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Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. 
This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the 
COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both 
of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, 
it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their 
characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising 
future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional 
detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, 
the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosen-
sors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety 
of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of 
electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspec-
tives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide 
new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
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Introduction

Antibiotics can be described as either natural or synthetic 
compounds with useful antibacterial activities that are usually 
employed in human and veterinary medicine to treat various 
infectious diseases (Khan 2020; Cardoso et al. 2021). Overuse of 
antibiotic drugs could lead to bacteria resistance, creating chal-
lenges to societies and health centers due to increased patient 
numbers and costly treatment (Yadav et al. 2021). Antibiotics are 
categorized according to their mechanism of action or chemical 
structure and are arranged into classes that include quinolones, 
ß-lactams, sulphonamides, macrolides, and tetracyclines (Ham-
nca et al. 2017; Ding et al. 2021). Table 1 shows the common 
antibiotics and their properties. Among these antibiotics, qui-
nolones such as Fluoroquinolones (FQs) have gained signifi-
cant interest due to their widespread application in households, 
hospitals, and veterinary for the treatment of infectious diseases 
(Teglia et al. 2019). Over the past four years, there has been an 
increase in the use of FQs due to the COVID-19 pandemic as 
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there is no evidence of any specific recommended treatment 
measures for patients with confirmed COVID-19 (Miranda 
et al. 2020; Ebrahimi and Akhavan 2022). As a result, FQs are 
frequently detected in different environmental compartments 
due to an incomplete metabolism in the target organism and 
inefficient wastewater treatment (Cuprys et al. 2018; Gou et al. 
2021), leading to accumulation of these drugs in human bodies 
through drinking water, which in turn poses serious detrimen-
tal health effects to both humans and the environment (Gaudin 
2017; Kraemer et al. 2019; Lan et al. 2017). Hence, to prevent 
further antibiotic contamination, national governments should 
limit antibiotic use in livestock and aquaculture (Ters 2022). In 
this outlook, we are yet to find the report exploiting safe con-
centration for commonly used antibiotics in water regulated 
by national governments to ensure safety for living organ-
isms. Thus, there is a need for the development of new reliable 
approaches for detecting antibiotics and their metabolites in the 
environment to ensure public health safety.

According to the published literature and national stud-
ies, the concentrations of pharmaceutical products in sur-
face and groundwater impacted by wastewater discharges 
are typically less than 0.1 µg L−1 (or 100 ng L−1) as shown 
in Table 2, whereas the concentrations in treated drink-
ing water are usually well below 0.05 µgL−1 (Maycock 
and Watts 2011). There are not many thorough, systematic 
research on the presence of pharmaceutical compounds in 
drinking water. Hence, assessing possible dangers to human 
health from exposure to trace amounts of these compounds 
in drinking water is difficult due to the lack of data on the 
topic (Epa 2008). As a result, there is no evidence yet on the 
standard safety of these antibiotics in water.

Several techniques have been reported for FQs detection in 
different samples, including high-performance liquid chroma-
tography (HPLC) (Abedalwafa et al. 2019), liquid chromatog-
raphy–mass spectrometry (LC–MS) (Lim and Ahmed 2016), 
capillary electrophoresis (CE) (Zhang et al. 2020), and immu-
noassay (Acaroz et al. 2020). Although these methods are sen-
sitive, they are often costly and time-consuming and usually 
require specialized/skilled personnel to operate, which in turn 
limits their potential application. For these reasons, conventional 
methods are not suitable for routine and rapid analysis of large 
numbers of samples (Wu et al. 2016; Kharewal et al. 2020). 
Consequently, new approaches are needed to overcome the limi-
tations of the traditional methods.

Recently, with the rapid increase in nanotechnology, elec-
trochemical methods on specific biometric elements have been 
extensively used for FQs detection owing to their advantages 
such as low cost, rapid response, high sensitivity, easy operation, 
and suitability for on-site monitoring (Jahanbani and Benvidi 
2016). Electrochemical biosensors have emerged as an alterna-
tive strategy for antibiotics detection. Biosensors are a group of 
state-of-the-art analytical devices that use a biorecognition mate-
rial in close contact with a transducer. The recognizing elements Ta
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such as enzymes, antibodies, and DNA are the most used when 
developing biosensor (López et al. 2017; Yazdanparast et al. 
2019). The binding affinity of a recognition element with a 
target analyte plays a critical role on biosensor performance. 
The greatest challenges associated with biosensor development 
involve the efficient capturing of biorecognition signals and 
the transformation of these signals into either electrochemical, 
electrical, and optical signal. However, one of the recent trends 
to overcome such drawbacks related to biosensor fabrication is 
through the integration of sensing technology and nanomateri-
als (NMs) with properties such as high surface-to-volume ratio, 
good conductivities, shock-bearing abilities, and color tunability 
(Kumar and Neelam 2016; Lawal 2018). These NMs have a 
high capacity for charge transfer and influence the biosensor 
to produce high sensitivity and lower detection limit (LOD). 
Herein, this review reports the recent advances in electrochemi-
cal biosensing systems for FQs detection water sample. To this 
end, the electrochemical biosensor for FQs detection and their 
development were briefly introduced. The review also discusses 
the challenges encountered by the existing electrochemical bio-
sensor and how their performance can be improved further. 
Therefore, the concepts introduced in this review are expected 
to motivate new findings toward electrochemical detection of 
FQs in future.

