Skip to main content
Log in

Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil–plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • A El-Kereti M, A El-feky S, Khater MS, Osman YA, El-sherbini ES (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5(169):181

    Google Scholar 

  • Aazami MA, Asghari-Aruq M, Hassanpouraghdam MB, Ercisli S, Baron M, Sochor J (2021) Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1877

    CAS  Google Scholar 

  • Abdel Latef AAH, Abu Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    CAS  Google Scholar 

  • Abou-Zeid HM, Ismail GSM, Abdel-Latif SA (2021) Influence of seed priming with ZnO nanoparticles on the salt-induced damages in wheat (Triticum aestivum L.) plants. J Plant Nutr 44:629–643

    CAS  Google Scholar 

  • Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T, Asghar RMA, Alkahtani J, Dwiningsih Y, Elshikh MS (2022) Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front Plant Sci 13:932861

    Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    CAS  Google Scholar 

  • Afzal S, Singh NK (2022) Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environ Pollut 314:120224

    CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Al-Huqail AA, Alqahtani MA, Wijaya L, Ashraf M, Kaya C, Bajguz A (2020) Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants 9:825

    CAS  Google Scholar 

  • Ahmad S, Mfarrej MFB, El-Esawi MA, Waseem M, Alatawi A, Nafees M, Saleem MH, Rizwan M, Yasmeen T, Anayat A (2022) Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol Environ Saf 230:113142

    CAS  Google Scholar 

  • Akhtar N, Khan S, Rehman SU, Rehman ZU, Khatoon A, Rha ES, Jamil M (2021) Synergistic effects of zinc oxide nanoparticles and bacteria reduce heavy metals toxicity in rice (Oryza sativa L.) plant. Toxics 9:113

    CAS  Google Scholar 

  • Alabdallah NM, Alzahrani HS (2020) The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J Biol Sci 27:3132–3137

    CAS  Google Scholar 

  • Alenezi NA, Al-Qurainy F, Tarroum M, Nadeem M, Khan S, Salih AM, Shaikhaldein HO, Alfarraj NS, Gaafar A-RZ, Al-Hashimi A (2022) Zinc oxide nanoparticles (ZnO NPs), biosynthesis, characterization and evaluation of their impact to improve shoot growth and to reduce salt toxicity on salvia officinalis in vitro cultivated. Processes 10:1273

    CAS  Google Scholar 

  • Al-Harbi H, Abdelhaliem E, Araf N (2019) Modulatory effect of zincoxide nanoparticles on gamma radiation-induced genotoxicity in Vicia faba (Fabeaceae). Genet Mol Res 18:1

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    CAS  Google Scholar 

  • Azhar W, Khan AR, Muhammad N, Liu B, Song G, Hussain A, Yasin MU, Khan S, Munir R, Gan Y (2020) Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environ Sci Nano 7:938–953

    CAS  Google Scholar 

  • Azhar W, Khan AR, Salam A, Ulhassan Z, Qi J, Shah G, Liu Y, Chunyan Y, Yang S, Gan Y (2023) Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environ Sci Pollut Res 30:26137–26149

    CAS  Google Scholar 

  • Azmat A, Tanveer Y, Yasmin H, Hassan MN, Shahzad A, Reddy M, Ahmad A (2022) Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 297:133982

    CAS  Google Scholar 

  • Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY (2023) Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. Environ Sci Pollut Res 30:54223–54233

    CAS  Google Scholar 

  • Banerjee S, Islam J, Mondal S, Saha A, Saha B, Sen A (2023) Proactive attenuation of arsenic-stress by nano-priming: zinc oxide nanoparticles in Vigna mungo (L.) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. J Hazard Mater 446:130735

    CAS  Google Scholar 

  • Bhat JA, Faizan M, Bhat MA, Huang F, Yu D, Ahmad A, Bajguz A, Ahmad P (2022) Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere 288:132471

    CAS  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    CAS  Google Scholar 

  • Cao X, Ma LQ, Rhue DR, Appel CS (2004) Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut 131:435–444

    CAS  Google Scholar 

  • Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L, López-Ochoa GR (2018) Zinc metalloenzymes in plants. Interciencia 43:242–248

    Google Scholar 

  • Chen J, Dou R, Yang Z, You T, Gao X, Wang L (2018) Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol Biochem 130:604–612

    CAS  Google Scholar 

  • Chen W, Miao Y, Ayyaz A, Hannan F, Huang Q, Ulhassan Z, Zhou Y, Islam F, Hong Z, Farooq MA (2022) Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress. Front Plant Sci 13:936696

    Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    CAS  Google Scholar 

  • Corpas FJ (2019) Hydrogen sulfide: a new warrior against abiotic stress. Trends Plant Sci 24:983–988

    CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362

    Google Scholar 

  • Dey S, Biswas A, Huang S, Li D, Liu L, Deng Y, Xiao A, Birhanie ZM, Zhang J, Li J (2021) Low temperature effect on different varieties of Corchorus capsularis and Corchorus olitorius at seedling stage. Agronomy 11:2547

    CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    CAS  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    CAS  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    CAS  Google Scholar 

  • Dimkpa CO, Andrews J, Fugice J, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2020) Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front Plant Sci 11:168

    Google Scholar 

  • Djanaguiraman M, Boyle D, Welti R, Jagadish S, Prasad P (2018) Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol 18:1–17

    Google Scholar 

  • Ebrahimian E, Bybordi A (2011) Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower. J Food Agric Environ 9:422–427

    CAS  Google Scholar 

  • El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Kuai J, Zhou G, Wang B (2021) Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf 225:112695

    CAS  Google Scholar 

  • Elsheery NI, Sunoj V, Wen Y, Zhu J, Muralidharan G, Cao K (2020) Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiol Biochem 149:50–60

    CAS  Google Scholar 

  • El-Zohri M, Al-Wadaani NA, Bafeel SO (2021) Foliar sprayed green zinc oxide nanoparticles mitigate drought-induced oxidative stress in tomato. Plants 10:2400

    CAS  Google Scholar 

  • Emamverdian A, Hasanuzzaman M, Ding Y, Barker J, Mokhberdoran F, Liu G (2022) Zinc oxide nanoparticles improve Pleioblastus pygmaeus plant tolerance to arsenic and mercury by stimulating antioxidant defense and reducing the metal accumulation and translocation. Front Plant Sci 13:841501

    Google Scholar 

  • Etesami H, Noori F (2019) Soil salinity as a challenge for sustainable agriculture and bacterial-mediated alleviation of salinity stress in crop plants. Saline soil-based agriculture by halotolerant microorganisms, 1–22

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Google Scholar 

  • Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F (2021a) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem 161:122–130

    CAS  Google Scholar 

  • Faizan M, Bhat JA, Hessini K, Yu F, Ahmad P (2021b) Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol Environ Saf 220:112401

    CAS  Google Scholar 

  • Faizan M, Bhat JA, Noureldeen A, Ahmad P, Yu F (2021c) Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicol Environ Saf 218:112293

    CAS  Google Scholar 

  • Faizan M, Sehar S, Rajput VD, Faraz A, Afzal S, Minkina T, Sushkova S, Adil MF, Yu F, Alatar AA (2021d) Modulation of cellular redox status and antioxidant defense system after synergistic application of zinc oxide nanoparticles and salicylic acid in rice (Oryza sativa) plant under arsenic stress. Plants 10:2254

    CAS  Google Scholar 

  • Faizan M, Hayat S, Pichtel J (2020) Effects of zinc oxide nanoparticles on crop plants: a perspective analysis. Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development, 83–99

  • Feng Q, Yang S, Wang Y, Lu L, Sun M, He C, Wang J, Li Y, Yu X, Li Q (2021) Physiological and molecular mechanisms of ABA and CaCl2 regulating chilling tolerance of cucumber seedlings. Plants 10:2746

    CAS  Google Scholar 

  • Fernández V, Brown PH (2013) From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front Plant Sci 4:289

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    CAS  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:1–21

    CAS  Google Scholar 

  • Gallego SM, Benavides MP (2019) Cadmium-induced oxidative and nitrosative stress in plants, Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 233–274

  • Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M (2022) Foliar application of zinc oxide nanoparticles: an effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere 289:133202

    CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    CAS  Google Scholar 

  • Ghouri F, Shahid MJ, Liu J, Lai M, Sun L, Wu J, Liu X, Ali S, Shahid MQ (2023) Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. J Hazard Mater 448:130991

    CAS  Google Scholar 

  • Graham RD, Welch RM, Grunes DL, Cary EE, NoRVELL WA (1987) Effect of zinc deficiency on the accumulation of boron and other mineral nutrients in barley. Soil Sci Soc Am J 51:652–657

    CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    CAS  Google Scholar 

  • Han Y, Kim D, Hwang G, Lee B, Eom I, Kim PJ, Tong M, Kim H (2014) Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: influence of ionic strength and humic acid. Colloids Surf, A 451:7–15

