al. 2020; Ahmad et al. 2022). Plants 
obtain phosphorus from the earth in the form of phosphate. 
In comparison to other macronutrients, this element has very 
little mobility in the plant. Phosphorus-soluble microorgan-
isms play an important role in phosphorus-based nutrition, 
increasing plant supply by releasing organic and mineral 
soil phosphorus pools via solvent and mineralization (Abo 
Nouh 2019; Aslam et al. 2022) (Table 6), while potassium 
is the most abundant macronutrient and is essential for plant 
growth and development. The most significant component 
of microbial communities in soil, particularly in the rhizo-
sphere, is potassium, which is used to solubilize minerals 
rich in potassium. In particular, two useful communities of 
the arbuscular mycorrhizal fungus G. intraradices and G. 
mosseae could be incorporated into the soil as inoculants to 
promote the growth of crops (Arora 2019; Devi et al. 2020; 
Ahmad et al. 2022) (Table 6).

There are five stable isotopes of zinc (Zn), which is the 
23rd most plentiful element on earth (Arora 2019; Devi et al. 
2020; Ahmad et al. 2022). Zinc is a key component of many 
metabolic processes and functions as a regulatory cofactor 
for enzymes and proteins. It is well known that the structural 
motif of the zinc finger plays a key function in the control 
of transcription (Arora 2019; Devi et al. 2020; Ahmad et al. 

2022). Fungi create organic acids that increase the mobiliza-
tion of zinc by changing its insoluble form to soluble, which 
is easily accessible in soil (Arora 2019; Devi et al. 2020; 
Ahmad et al. 2022). The potential to dissolve zinc has been 
seen in ericoid mycorrhiza, including Suillus bovinus, Suil-
lus luteus, Paxillus involutus, Oidiodendron maius, Hyme-
noscyphus ericae, and Beauveria caledonica (Arora 2019; 
Devi et al. 2020; Ahmad et al. 2022) (Haro and Benito 2019) 
(Fig. 4, Table 6).

Macro fungi as biofertilizers

A collection of microbiomes that interact with plant roots 
affects plant development and defense. Numerous bacteria, 
fungi, actinomycetes, and other eukaryotic microorganisms 
can be cultivated in microbiomes. Rhizobacteria are the bac-
teria that live in the rhizosphere and improve plant develop-
ment and crop yield. The most essential plant growth-pro-
moting fungi are Penicillium, Trichoderma, Fusarium, and 
Phoma. The cucumber has developed systemic resistance 
to many diseases due to the presence of many plant growth-
promoting fungi species (Romera et al. 2019). These fungi 
are non-pathogenic saprophytes that live in soil and aid crop 
plants by protecting them from disease as well as boosting 
plant growth (Begum et al. 2019) (Table 7).

The non-pathogenic Fusarium species effectively pro-
mote plant growth. Competition and induction of host 
defenses follow two possible modes of action. There 
have been numerous reports of non-pathogenic Fusarium 