Fluoroquinolones (FQs) as environnemental 
pollutants

Fluoroquinolones (FQs) are a synthetic group of antimicro-
bial agents, which are derived from quinolone nalidixic acid 
by the addition of a fluorine atom at carbon 6 and piperazine 
at carbon 7 position (Zahra et al. 2021). FQs are considered 
as broad-spectrum antibiotics due to their bactericidal effect 
against various pathogenic bacteria. They destroy the bacteria 
or inhibit their growth by inhibiting their DNA gyrase rep-
lication favored by their chemical structure (Rasheed et al. 
2023). Since the discovery of using FQs for the treatment of 
living organism, a number of FQs are being prescribed for 
their broad-spectrum mode of action toward Gram-negative, 
Gram-positive bacteria, and mycoplasma (Zhang et al. 2018). 
However, the extensive use of FQs leads to an accumulation 

of these compounds in aquatic and terrestrial environments in 
large quantities, which could probably cause allergic reactions 
in humans and the emergence of food-borne bacteria (Lu et al. 
2021a). Releasing effluents from different manufacturing sec-
tors is one of the most significant pathways for these drugs to 
enter the aquatic ecosystem (Bhatt and Chatterjee 2022). On 
the other hand, humans and animals partially metabolize FQs, 
and about 10–70% of these drugs are excreted and released 
into the sewage and subsequently enter the wastewater treat-
ment plants (WWTPs) (Sodhi and Singh 2021; Sodhi et al. 
2021). FQs and their metabolites are highly toxic and the con-
tinuous discharge of these drugs into the water bodies can pose 
potential risks to aquatic organisms and marine biodiversity 
even at lower concentrations (Ramesh et al. 2021). In addition, 
when the antibiotics interact with bacteria in water bodies, new 
pathogenic species are being formed that are resistant to these 
compounds (Leibovici et al. 2016; Cristea et al. 2017; Majdi-
nasab et al. 2017). According to World Health Organization 
(WHO), the increase in antibacterial resistance has become a 
national and international issue that threatens society’s health 
by spreading antibiotic-resistant bacterial infections (Flaherty 
and Cummins 2017). FQs are classified as first-generation, 
second-generation, third generation, and fourth-generation 
agents to describe their evolution based on the antibacterial 
spectrum. However, the most used FQs antibiotics belong to 
the second and third generation. Thus, the occurrence of FQs 
in surface water and wastewater has drawn great attention. Fig-
ure 1 shows the different types of FQs antibiotics.

The analytical method used for FQs 
antibiotics detection

The monitoring and screening of FQs in water is imperative 
as it is the first stage to dealing with environmental pollution 
generated by these antibiotics. Several conventional tech-
nologies have been employed and reported for the detection 
of FQs in water bodies. This includes spectrofluorometry, 
spectrophotometry, photochemistry, and chromatography 
technique (Xia et al. 2013; Akram et al. 2015; Shokoufi 
et al. 2020; Mao et al. 2021). However, these methods have 
shown some limitations as they require a qualified person 

Table 2   Summary of 
concentrations levels of FQs in 
different streams

Fluoroquinolones Streams Concentrations Refs

Ciprofloxacin Tap water 6.0–679.7 ng L−1 (Yiruhan et al. 2010)
Levofloxacin River 42 ng L−1 (Speltini et al. 2015)
Ofloxacin Wastewater 9 ng L−1 (He et al. 2015)
Enrofloxacin Water sample 0.003 μg L−1 (Zhang et al. 2013)
Norfloxacin Water sample 3.02–23.90 ng mL−1 (Madikizela et al. 2022)
Enrofloxacin River and lake samples 0.22 μg L−1 (He et al. 2015)
Ciprofloxacin Water 127 µg L−1 (Ajibola et al. 2021)
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Fig. 1   Structures of fluoroqui-
nolone antibiotics

Flumequine Ofloxacin

Enrofloxacin Enoxacin

Norfloxacin Ciprofloxacin

Levofloxacin Lomefloxacin

Pefloxacin Difloxacin
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to perform the analysis, are time-consuming, costly, and 
require different sample pre-treatments, restraining their 
potential use for quick, on-site, and real-time analytes 
detections. Table 3 shows the summary of the different tra-
ditional method that has been used for FQs detection with 
their advantages and disadvantages. When compared with 
various reported approaches, electrochemical methods, 
especially electrochemical biosensors have considerable 
benefits with their outstanding features such as less time 
consumption, cost-effectiveness, amenability to miniaturi-
zation, easy handling techniques, quick response, ability for 
on-site analysis, high sensitivity, and selectivity (Sun et al. 
2023). Currently, significant attention has been drawn to 
electrochemical biosensor development for FQs detection. 
The next section will discuss more about the development 
of electrochemical biosensors.

Electrochemical biosensors for FQs

The need for the development and exploitation of analyti-
cal devices for the quantification, detection, and monitor-
ing of antibiotics in water bodies has led to the develop-
ment of sensing methods. The are various types of sensing 
techniques that have been successfully established for the 
detection of contaminants of emerging concern in food 
and water sample, including electrochemical sensors 
and biosensors, optical sensors, etc. (Kaur et al. 2020). 
Among these, electrochemical biosensors have currently 

attracted significant interest from various researchers as 
new promising sensing methods that can be employed 
in food analysis, health care, environmental monitoring, 
and drug delivery (Kumar and Neelam 2016; Shetti et al. 
2019). They exhibit properties such as excellent sensitiv-
ity, rapid analysis time, and the possibility of miniaturi-
zation (Labib et al. 2016). The electrochemical biosensor 
comprises of biological recognition component (enzymes, 
DNA, antibodies and cells, etc.) that is directly connected 
to a chemical or physical transducer, which converts a 
chemical or biological signal into a measurable electrical 
signal (Akhavan et al. 2012; Dhar et al. 2019; Singh et al. 
2021; Wang et al. 2023). In this type of biosensor, the 
electrochemical reaction takes place on the surface of the 
transducer between the bioreceptor and analyte producing 
detectable electrochemical signals with respect to voltage, 
current, impedance, and capacitance. The performance of 
electrochemical biosensor is influenced by a number of 
variables, including electrode type, electrolyte solution, 
and pH (Liu et al. 2019a). Among these, solution pH is one 
of the most important since, at various pH levels, not only 
the activity of an electrode is affected, but also the sur-
face charges of the drug species vary, which has an impact 
on the behavior of the electrode surface during detection. 
(Wammer et al. 2013; Khosravikia and Rahbar-Kelishami 
2022). Based on the electroanalytical technique that is 
used to measure chemical and biochemical interactions, 
biosensors are categorized as either potentiometric, imped-
imetric, amperometric or coulometric, conductometric and 