    CAS  Google Scholar 

  • Hanif S, Zia M (2023) Glycine betaine capped ZnO NPs eliminate oxidative stress to coriander plants grown under NaCl presence. Plant Physiol Biochem 197:107651

    CAS  Google Scholar 

  • Hartmann A, Schmid M, Tuinen Dv, Berg G (2009) Plant-driven selection of microbes. Springer

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, Iqbal MM, Nawaz M, Mahmood A, Ali A (2021) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology 155:211–234

    Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    CAS  Google Scholar 

  • Hischemöller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5:278–284

    Google Scholar 

  • Hosseinpour A, Haliloglu K, Tolga Cinisli K, Ozkan G, Ozturk HI, Pour-Aboughadareh A, Poczai P (2020) Application of zinc oxide nanoparticles and plant growth promoting bacteria reduces genetic impairment under salt stress in tomato (Solanum lycopersicum L. ‘Linda’). Agriculture 10:521

    CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    CAS  Google Scholar 

  • Hu Z, Fan J, Xie Y, Amombo E, Liu A, Gitau MM, Khaldun A, Chen L, Fu J (2016) Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem 100:94–104

    CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242(1518):1526

    Google Scholar 

  • Ibrahim S, Faryal S (2014) Augmentation of Trigonella foenum-graecum L. (methi) growth under salinity stress and allelochemical stress through Mn+ B+ Zn mixture foliar spray. J Pharmacogn Phytother 3:39–44

    Google Scholar 

  • Jiang X, Tong M, Kim H (2012) Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. J Colloid Interface Sci 386:34–43

    CAS  Google Scholar 

  • Jiang W, Sun X, Xu H, Mantri N, Lu H (2014) Optimal concentration of zinc sulfate in foliar spray to alleviate salinity stress in Glycine soja. 445–460

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press

    Google Scholar 

  • Kamenya SN, Mikwa EO, Song B, Odeny DA (2021) Genetics and breeding for climate change in Orphan crops. Theor Appl Genet 134:1787–1815

    Google Scholar 

  • Kareem HA, Hassan MU, Zain M, Irshad A, Shakoor N, Saleem S, Niu J, Skalicky M, Chen Z, Guo Z (2022a) Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. Environ Pollut 303:119069

    CAS  Google Scholar 

  • Kareem HA, Saleem MF, Saleem S, Rather SA, Wani SH, Siddiqui MH, Alamri S, Kumar R, Gaikwad NB, Guo Z (2022b) Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front Plant Sci 13:842349

    Google Scholar 

  • Karmous I, Gammoudi N, Chaoui A (2023) Assessing the potential role of zinc oxide nanoparticles for mitigating cadmium toxicity in Capsicum annuum L. under in vitro conditions. J Plant Growth Regul 42:719–734

    CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Google Scholar 

  • Khan AR, Wakeel A, Muhammad N, Liu B, Wu M, Liu Y, Ali I, Zaidi SHR, Azhar W, Song G (2019) Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in Arabidopsis thaliana leaves. Environ Sci Nano 6:341–355

    CAS  Google Scholar 

  • Khan AR, Azhar W, Wu J, Ulhassan Z, Salam A, Zaidi SHR, Yang S, Song G, Gan Y (2021) Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicol Environ Saf 226:112844

    CAS  Google Scholar 

  • Khan AR, Fan X, Salam A, Azhar W, Ulhassan Z, Qi J, Liaquat F, Yang S, Gan Y (2023) Melatonin-mediated resistance to copper oxide nanoparticles-induced toxicity by regulating the photosynthetic apparatus, cellular damages and antioxidant defense system in maize seedlings. Environ Pollut 316:120639

    Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806

    CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem: an International Journal 27:1825–1851

    CAS  Google Scholar 

  • Knijnenburg JT, Laohhasurayotin K, Khemthong P, Kangwansupamonkon W (2019) Structure, dissolution, and plant uptake of ferrous/zinc phosphates. Chemosphere 223:310–318

    CAS  Google Scholar 

  • Kou TJ, Yu WW, Lam S, Chen DL, Hou YP, Li ZY (2018) Differential root responses in two cultivars of winter wheat (Triticum aestivum L.) to elevated ozone concentration under fully open-air field conditions. J Agron Crop Sci 204:325–332

    CAS  Google Scholar 

  • Lalarukh I, Zahra N, Al Huqail AA, Amjad SF, Al-Dhumri SA, Ghoneim AM, Alshahri AH, Almutari MM, Alhusayni FS, Al-Shammari WB (2022) Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environ Technol Innov 27:102799