Table 6  Micro fungi as biofertilizers

Micro fungi Type of biofertilizers Group References

Glomus spp. Phosphate mobilizing biofertilizer Arbuscular mycorrhiza Rastegari et al. (2020a)
Giaspora spp. Phosphate mobilizing biofertilizer Arbuscular mycorrhiza Rastegari et al. (2020a)
Acaulospora spp. Phosphate mobilizing biofertilizer Arbuscular mycorrhiza Rastegari et al. (2020a)
Scutellospora spp. Phosphate mobilizing biofertilizer Arbuscular mycorrhiza Rastegari et al. (2020a)
Sclerocystis spp. Phosphate mobilizing biofertilizer Arbuscular mycorrhiza Rastegari et al. (2020a)
Laccaria spp. Phosphate mobilizing biofertilizer Ectomycorrhiza Rastegari et al. (2020a)
Pisolithus spp. Phosphate mobilizing biofertilizer Ectomycorrhiza Rastegari et al. (2020a)
Boletus spp. Phosphate mobilizing biofertilizer Ectomycorrhiza Rastegari et al. (2020a)
Amanita spp. Phosphate mobilizing biofertilizer Ectomycorrhiza Rastegari et al. (2020a)
Pezizella ericae Phosphate mobilizing biofertilizer Ericoid mycorrhiza Rastegari et al. (2020a)
Rhizoctonia solani Phosphate mobilizing biofertilizer Orchid mycorrhiza Rastegari et al. (2020a)
Glomus intraradices Potassium solubilizing biofertilizer Arbuscular mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Glomus mosseae Potassium solubilizing biofertilizer Arbuscular mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Suillus bovines Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Suillus luteus Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Paxillus involutus Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Oidiodendron maius Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Hymenoscyphus ericae Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
Beauveria caledonica Zinc solubilization Ericoid mycorrhiza Arora (2019); Devi et al. (2020); Ahmad et al. (2022)
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Fig. 4  Involvement of soil-
dwelling microbes in the 
K + cycle’s dynamics. Diagram 
illustrating the use of microbes 
to improve K + plant nutrition 
K + -dissolving microbes and 
those that interact symbioti-
cally with plants  (Copyright is 
access from Haro and Benito 
2019)

Table 7  Effective fungi species with their mechanisms

Fungal species Name of mechanism Effect on plant References

Aspergillus awamori
Aspergillus niger
Penicillium digitatum

Phosphate solubilizing Respiration, photosynthesis, energy trans-
fer, signal transduction, energy accumu-
lation, cell enlargement, cell division, 
and macromolecular biosynthesis

Babalola et al. (2021)

Aspergillus sydawi
Aspergillus tubingensis Aspergil-

lus flavus
Aspergillus candidus
Aspergillus parasiticus, Asper-

gillus fumigatues Aspergillus 
flavus

Trichoderma viride

Organic acid production such as citric 
acid, gluconic acid, oxalic acid, succinic 
acid, malic acid, and glycolic acid

Lowering soil pH Kalayu (2019)

Penicillium lilacinium
Penicillium bilaii
Penicillium citrinum
Penicillium balaji

Organic acid production such as glycolic 
acid, oxalic acid, succinic acid, gluconic 
acid, malic acid, and citric acid

Lowering soil pH Kalayu (2019)

Aspergillus niger
Aspergillus nomius
Aspergillus oryzae
Beauveria caledonica
Penicillium luteum
Trichoderma harzianum

Zinc solubilizing Improve soil fertility and crop yield Dubey et al. (2019)

Aphanomyces sp.
Cylindrocladium sp.
Fusarium sp.
Macrophomina sp.
Phytophthora sp.
Pythium sp.
Rhizoctonia sp.
Sclerotinium sp.
Verticillium sp.
Thielaviopsis sp.

Formation of skeletal framework of macro 
aggregates

Aid in the uptake of Zn, Cu, Fe, Mn, and 
other nutrients

Dubey et al. (2019)

Glomus intraradices
Glomus mosseae

Potassium solubilizing Promotes growth of cotton, rape, pepper, 
cucumber, khella, sorghum, wheat, 
tomato, chili, Sudan grass, and tobacco