Fleroxacin Sparfloxacin

Danofloxacin Sarafloxacin

Fig. 1   (continued)
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voltammetric (Hernandez-Vargas et al. 2018; Jalalian et al. 
2018). Figure 2 shows the typical structure of biosensor 
comprising of three components, i.e., detector, traducer, 
and electronic component. The most critical characteris-
tics of a biosensor development depend on its sensitivity 
and specificity. The specificity of biosensors is affected by 
the coupling efficiency between biological and transducer 
elements, whereas sensitivity is mainly influenced by the 
bioreceptor (Hernandez-Vargas et  al. 2018). Recently, 
many researchers have based their focus on blending of 
nanostructured materials when development biosensor 
to enhance the sensitivity and detection limit. Numerous 
nanomaterials (NMs) and their composites such as gold 
nanoparticles (Au NPs), carbon nanotubes (CNTs), gra-
phene (Gr) (Akhavan et al. 2014), and graphene–metal/
metal oxide nanocomposites (Sethuraman et al. 2016) have 
been employed as perfect biosensor transducers, which 
offers great improvement in sensitivity by increasing elec-
trochemical signal production and decreasing background 
noise (Shan et al. 2020). However, one of the most impor-
tant factors for achieving an effective process during drug 
substrate detection is the electroosmotic flow through the 
nanopores/nanochannels within the NMs used for biosen-
sor modification (Khosravikia 2023). In principle, the ion 
flow through the pore is changed when the analyte enters 

the pore under the applied potential, and this change is 
reflected over time in the current recording (Zhang et al. 
2023). On other hand, there are certain challenges with 
the integration of NMs in electrochemical sensing because 
electrocatalyst materials (i.e., nanomaterials) slip off the 
electrode surface, affecting the performance of the biosen-
sor (Baig et al. 2019; Liu and Mandler 2020). Although 
many researchers have solved these issues by employing 
nafion to stop these materials from falling off the electrode 
surface (Feleni et al. 2019, 2020; Wenninger et al. 2021), 
more study on this topic has to be done to enhance the 
surface kinetics of the electrodes. Review articles on elec-
trochemical methods for the detection of antibiotics have 
been reported by a number of researchers (Tran et al. 2022; 
Ding et al. 2021; Seth and Rathinasabapathi 2022; Hong 
et al. 2023) and Table 4 shows the summary of biosen-
sors used for FQs detections. This section discusses types 
of electrochemical biosensors that have been reported in 
literature.

Enzymatic‑based biosensor for FQs

Enzymes are biomolecules whose major constituents are 
amino acids and usually act as biocatalysts which are effi-
cient to increase the biological reaction rate (Kurbanoglu et al. 

Fig. 2   Schematic representation 
of an electrochemical biosensor 
(Hernandez-Vargas et al. 2018)

Table 4   Summary of the biosensors used for FQs

Biosensor type Analyte Nanomaterials Bioreceptors Linear range (µM) LOD (µM) Ref

Optical FQs AuNRs Antibody (Ab2) 0.13–29.91 0.31 (Dai et al. 2023)
Amperometric Norfloxacin CH-Y2O3 Antibody 1 × 10−6–10 3.87 × 10−7 (Yadav et al. 2020)
Electrochemical Ciprofloxacin nLa2O3 NPs Antibody (Ab) 0.001–0.5 0.001 (Chaudhary et al. 2021)
Electrochemical Ciprofloxacin - Aptamer 8.0 × 10−4–0.4 2.63 × 10−4 (Abnous et al. 2014)
Electrochemical Ciprofloxacin - Aptamer 3 × 10−4–0.45 1.0 × 10−5 (Taghdisi Heidarian et al. 2021)
Fluorescent Ciprofloxacin - Aptamer 0.01–0.2

10–120
0.051 (Jadhav et al. 2020)

Electrochemical Ciprofloxacin - DNA 40–80 24 (Nawaz et al. 2006)
Electrochemical Enrofloxacin AuNPs/Ni-MOF c-DNA 1 × 10−2–1 × 103 5.6 × 10−3 (Lv et al. 2022)
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2020). Biosensors that have enzyme molecules immobilized on 
transducing surfaces (electrodes) as biorecognition elements 
are referred to as enzymatic-based biosensors (Campaña et al. 
2019). This type of biosensor operates on two main mechanisms, 
namely substrate detection and enzyme inhibition depending on 
the target analyte. The working principle of an enzyme-based 
biosensor relies on the catalytic reaction and binding abilities 
of the target analyte detection (Rocchitta et al. 2016). The are 
several possible mechanisms which are involved during the rec-
ognition process of an analyte. One of the mechanisms involves 
the metabolism of the analyte by the enzyme where the enzyme 
concentration is estimated by measuring the catalytic transfor-
mation of the analyte by the enzyme (Das et al. 2019). The other 
working principle is based on enzyme inhibition or activation 
by the target analyte to reduce enzyme activity. This process 
is based on the determination of enzyme activity in the pres-
ence and absence of inhibitor compounds (Asal et al. 2018). 
The decrease in product concentration provides the detection 
of inhibitory targets that inhibit the activity of certain enzymes. 
Enzyme-based biosensors can be developed on the basis of 
enzyme specificity (Cordeiro et al. 2018). These types of biosen-
sors usually incorporate electrochemical, optical, and calorimet-
ric transducers. Among them, electrochemical is the most used 
in literature. Enzyme-based biosensors have been widely used in 
different applications like the detection of industrial toxins and 
food contamination (Kurbanoglu et al. 2020), and viral, fungal, 
and bacterial disease detection (Kłos-Witkowska 2015). The 
most common family of enzymes with a well-recognized ability 
for the detection of different substances including pharmaceu-
ticals are oxidases and peroxidases and have been widely used 
during enzyme-based biosensors development (Soylemez et al. 
2019). The lifetime of an enzyme-based biosensor is dependent 
on the type of enzyme used as a recognition element.