    CAS  Google Scholar 

  • Lang C, Mission EG, Fuaad AA-HA, Shaalan M (2021) Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability-a review. J Clean Prod 293:126063

    CAS  Google Scholar 

  • Li C, Yan B (2020) Opportunities and challenges of phyto-nanotechnology. Environ Sci Nano 7:2863–2874

    CAS  Google Scholar 

  • Liu L, Nian H, Lian T (2022) Plants and rhizospheric environment: affected by zinc oxide nanoparticles (ZnO NPs). A review. Plant Physiol Biochem 185:91–100

    CAS  Google Scholar 

  • Loneragan JF, Webb MJ (1993) Interactions between zinc and other nutrients affecting the growth of plants, Zinc in Soils and Plants: Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27–28 September, 1993. Springer, pp. 119–134

  • Lv W, Geng H, Zhou B, Chen H, Yuan R, Ma C, Liu R, Xing B, Wang F (2022) The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment. Environ Pollut 315:120368

    CAS  Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Google Scholar 

  • Ma X, Sharifan H, Dou F, Sun W (2020) Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem Eng J 384:123802

    CAS  Google Scholar 

  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR (2018) Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proceed Natl Acad Sci, India Section B: Biological Sciences 88:595–607

    CAS  Google Scholar 

  • Martins NC, Avellan A, Rodrigues S, Salvador D, Rodrigues SM, Trindade T (2020) Composites of biopolymers and ZnO NPs for controlled release of zinc in agricultural soils and timed delivery for maize. ACS Appl Nano Mater 3:2134–2148

    CAS  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS One 10:e0126275

    Google Scholar 

  • Mogazy AM, Hanafy RS (2022) Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants. J Soil Sci Plant Nutr 22:2647–2662

    CAS  Google Scholar 

  • Mousavi Kouhi SM, Lahouti M, Ganjeali A, Entezari MH (2015) Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn 2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water Air Soil Pollut 226:1–11

    Google Scholar 

  • Mukhtar T, Rehman SU, Smith D, Sultan T, Seleiman MF, Alsadon AA, Amna Ali S, Chaudhary HJ, Solieman TH (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12:2159

    CAS  Google Scholar 

  • N P, N G, T M, S.V S, P V (2021) Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol Rep 8: 295-302

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    CAS  Google Scholar 

  • Natasha N, Shahid M, Bibi I, Iqbal J, Khalid S, Murtaza B, Bakhat HF, Farooq ABU, Amjad M, Hammad HM (2022) Zinc in soil-plant-human system: a data-analysis review. Sci Total Environ 808:152024

    CAS  Google Scholar 

  • Nazir F, Fariduddin Q, Khan TA (2020) Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486

    CAS  Google Scholar 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:230

    Google Scholar 

  • Notununu I, Moleleki L, Roopnarain A, Adeleke R (2022) Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: a review. Pedosphere 32:90–106

    CAS  Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    CAS  Google Scholar 

  • Nriagu J (2019) Zinc toxicity in humans. In: Nriagu J (ed) Encyclopedia of Environmental Health (Second Edition). Elsevier, Oxford, pp 500–508

    Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    CAS  Google Scholar 

  • Plaksenkova I, Kokina I, Petrova A, Jermaļonoka M, Gerbreders V, Krasovska M (2020): the impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity, and miRNA expression in barley (Hordeum vulgare L.) seedlings. The Scientific World Journal 2020

  • Prakash V, Rai P, Sharma NC, Singh VP, Tripathi DK, Sharma S, Sahi S (2022) Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere 303:134554

    CAS  Google Scholar 

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad T, Sajanlal P, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    CAS  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    CAS  Google Scholar 

  • Raghib F, Naikoo MI, Khan FA, Alyemeni MN, Ahmad P (2020) Interaction of ZnO nanoparticle and AM fungi mitigates Pb toxicity in wheat by upregulating antioxidants and restricted uptake of Pb. J Biotechnol 323:254–263

    CAS  Google Scholar 

  • Rai-Kalal P, Jajoo A (2021) Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol Biochem 160:341–351

    CAS  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  • Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Ghazaryan K, Movsesyan H, Barsova N (2020) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42:147–158

    CAS  Google Scholar 

  • Rajput VD, Chernikova N, Minkina T, Gorovtsov A, Fedorenko A, Mandzhieva S, Bauer T, Tsitsuashvili V, Beschetnikov V, Wong MH (2023) Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. Environ Res 220:115243

    CAS  Google Scholar 

  • Rakgotho T, Ndou N, Mulaudzi T, Iwuoha E, Mayedwa N, Ajayi RF (2022) Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture 12:597