Mącik et al. (2020)
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oxysporum strains controlling Fusarium wilt in various 
crops (El-Maraghy et al. 2020). Phoma sp. and P. simpli-
cissimum are fungi that encourage plant growth and suc-
cessfully stimulated cucumber systemic resistance to the 
anthracnose-causing organism Colletotrichum orbiculare. 
Results from the controlled cultivation of Piriformospora 
indica (Hymenomycetes: Basidiomycota) revealed that 
the species was an endophyte and stimulated plant growth 
(Begum et al. 2019). Vesicular–arbuscular (VA) mycorrhiza 
are used in biofertilizers as nutrient mobilizers and Tricho-
derma spp. are used as cellulose decomposers (Kar et al. 
2021). Other species used as biofertilizers include Asper-
gillus awamori, A. niger, and Penicillium digitatum, which 
are phosphate solubilizers, and contribute to processes like 
respiration, photosynthesis, energy transfer, signal transduc-
tion, energy accumulation, cell enlargement, cell division, 
and macromolecular biosynthesis. Lowering soil pH through 
microbial generation of organic acids or the release of pro-
tons is the main mechanism for solubilizing soil phospho-
rus (Babalola et al. 2021). Phosphorus can precipitate in 
alkaline soils to create calcium phosphates, such as rock 
phosphate (fluorapatite and francolite), which are insoluble 
in the ground. As the pH of the soil lowers, their solubil-
ity rises. Phosphorus solubilizing microorganisms produce 
organic acids that reduce the pH of the soil, increasing the 
availability of phosphorus. The production of organic acids 
and the solubility index are strongly positively correlated. 
By releasing  CO2, phosphorus solubilizing microorganisms 
are also known to produce acidity, as seen in the calcium 
phosphates’ solubility. Phosphorus was dissolved as a result 
of the production of organic acid and the pH drop caused 
by the action of microbes. Many fungi such as Penicillium 
bilaii, Penicillium citrinum, Trichoderma viride, Aspergillus 
sydawi, and Aspergillus tubingensis have this mechanism 
(Kalayu 2019) (Table 7).

Despite having an adequate total Zn concentration, insol-
uble Zn in the soil contributes to Zn deficiency in plants. 
While Zn is immobile in poorly reducing neutral or alka-
line soils, it is easily transportable into plants in oxidizing 
acidic soil. Zn is transported in the soil solution by mass 
flow, diffusion, and root extension in the direction of the 
roots whether it is a divalent cation or complexed with ligand 
via several transporter systems. The active transport system, 
which moves Zn from the root to the shoots, is responsible 
for the majority of Zn absorption. The basal node retains 
a small amount of zinc, which controls the amount of zinc 
distributed throughout plants. Some fungi can solubilize 
insoluble Zn and include Penicillium luteum, Aspergillus 
niger, A. nomius, A. oryzae, Trichoderma harzianum rifai, 
and Beauveria caledonica (Rani et al. 2020) (Table 7).

Vesicular–arbuscular mycorrhiza interact with other 
microorganisms in the rhizosphere and are one of the sig-
nificant soil microorganisms. Under field conditions, VA 

mycorrhiza inoculation significantly increased growth of 
transplanted chilies. Vesicular–arbuscular mycorrhiza aid 
in the uptake of Zn, Cu, Fe, Mn, and other nutrients by 
expanding the network of hyphae in their cells. By entan-
gling soil particles and organic components to form a skel-
etal framework of macro aggregates, VA mycorrhiza hyphae 
play a significant role in soil aggregation. These aggregates 
improve the storage of carbon and nutrients and provide a 
favorable habitat for the survival and development of soil 
microorganisms. In organic and sustainable farming systems 
that rely on biological processes rather than agrochemicals 
to prevent plant diseases, VA mycorrhiza are particularly 
crucial. Plants are biologically protected by VA mycorrhiza 
from soil-borne diseases, including Aphanomyces, Cylindro-
cladium, Fusarium, Macrophomina, Phytophthora, Pythium, 
Rhizoctonia, Sclerotinium, Verticillium, and Thielaviopsis 
sp. (Dubey et al. 2019). A study showed that by produc-
ing organic acids including malate, citrate, and oxalate as 
well as protons,  H+, and  CO2, arbuscular mycorrhizal fungi 
improved the availability of K. Dual inoculation of maize 
with G. intraradices and G. mosseae improved K absorption, 
and K solubilizing microorganisms promoted the growth of 
cotton, rape, pepper, cucumber, khella, sorghum, wheat, 
tomato, chili, Sudan grass, and tobacco (Mącik et al. 2020) 
(Table 7).