Photoelectrochemical (PEC) aptasensor for FQs

Biosensors that utilize aptamers as biorecognition component 
are known as aptasensors (Januarie et al. 2022). Aptamers are 
artificial functional single-stranded (ss) DNA or RNA mol-
ecules with the potential for precise recognition of specific 
and various targets, from small molecules to proteins and 
whole cells (Taghdisi Heidarian et al. 2021). Compared to 
antibodies, aptamers have several important characteristics 
such as low production cost, high stability in different physi-
cal and chemical form, long-term storage, easy modification, 
small size, and lack of immunogenicity and toxicity (Jin et al. 
2019; Majdinasab et al. 2020). Fabrication of aptasensors is 
conventionally achieved through direct modification of a bio-
functionalized sensor surface with aptamers using appropriate 
linkers or non-covalent modification of functionally activated 
surfaces with aptamers. NMs such as carbon fibers and Au 
NPs are mostly used during the development of aptasensors 
to enhance their sensitivity (He and Yan 2018; Li et al. 2018). 

In recent years, aptamer-based biosensors have emerged 
as a robust detection approach for antibiotic residues. For 
instance, Yang et al. (2021) developed a photoelectrochemi-
cal (PEC) aptasensor for Ciprofloxacin (CIP) detection based 
on Bi24O31Cl10/BiOCl heterojunction. The PEC aptasen-
sor achieved high sensitivity with a wide detection range 
(5.0 ~ 1.0 × 104 ng L−1) and low limit of detection (LOD) 
of (1.67 ng L−1, S/N = 3). Their method is straightforward 
and simple to follow. The PEC aptasensor was applied for 
the detection of CIP in water. Another photoelectrochemical 
aptasensor was developed by Zhang et al. (2021); they devel-
oped two materials with excellent PEC performance: three-
dimensional nitrogen-doped graphene-loaded copper indium 
disulfide (CuInS2/3DNG) and Bi3+−doped black anatase 
titania nanoparticles decorated with reduced graphene oxide 
(Bi3+/B-TiO2/rGO). The aptasensor was based on applying dif-
ferent bias potentials to the two materials near one ITO elec-
trode, the cathodic current generated by CuInS2/3DNH and 
the anodic current generated by Bi3+/B-TiO2/rGO was clearly 
distinguished without interfering with each other. Then, Enro-
floxacin (ENR) and CIP aptamers were respectively modified 
onto the surface of CuInS2/3DNH and Bi3+/B-TiO2/rGO to 
construct a PEC aptasensor for sensitive detection of ENR 
and CIP. The aptasensor exhibit wide linear ranges of 0.01 to 
10,000 ng mL−1 for ENR and 0.01 to 1000 ng mL−1 for CIP, 
with relatively low LOD 3.3 pg mL−1 for ENR and CIP in 
milk samples. In a study conducted by You et al. (2022), they 
developed a PEC aptasensor based on Ti3C2/Bi4VO8Br/TiO2 
nanocomposite. The constructed PEC aptasensor presented an 
"on–off-on" detection signal and completed the specific detec-
tion of CIP in milk. With the increase of target detection con-
centration, the PEC aptasensor presented a detection range of 
1 to 1500 nM and LOD of 0.3 nM. In Wu et al. (2022) study, 
they developed a self-powered microfluidic PEC aptasensor 
that uses photoactive AgBr/CuBi2O4 (ACO) composites as the 
photocathode matrix for ultrasensitive detection of CIP and 
ofloxacin (OFL). The ZnIn2S4-decorated CdS nanorod arrays 
(CZIS) as the photoanode was used instead of a platinum 
counter electrode to provide electrons. The CIP detection was 
accomplished through the steric hindrance effect in the pho-
toanode due to the combination of aptamer(CIP) and CIP. To 
increase the cathodic photocurrent intensity for OFL determi-
nation, a controlled release of luminol was first used. Luminol 
molecules were successfully embedded in the porous structure 
of silicon dioxide nanospheres (PSiO2) by the electrostatic 
adsorption between PSiO2 and aptamer (OFL). The aptasensor 
exhibits wide linear ranges for CIP 0.001to 100 ng mL−1 and 
0.0005 to 100 ng mL−1 for OFL detection. The LOD for CIP 
was 0.06 pg mL−1 and 0.022 pg mL−1 for OFL. Despite many 
advantages of aptamer, the interaction between aptamer and 
small molecules is more time-consuming and less specific 
compared to antibodies.
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Electrochemical immunosensor for FQs

Immunosensor is referred to as a biosensor that utilized an 
antibody as a biorecognition element. They have emerged 
as a powerful tool in clinical diagnostics, environmental 
monitoring, and food safety applications due to their extreme 
specificity. Immunosensors take advantage of high affinity 
of antibodies to antigens for the determination of specific 
analytes using an appropriate signal transducer. The working 
principle is reliant on detecting, processing, and display-
ing the signal produced by the formation of an antibody-
antigen (Ab-Ag) complex. Figure 3 describes the possi-
ble mechanism for immunoassay binding configurations. 
Immunosensors play an important role in the detection of 
hazardous substances in foods. Aymard et al. (2022) con-
structed a dual electrochemical immunosensor for the detec-
tion of ENR in meat samples. Anti-quinolone antibody was 
immobilized onto screen-printed dual carbon electrodes via 
carbodiimide coupling. The detection principle was based 
on the competitive binding of this conjugate and free ENR 
on immobilized antibodies. The immunosensor was used 
to detect ENR at concentrations ranging from 0.005 µg. 
mL−1 to 0.01 µg. mL−1 and achieved the LOD of 0.003 µg. 
mL−1. The immunosensor was stable for at least 1 month at 
4 °C and displayed a good specificity for other FQs drugs. 
Shinko et al. (2022) developed a piezoelectric immunosen-
sor based on multi-walled carbon nanotubes (MWCNTs) for 
the detection of FQs in milk samples. They used MWCNTs 
in the formation of a stable piezoelectric sensor detection 
layer to increase the active specific surface area which is 