Plant residues as biofertilizers

Plants are like all living organisms can be used as bioferti-
lizers by using the unused parts of them (plant residues) for 
manufacturing of ecofriendly biodegradable fertilizers. Plant 
residues are used as soil biofertilizers and include banana 
peels. Banana is a popular fruit, because of its taste and 
nutritional value. As a result, large quantities of banana peel 
by-products are obtained. Studies have shown that the con-
tent of bananas, such as the peel and bloom, is rich in macro- 
and micronutrients and promotes good health through its 
anti-inflammatory and anti-oxidative stress properties. 
Research to transform banana peels into unique new items 
due to their benefits like increasing soil fertility is ongo-
ing (Kraithong and Issara 2021) (Table 8). According to the 
international biochar initiative (2012), banana peel biochar 
is a carbon-rich product that is described as “a solid com-
pound generated through the thermo-chemical conversion 
of biomass in an oxygen-constrained environment” (Novak 
et al. 2012), (Islam et al. 2019), (Comino et al. 2020). Due 
to its distinctive characteristic, which enhances soil qual-
ity, banana peel biochar has recently taken center stage in 
research (Novak et al. 2012), (Islam et al. 2019), (Comino 
et al. 2020) (Table 8).

Biochar is produced using a variety of agricultural and 
forestry wastes, including nutshells, rice husk, pinewood, 
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and orchard pruning biomass (Carter et al. 2013; Thornbro 
2022). Banana (Musa sapientam L.), one of the most com-
mercially significant fruit crops in Bangladesh, is produced 
at household and commercial scale in around one million 
tons per year (Hossain 2014). When compared to other fruit 
crops, it is widely consumed and accessible all year round 
in Bangladesh. The peel of a banana, which is regarded as 
waste, makes up around 18–20% of its body weight (Che-
nost et al. 1976) (Table 8). Banana peel waste was con-
verted into biochar using a slow pyrolysis technique with 
little oxygen. Three replications of each of three rates (1, 
2, and 3%) of banana peel biochar were applied to agricul-
tural soil. K concentration in banana peel biochar was high. 
Compared to controls, plant production and above-ground 
biomass decreased in 1% banana peel biochar treatments 
but increased in 2 and 3% treatments. Additionally, plants 
cultivated with banana peel biochar were stronger, healthier, 
and more attractive. So, for sustainable agriculture, banana 
peel biochar may be an excellent source of K amendment 
and be used in place of chemical fertilizer as a supply of K 
(Islam et al. 2019) (Table 8). A popular beverage consumed 
worldwide is coffee (Obruca et al. 2015), and during the 
past several decades, wastes such as spent coffee grounds 
(SCG) and coffee waste, which are typically disposed of 

with regular trash, have expanded significantly (Mussatto 
et al. 2011) (Cruz et al. 2012). These are the main coffee 
waste by-products (45%) produced during the manufacture 
of instant coffee and the preparation of drinks, such as the 
espresso coffee extraction process (Murthy and Madhava 
Naidu 2012; Chrysargyris et al. 2021). Coffee grounds are 
used to produce biochar and as a low-cost adsorptive mate-
rial for the biosorption of heavy metals (Cd, Cr, Cu, and Pb) 
from aqueous solutions (Kyzas 2012); (Davila-Guzman et al. 
2016). The composition of SCG makes it possible to use it as 
soil organic amendment. Studies reveal that SCG has posi-
tive effects since it increased nitrogen, phosphorous, potas-
sium, and organic carbon content in soils (Yamane et al. 
2014; Cervera-Mata et al. 2018; Comino et al. 2020). How-
ever, huge loads of SCG deposited into landfills may con-
taminate water supplies, emit  CO2, and hinder plant devel-
opment (Murthy and Madhava Naidu 2012; Chrysargyris 
et al. 2021). Due to its poisonous nature for seedling growth, 
SCG is rarely used as fertilizer (Ciesielczuk et al. 2019). It 
is advised that SCG be combined with ash from thermal 
biomass treatment for golden rods (Solidago canadensis L.).