necessary for receptor molecule binding. The immunosensor 
achieved the LOD of 9 ng mL−1 and 8 ng mL−1 for levo-
floxacin (LEV) and CIP, respectively. Similarly, Bizina et al. 
(2022) developed a piezoelectric immunosensor with a rec-
ognition layer based on magnetic carbon nanocomposites 
for CIP detection in milk and meat sample. The receptor 
coating of the sensor was formed by the action of magnetic 
field on magnetic particles located on the surface of CNTs 
modified with a CIP conjugate. The immunosensor exhib-
its LOD of 2 ng mL−1 with a wide linear range from 5 to 
400 ng mL−1. The use of magnetic carbon nanocomposites 
in the creation of a recognition layer ensured the reduction of 
a sensor preparation time. Lamarca et al. (2020) designed an 
impedimetric immunosensor to determine CIP in wastewater 
samples. They immobilized anti-CIP antibody on the surface 
of a printed carbon electrode. The observed Rct changes 
presented a linear relationship from CIP concentrations of 
10–5 to 1.0 mg mL−1, with LOD and LOQ of 2.50 × 10–6 
and 7.90 × 10–6 mg mL−1, respectively. The immunosensor 
presented high selectivity and repeatability, as well as a good 
recovery rate in wastewater samples (97%). Interference of 
the immunosensor with other compounds was not observed.

Nanomaterial‑based biosensors

Although enzymatic-based biosensor, aptasensor, and 
immunosensor are well established for the detection of 
various analytes, some challenges such as low stability, 
low sensitivity, and long detection time may still exist 

Fig. 3   Possible immunoassay 
binding configurations are suit-
able for biosensing applications. 
Shown are the progressive reac-
tion steps leading to the final 
binding structures for A sand-
wich structure formation using 
a fluorophore-labeled secondary 
antibody, B competitive style 
immunoassays using labeled 
antibodies/antigens, C extended 
sandwich structure formation 
using a fluorophore-labeled ter-
tiary antibody, and D sandwich 
structure formation on a quan-
tum dot (microparticle) surface 
using a secondary FRET-paired 
fluorophore (Mohammed and 
Desmulliez 2011)
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(Majdinasab et al. 2020). However, with the rapid develop-
ment in nanotechnology, the application of NMs in sensing 
technology has become one of the most exciting forefront 
fields in analytical chemistry driven by their unique proper-
ties that offer excellent prospects for designing novel sens-
ing systems and enhancing the performance of the bioana-
lytical assay (Ahmadipour et al. 2020; Chiam et al. 2022; 
Xia et al. 2012). Furthermore, NMs have the potential to 
increase the direct electron transfer (DET) and response 
time on a sensing system. For these reasons, nanomate-
rials-based biosensors have gained significant interest to 
many researchers owing to their distinctive properties such 
as high sensitivity, selectivity, low cost, and easy operation 
(Li et al. 2019). Since the performance of electrochemical 
biosensors largely depends on the performance of working 
electrodes (WEs), whereas the performance of WEs relies 
on the nature of the material used to modify the electrode 
(Wang et al. 2021), these NMs improve electron transfer 
among electrodes and detection species and behave as bio-
compatible frameworks for biomolecule control in electro-
chemical biosensors. A wide variety of NMs with different 
sizes, shapes, and compositions including carbon nanoma-
terials, metal nanoparticles, magnetic nanoparticles, quan-
tum dots, and nanocomposites have been successfully used 
to develop electrochemical biosensors for antibiotics detec-
tion in food and water samples (Lan et al. 2017; Joshi and 
Kim 2020) and Table 5 shows the performance comparison 
of different nanomaterial-based electrochemical sensors for 
FQs. Herein, this section will mainly discuss nanomaterials 
for biosensor development.

Carbon‑based nanomaterials

Carbon-based nanomaterials (CNMs) offer various unique 
advantages when compared to many other NMs. They 
exhibit high surface-to-volume ratios, high electrical con-
ductivity, long-term chemical stability, and enhanced 
mechanical strength. These characteristics enable CNMs to 
have lower detection limits and higher sensitivities (Qian 
et al. 2021). As a member of NMs, CNMs including carbon 
nanotubes (CNTs), graphene (Gr), graphene quantum dots 
(GQD), and carbon nanofibers (CNFs) have received great 
attention due to their exceptional physical, chemical, and 
electrical properties which has resulted in their widespread 
application during the development electrochemical biosen-
sors for environmental monitoring, etc. (Power et al. 2018). 
Recently, most materials that are employed as electrocata-
lysts for the detection of FQs antibiotics are incorporated 
with CNMs to form advanced nanocomposites. Among 
them, CNTs and Gr are the most used CNMs in biosensors 
for antibiotics detection. Thus, the next section discusses the 
CNMs that are commonly used for electrochemical biosen-
sors development.

Carbon nanotubes

Carbon nanotubes (CNTs) have been extensively used in vari-
ous fields due to their unique electronic, optical, and catalytic 
properties (Ardani et al. 2022). The functionalization of CNTs 
with guest species either at their outer surfaces or in their nano-
channels largely expands CNTs properties and applications 
(Jalal et al. 2019). Because CNTs have abundant surface area 
and surface characteristics, they can be physically or chemically 
altered to introduce a variety of materials, including biomacro-
molecules, active small molecules, and other materials, to their 
outer surfaces (Wang et al. 2012). As one-dimensional, seam-
less, and hollow graphitic NMs, CNTs are made of the sp2-
hybridized carbon atoms bonding to each other through C–C 
σ interaction. CNTs were discovered by Iijima in 1991 (Iijima 
1991). Since their discovery, CNTs have attracted considerable 
attention to the development of electrochemical sensors owing 
to their excellent conductivity and high tunability (Lawal 2016). 
CNTs offers the possibility of highly sensitive electrochemical 
sensors because of their electrical properties that enable the 
improvement of their analytical response (Cernat et al. 2015). 
Depending on the specific molecular structure and chemical 
composition of pharmaceutical compounds, CNTs may be used 
to promote the electron transfer of many reactions and facilitate 
the adsorption of organic molecules (Camilli and Passacantando 
2018). Moreover, CNTs may produce synergetic effects that pro-
mote sensing (Jung et al. 2015; Mallakpour and Khadem 2016). 
To date, CNTs-based biosensors have been extensively used for 
the detection of FQs antibiotics. Liu et al. (2019a, b) designed 
an electrochemical sensor based on functionalized multi-walled 
carbon nanotubes (fMWCNTs) decorated with molecularly 
imprinted polymer (MIP) for the detection of norfloxacin 
(NOR). The porous structure of the fMWCNT 3D framework 
effectively increases the specific surface area, and the copoly-
mer of fMWCNTs and MIP shows a synergistic effect for the 
electrocatalytic reaction of NOR on the modified sensor. The 
authors obtained wide linear ranges of 0.003 to 0.391 μM and 
0.391 to 3.125 μM with LOD of 1.58 nM, and excellent selec-
tivity in distinguishing NOR according to its structural analogs 
and possible interferences. The recoveries from pharmaceutical 
formulations ranging from 97.36 to 109.58% and the recoveries 
from rat plasma samples ranging from 83.00 to 115.67% were 
achieved. Another sensor for monitoring CIP was the fusion of 
nanocellulose and polypyrrole (NNC-PPY), incorporated with 
single-walled carbon nanotubes (SWCNTs) via a drop-casting 
method designed by Shalauddin et al. (2022) with a dynamic lin-
ear range of 1 to 50 µM and a LOD of 0.196 nM. Furthermore, 
the sensor exhibits a high sensitivity of 18.610 µA µM−1 cm−2, 
and the fabricated sensor was implemented successfully for the 
determination of CIP from water samples, biological fluids and 
pharmaceutical preparations. Sabeti et al. (2021) designed an 
electrochemical sensor based on a modified-glassy carbon elec-
trode using f-MWCNTs and dopamine for the determination 



3404	 Environmental Science and Pollution Research (2024) 31:3394–3412

1 3

of CIP. The dopamine is electropolymerized to form a layer of 
polydopamine on the surface of functionalized CNTs. Two lin-
ear dynamic ranges from 0.075 to 10 µM and from 10 to 100 µM 
were obtained for CIP detection with LOD of 0.04 µM, and 
repeatability and reproducibility of 3.2 and 3.3%, respectively. 
Afterwards, the sensor’s selectivity against common interfer-
ing agents was checked out, and the sensor proved to be highly 
selective for CIP detection. The sensor was tested using urine 
samples for CIP detection. The sensor proved to be a trustable 
tool for CIP measurement in clinical and industrial applications.

Graphene

Graphene (Gr), is a two-dimensional (2D) CNMs, with a 
sheet of sp2 bonded carbon atoms that are arranged into a 
rigid honeycomb lattice, exhibiting the highest mechanical 
strength among the known materials, extraordinary elec-
tron transfer capabilities, excellent electrical conductivity, 

ultra-large specific surface area, unprecedented pliability 
and permeability, and favorable biocompatibility (Wang 
et al. 2016). Gr has become a novel and promising material 
for nanoelectronics due to its electrocatalytic activity, and 
it has been investigated as an electrode material for sensing 
devices. Gr has large surface area, good conductivity, and 
strong mechanical properties, but the major disadvantage 
lies in its poor dispersion. Pan et al. (2021) developed an 
electrochemical biosensor by the modification of a screen-
printed carbon electrode (SPCEs) with graphene oxide (GO) 
for CIP detection based on the complexation of CIP with 
Mn2+ in the milk sample. The fabricated sensor achieved 
the linear range from 1.0 to 8.0 μM with LOD of 0.30 μM. 
The CIP recoveries in the milk samples ranged of 81.0 to 
95.4% with relative standard deviations (RSDs) below 4.6%. 
Liu et al. (2023) designed an electrochemical sensor for the 
detection of OFL in water by depositing β-cyclodextrin 
(β-CD) and samarium oxide nanoparticles (Sm2O3 NPs) 

Table 5   Performance comparison of different nanomaterial-based electrochemical sensors for FQs

a GCE, glassy carbon electrode; bSPCEs, screen-printed carbon electrode; cCPE, carbon printed electrode; dAuE, gold electrode; eCV, cyclic vol-
tammetry; fDPV, differential pulse voltammetry; gSWV, square wave voltammetry

Targeted 
analyte

Sensor Electrode Electro-
chemical 
technique

Real sample Linear range (µM) LOD (µM) Recovery (%) Ref

Norfloxacin Ni/NiO/C/
β-CD/RGO/
GCE

aGCE eCV Water 0.4–80 0.01 - (Cui et al. 2019)

Total FQs 
content

γ-CD-GQDs-
CHI/SPCE

bSPCE fDPV Broths, 
bouillon 
cubes and 
milkshakes

4–250 1.2 90 to 106 (Bartolomé 
et al. 2023)

Norfloxacin AuNPs-NOR-
MIP/AuNPs/
SPCE

SPCE CV Pharmaceu-
ticals and 
aquaculture 
samples

0.00015 − 0.03113 0.15 - (Vu et al. 2022)

Ciprofloxacin N-prGO/CPE cCPE CV
DPV

pharmaceuti-
cal

0.1–10 39 (Rahimpour 
et al. 2021)