The effect of SCG on three brassica species, namely cau-
liflower F1 Skywalker (Brassica oleracea L. var. botrytis), 
broccoli F1 Marathon (Brassica oleracea L. var. cymosa), 

Table 8  Higher plants as biofertilizers

Applied plant Biofertilizer form Treated plant Effect References

Banana peel
Musa × paradisiaca L

Biochar Ipomoea aquatica Forssk Increase K supplement to soil 
but no significant increase in 
plant growth

Islam et al. (2019)

Powder Abelmoschus esculentus (L.) 
Moench

Increase K and significant 
increase in height, leaf area, 
root length, chlorophyll con-
tent, fresh and dry weight per 
fruit and fruit number

el Barnossi et al. (2021)

Coffee
Coffea arabica L

Spent coffee ground Brassica sp. (cabbage, broccoli) Increases minerals (N, K, P, 
Cu), seed emergence, organic 
matter, and soil fertility

Chrysargyris et al. (2021)

Peas (pulses food)
Lathyrus eraceus Lam

Intercropping Cereal crops Replenishes soil nitrogen by 
fixing N from the atmosphere 
through nodules and symbi-
otic relationships with rhizo-
bia. Pulses can disrupt disease 
and weed cycles linked to 
cereals, raise soil organic 
carbon and water retention, 
and reduce greenhouse gas 
emission

Powers and Thavarajah (2019)

Pomegranate peel
Punica granatum L

Water extract Salvia officinalis L Compared to those treated with 
chemical fertilizers, produced 
greater fresh and dry mass, 
essential oils, suppression 
of free radical scavenging, 
carbohydrates, flavonoids, 
phenolic compounds, and 
nutritional content

Abd-Rabbu et al. (2021)
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and cabbage F1 Paltar (Brassica oleracea L. var. capitata) 
was studied. It was found that SCG changed the physico-
chemical properties of growth media by increasing media 
bulk density and mineral components, which was accessible 
while lowering available porosity. Although stomatal con-
ductance, one of the physiological characteristics of plants, 
was lowered, the SCG in the substrate had an impact on 
the mineral accumulation in plants, causing levels of nitro-
gen, potassium, phosphorus, and copper to rise (Chrysar-
gyris et al. 2021). Spent coffee grounds have the potential to 
increase soil fertility, and further investigations are needed 
to improve the use of SCG as an amendment (Cervera-Mata 
et al. 2018) (Table 8).

Pomegranates are one of three fruits eaten the most over 
the world. Pomegranate output worldwide was predicted 
to be 3.8 million metric tons in 2017. Pomegranate peel 
accounts for 26–30% of the fruit’s weight and contains sig-
nificant amounts of phenolic chemicals, such as flavonoids 
and hydrolyzable tannins, as well as 92% antioxidant activity 
(el Barnossi et al. 2021). Pomegranate fruit peel contains K, 
N, Ca, P, Mg, and Na, as well as B, Fe, ZN, Cu, and Mu as 
micronutrients (Dayarathna and Karunarathna 2021). The 
peels also contain amino acids, vitamins, phenolic com-
pounds, flavonoids, anthocyanins, and tannins (Omer et al. 
2019). Peel from a pomegranate is regarded as an organic 
fertilizer. To substitute chemical fertilizers with organic 
wastes, the effects of pomegranate peel formulations (pow-
der, water extract, and ethanol extract) on the growth and 
chemical composition of sage were assessed. During the sec-
ond harvest, 6 g/L (water extract) produced the highest fresh 
mass (68.5 g/plant), dry mass (18 g/plant), essential oil con-
tent (1.6%, v/w), and essential oil production (28.8 ml/100 
plants) values. The peel accounted for around 500 g/kg of 
the overall fruit weight (Aviram et al. 2000). Pomegranate 
powder was effectively composted by combining, it with and 
without banana peels at a humidity level of 50 5%. Diges-
tion took 15 days, and the C:N ratio dropped from 22.5 to 
17. The biofertilizer created using both of these techniques 
enhanced germination, shoot development, root length, and 
leaf chlorophyll content. The biofertilizers boosted yield 
and phenolic acid levels in wheat grains when compared to 
chemical farming (Singh et al. 2013; el Barnossi et al. 2021). 
Thus, pomegranate peel can be considered to be an organic 
fertilizer (Pathak et al. 2017).