Ofloxacin
Norfloxacin

ERGO/GCE GCE CV
DPV

Medicine and 
aquaculture 
wastewater

1–40
1–60

0.19
0.56

98.01
102.77

(Wang et al. 
2022)

Enrofloxacin TAPB-PDA-
COFs/
AuNPs/GCE

GCE gSWV Water samples 
and milk 
samples

0.05–10
10–120

0.041 96.7–102.2 (Lu et al. 
2021b)

Ciprofloxacin AuNPs/AC/
GCE

GCE CV
DPV

Milk 0.5–25 0.20 78.6–110.2 (Gissawong 
et al. 2021)

Ofloxacin
Pefloxacin
Gatifloxacin

P-L-CuO: 
Tb3+ NS/
GCE

GCE DPV Milk 0.01 and 800.0 1.9
2.3
1.2

(Taherizadeh 
et al. 2023)

Ciprofloxacin Pt − RGO/
GCE

GCE DPV Tap and river 
water

10–25 1.53 (Pham et al. 
2022)

Ciprofloxacin TiO2/PVA-
GCE

GCE DPV
CV

Rainwater 10–120 0.04 (Zhao et al. 
2021)

Pefloxacin AuNPs/RGO/
SWCNT/
GCE

GCE CV
DPV

Milk 5.0 × 10–7–2.0 × 10–5 1.6 × 10–8 (Shi et al. 2020)



3405Environmental Science and Pollution Research (2024) 31:3394–3412	

1 3

onto a laser-induced graphene (LIGr) electrode. The sensor 
obtains a wide linear range of 0.01 to 1.0 μmol L−1 and 1.0 
to 120 μmol L−1 with low LOD of 0.005 μmol L−1 and good 
anti-interference ability and stability. This sensor was suc-
cessfully applied in tap water for OFL detection.

Metal nanoparticles

Besides the CNMs, metal and metal oxide nanoparticles 
have been widely used in electrochemical sensing materi-
als for a long time due to beneficial features such as their 
small size; unique chemical, physical, and electronic prop-
erties, flexibility in fabricating novel and improved sens-
ing devices, and good sensitivity to the ambient conditions 
and the ability to immobilize bioreceptors without affecting 
their bioactivity (Shrivastava et al. 2016). In addition, they 
offer exclusive physical, chemical, and electronic proper-
ties that make them suitable as transducer components of 
an electrochemical biosensor. Moreover, their surfaces 
are easy to functionalize. Metal nanoparticles are prom-
ising immobilization matrix for aptamers, proteins, anti-
bodies, and enzymes (Joshi and Kim 2020). Among all 
metal nanoparticles, (Au NPs) have been widely explored 
to improve the LOD in electrochemical biosensing. Very 
often, AuNPs are associated with carbon materials such 
as CNTs and Gr in a synergetic effect to enhance the elec-
trocatalytic effect of the working electrode (Rotariu et al. 
2016). Thus, considerable effort has been devoted to metal 
nanoparticle–based electrochemical biosensors for antibi-
otics detection.

Magnetic nanoparticles

In recent years, magnetic nanoparticles (MNPs) have 
received increasing attention toward the development 
of biosensor and their applications. The magnetic prop-
erties of MNPs are associated with the core and shell, 
which is active in biomolecule recognition, binding, 
and catalytic processes (Asab et al. 2020). MNPs dis-
play superparamagnetic properties at high temperatures. 
Superparamagnetic is when the net magnetic dipoles are 
zero (Mohammed et al. 2017). Most applications that use 
magnetic nanoparticles depend on the use of magnetic 
fields to manipulate their properties, which depends on 
the effectiveness of the particle magnetic moment and 
the field gradient. Moreover, MNPs can be integrated 
into the transducer materials, attracting analytes in the 
samples by an external magnetic field (Ventura-Aguilar 
et al. 2023). Compared to the non-MNPs-based biosen-
sor, the biosensing strategy based on MNPs offers vari-
ous advantages that include, improved sensitivity, lower 
detection limit, less noise, and quicker analysis (Calca-
terra et al. 2022).

Quantum dots

Quantum dots (QDs) are quasi-zero-dimensional semicon-
ductor nanostructures that bind excitons in three spatial 
directions, and their quantum confinement effects result 
in good photoelectric properties. QDs are a type of novel 
fluorescent nanomaterial consisting of inorganic nuclei with 
organic molecules in the nanoscale range of 1–10 nm applied 
to the surface of the nucleus (Rajendiran et al. 2019; Li et al. 
2020). These materials usually consist of carbon, silicon, 
cadmium selenide, cadmium sulfide, or indium arsenide 
and emit fluorescence when excited by a light source (Zhou 
et al. 2018). QDs possess unique chemical properties and 
excellent optical properties, including extended fluorescence 
lifetime, adjustable particle sizes, superior signal brightness, 
emission of multiple fluorescence colors, confined emission 
spectra, and broad excitation spectra (Ding et al. 2022). Cur-
rently, QDs have been recognized as an ideal material for the 
development of biosensors for antibiotic detection. Accord-
ing to the literature, QDs have been flourishing as promising 
tools in the development of biosensors for FQs detection.

Nanocomposite

To overcome the limitations of individual NMs and homogenous 
preparations, a range of highly efficient approaches to synthesize 
various nanocomposites have been developed. Nanocomposite-
based electrochemical biosensors have different applications in 
the field of environmental monitoring. Composite nanomateri-
als are composed of different functional components, and have 
garnered significant interest from materials scientists due to their 
combined physicochemical properties and great potential appli-
cations in the areas of electronics, photonics, catalysis, biotech-
nology, and nanotechnology (Hussain et al. 2017; Khasawneh 
et al. 2021). Generally, these nanocomposites exhibit a core/
shell or a binary nanostructure which can be modified with dif-
ferent charges, reactive groups, or functional moieties on the 
surface with enhanced stability and compatibility (Pang et al. 
2022). The successful application of such nanocomposites is 
highly dependent on their nanostructure, composition, stability, 
and dispersity of the particles under a range of different condi-
tions. Furthermore, metal-based NMs can be combined with 
CNTs, Gr, rGO, polymers, etc., to develop nanocomposite mate-
rial (Ahmadipour et al. 2021) and used to immobilize enzymes, 
antibodies, aptamers, etc. (Kucherenko et al. 2019). Therefore, 
many researchers have focused on the fabrication of different 
nanocomposite materials to develop novel multi-functional 
materials that possess serendipitous properties. Suanchan et al. 
(2021) developed a nanocomposite optosensing probe based on 
hierarchical porous carbon and graphene quantum dots incorpo-
rated with selective polymer for the detection of trace OFL. The 
probe showed a good linear range from 0.10 to 25 μg L−1 for 
OFL with LOD of 0.066 μg L−1. The probe was applied to detect 
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OFL in milk achieving recoveries in the range of 92 to 99% with 
an RSD < 7%. In another study by Li et al. (2022), an ultrasensi-
tive label-free molecularly imprinted polymer (MIP) voltammet-
ric sensor for the selective determination of NOR, based on Au 
nanoparticle-functionalized black phosphorus nanosheet nano-
composite (BPNS-AuNP) covered by a polypyrrole-imprinted 
film was developed. The BPNS-AuNPs were found to improve 
the ambient stability and electrocatalytic activity, providing a 
large surface area for locating a higher number of specific rec-
ognition sites. The fabricated MIP/BPNS-AuNP/GCE sensor 
showed excellent sensing performance toward NOR, with a wide 
linear range from 0.1 nM to10 μM, with an extremely low LOD 
of 0.012 nM. Similarly, Jalal et al. (2019) also developed an 
electrochemical sensor based on a nanocomposite of MWCNTs, 
magnetite nanoparticle (Fe3O4), and polyethylenimine (PEI) for 
highly sensitive detection of CIP drug in biological samples and 
pharmaceutical formulations. Due to the high conductivity of 
CNTs and moderate conductivity of the polymer along with rich 
active sites of amine functional groups, the PEI@Fe3O4@CNTs 
nanocomposite displayed excellent electro-catalytic effect on the 
electro-oxidation of CIP. The electrochemical responses of the 
modified electrode were proportional to the drug concentrations 
in the range of 0.03–70.0 μmol L−1 with a limit of detection of 
3.0 nmol L−1. Furthermore, the sensor was applied to deter-
mine CIP in the drug tablets, urine, and serum samples with 
acceptable recoveries of 97 to 108% and satisfactory precisions 
(1–3%RSD). Ghanbari et al. (2019) developed an electrochem-
ical sensor for LEV detection based on poly (l-Cysteine) @
AuNPs @ reduced graphene oxide nanocomposite. The sensor 
exhibits the linear response in two concentration windows of 
1.0 × 10−11 M and 1.0 × 10−4, with LOD of 3.0 × 10−12 M. The 
glassy carbon electrode (GCE) modified through coating with 
a film of poly(l-cys)/AuNPs/rGO/GCE was found to offer high 
stability, reproducibility, and repeatability, as well as selectivity 
and was successfully used in the analysis of the LEV in synthetic 
blood serum, with recovery values of around 99%. In another 
study conducted by Bano et al. (2022), a novel PPy/Bi2MoO6/
chitosan nanocomposites was prepared for electrochemical 
detection of CIP and benzene. The as-prepared sensor has 
shown a distinct increase in electrocatalytic and electrochemi-
cal activity. Furthermore, experimental results have confirmed 
high sensitivity due to the increased surface area and electron 
mobility of the electrocatalyst. The linear concentration falls 
into two distinct ranges for CIP with low LOD value and high 
sensitivity 0.01 to 1500 μM.

General conclusions, challenges, and future 
perspective

FQs are important class of antibiotics that has received wide-
spread in clinical application. The overuse of these drugs in 
medicinal treatment has become problematic due to the negative 

effects they pose to the environment. Thus, to reduce the exces-
sive presence of FQs in water ways, research on the develop-
ment of effective detection strategy is significant to keep the 
environment safe. However, due to the complexity of wastewa-
ter sample, the residual detection of FQs at trace level remains 
difficult. Therefore, the present review was compiled to report 
the recent advancements in FQs detection strategies in water 
samples. Compared with other reported technologies, electro-
chemical methods are relatively simple and portable. They are 
promising analytical tools for FQs detection owing to their admi-
rable properties such as low cost, high sensitivity, selectivity, 
and specificity. On the other hand, NMs have been successfully 
utilized in developing ultrasensitive electrochemical biosensors 
for antibiotic detection as highlighted in this review. Although 
these electrochemical biosensing methods have some advan-
tages over traditional methods, there are still some challenges 
associated with the detection of real water samples. Electro-
chemical biosensors are usually designed to detect one or two 
analytes at a time, while there are thousands of pollutants in 
the environment. In addition, the electrodes that are currently 
produced cannot simultaneously detect all the pollutants of inter-
est. The presence of other pollutants can interfere with targeted 
antibiotics. Based on the above discussion, we can conclude 
that the electrochemical method for the detection of antibiot-
ics is simple and cheap, but further improvement is needed in 
terms of anti-interference ability and sensitivity. Furthermore, 
we anticipate that developing electrochemical biosensors with 
NMs is a powerful tool in environmental monitoring, food 
safety, and medical diagnosis, as well as other fields. Lastly, we 
believe that nanomaterial-based electrochemical biosensors for 
FQs can offer higher sensitivity, higher speed and integration 
that will increase portability and automation. However, the issue 
of NMs being leached off the electrode is still of great concern 
and alternative measures need to be developed. Hence, future 
research on electrochemical detection methods for antibiotics 
could be based on these aspects.
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