Grass pea is grown as a summer crop in Kashmir and 
Nepal and as a winter crop in low-lying areas, such as 
Bangladesh (Girma and Korbu 2012). Due to its effective-
ness in fixing nitrogen, grass pea is a good green manure 
that increases soil fertility by adding around 67 kg/ha of 
additional nitrogen in a single growing season. This holds 
advantages for subsequent non-legume crops in terms of 
productivity and protein (Singh et al. 2013). Cool season 
legumes are the key to sustainable agriculture because they 

are sown in the winter, extending the growth season of cereal 
crops and replenishing the soil with vital nitrogen and other 
nutrients. Farmers in Australia observed a 30% increase in 
wheat production compared to mono cropped wheat after 
using a legume rotation (Stagnari et al. 2017). Studies from 
Denmark also show that during rotations with field pea and 
lupin, the absorption of nitrogen by a variety of crops rises 
by 23–59% (Stagnari et al. 2017). This legume-mediated 
improvement in nitrogen use efficiency offers a sustainable 
and cost-effective alternative to high-input fertilizer regimes 
because N is one of the most restricting nutrients for cereal 
and crop productivity. Due to pea nodules, which need P 
for the transformation of energy, field pea and legumes in 
general are problematic for sustainable agriculture since they 
require substantially more P input than other crops (Lambein 
et al. 2019) (Table 8).

Generally, pulses are highly advantageous to farming sys-
tems and have had great success in sustainable farming sys-
tems through intercropping and crop rotation with cereals. In 
addition to replenishing soil nitrogen through their capacity 
to fix N from the atmosphere via nodules and symbiotic 
relationships with rhizobia, pulses can disrupt disease, weed 
cycles linked to cereals, raising soil organic carbon, water 
retention and reducing greenhouse gas emission (Foyer et al. 
2016; Stagnari et al. 2017; Peoples et al. 2019)(Powers and 
Thavarajah 2019) (Table 8).

Future Prospects

The use of biofertilizers is unquestionably the future of agri-
culture where it is anticipated to take the place of chemical 
fertilizers. It aids the process and protects soil biodegrada-
tion performed by living things, which ultimately results in a 
safe technique to boost soil fertility without using chemicals 
residues. Additionally, we anticipate adding nanomaterials 
to biofertilizers could offer eco-friendly and effective sub-
stitutes. Therefore, plant diseases could be controlled and 
plant resistance increased to reduce environmental stress and 
boost plant productivity and quality.

Using simulation systems in smart agriculture for each 
crop and its methods like using IoT applications, Big data, 
and cloud computing, artificial intelligence techniques are 
used to study plant diversity in various regions and deter-
mine the biofertilizers needed to stimulate a species’ growth 
and which organisms are best at extracting this biofertilizer.

Promoting the dissemination of the culture of using 
biofertilizers among farmers through voluntary awareness 
campaigns and conducting questionnaires to assess their 
understanding and clarify the importance of biofertilizers 
over chemical fertilizers, especially in agricultural areas 
that are still virgin in their natural habitat, such as North 
Africa, East Asia, the Caribbean, and some Latin American 
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countries through support Micro-innovative projects based 
on the idea of entrepreneurship to produce vital local fertiliz-
ers from their environment and support them at a lower cost 
for farmers commercially such as microbial biostimulants 
and biofilm-based biofertilizers.

Conclusion

New environmentally friendly technologies include the use 
of biofertilizers that will be part of sustainable agriculture. 
Because of its increased nutrient content, biofertilizers 
enhance soil fertility and increase plant productivity. It is 
possible to obtain biofertilizers from a variety of organisms. 
These include microorganisms such as bacteria (Azotobac-
ter, Cyanobacter, and Nitrobacter), microalgae (Chlorella 
vulgaris, Spirulina platensis, Haematococcus pluvialis, 
and Acutodesmus dimorphus), and micro fungi (Glomus 
spp.) Also residues of macro organisms either algae, fungi, 
or plants can be used as biofertilizers. In addition to their 
biodegradable nature, the microorganisms and residues of 
macro organisms can safely increase soil fertility without 
accumulating contaminants, which preserves the integrity 
of the environment and its ecosystems, so this supports the 
principles of sustainable development.
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