    CAS  Google Scholar 

  • Ramzan M, Naz G, Parveen M, Jamil M, Gill S, Sharif HMA (2023) Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress. Plant Physiol Biochem 196:130–138

    CAS  Google Scholar 

  • Raza A (2022) Plant biotechnological tools: solutions for raising climate-resilient crop plants. Modern Phytomorphol 15:132–133

    Google Scholar 

  • Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y (2021) Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed (Brassica napus L.). Front Plant Sci 12:721681

    Google Scholar 

  • Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H (2022) Advances in “omics” approaches for improving toxic metals/metalloids tolerance in plants. Front Plant Sci 12:794373

    Google Scholar 

  • Repkina N, Ignatenko A, Holoptseva E, MiszalskI Z, Kaszycki P, Talanova V (2021) Exogenous methyl jasmonate improves cold tolerance with parallel induction of two cold-regulated (COR) genes expression in Triticum aestivum L. Plants 10:1421

    CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, ur Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214(269):277

    Google Scholar 

  • Rizwan M, Ali S, ur Rehman MZ, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut 248(358):367

    Google Scholar 

  • Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43:876–881

    CAS  Google Scholar 

  • Rukhsar Ul H, Kausar A, Hussain S, Javed T, Zafar S, Anwar S, Hussain S, Zahra N, Saqib M (2023) Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiol Biochem 195:341–350

    Google Scholar 

  • Salam A, Afridi MS, Javed MA, Saleem A, Hafeez A, Khan AR, Zeeshan M, Ali B, Azhar W, Sumaira (2022a) Nano-priming against abiotic stress: a way forward towards sustainable agriculture. Sustainability 14:14880

    CAS  Google Scholar 

  • Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, Zeeshan M, Wu J, Fan X, Gan Y (2022b) Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater 423:127021

    CAS  Google Scholar 

  • Salim BBM, Hikal MS, Osman HS (2019) Ameliorating the deleterious effects of saline water on the antioxidants defense system and yield of eggplant using foliar application of zinc sulphate. Ann Agricult Sci 64:244–251

    Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340

    CAS  Google Scholar 

  • Šebesta M, Nemček L, Urík M, Kolenčík M, Bujdoš M, Vávra I, Dobročka E, Matúš P (2020) Partitioning and stability of ionic, nano-and microsized zinc in natural soil suspensions. Sci Total Environ 700:134445

    Google Scholar 

  • Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, Ali EF (2021) Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10:421

    CAS  Google Scholar 

  • Shah AA, Aslam S, Akbar M, Ahmad A, Khan WU, Yasin NA, Ali B, Rizwan M, Ali S (2021) Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Plant Physiol Biochem 158:1–12

    CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6:241–248

    CAS  Google Scholar 

  • Sheteiwy MS, Ali DFI, Xiong Y-C, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21:1–21

    Google Scholar 

  • Shi T, Hu X, Guo L, Su F, Tu W, Hu Z, Liu H, Yang C, Wang J, Zhang J (2021) Digital mapping of zinc in urban topsoil using multisource geospatial data and random forest. Sci Total Environ 792:148455

    CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage 95:S37–S41

    CAS  Google Scholar 

  • Shkolnik MY (1974) Microelements in plant life. Nau¬ ka”, L

  • Singh A, Prasad SM, Singh S (2018a) Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environ Nanotechnol Monit Manag 9:42–49

    Google Scholar 

  • Singh A, Ná S, Afzal S, Singh T, Hussain I (2018b) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53:185–201

    CAS  Google Scholar 

  • Singh PK, Chakrabarty D, Dwivedi S, Kumar A, Singh SP, Sinam G, Niranjan A, Singh PC, Chatterjee S, Majumdar D (2022) Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.). Environ Pollut 297:118694

    CAS  Google Scholar 

  • Singh B, Natesan SKA, Singh B, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 36–44

  • Song Y, Jiang M, Zhang H, Li R (2021) Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules 26:2196

    CAS  Google Scholar 

  • Stanton C, Sanders D, Krämer U, Podar D (2022) Zinc in plants: integrating homeostasis and biofortification. Mol Plant 15:65–85

    CAS  Google Scholar 

  • Staroń A, Długosz O, Pulit-Prociak J, Banach M (2020) Analysis of the exposure of organisms to the action of nanomaterials. Materials 13:349

    Google Scholar 

  • Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    CAS  Google Scholar 

  • Sun Z, Xiong T, Zhang T, Wang N, Chen D, Li S (2019) Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology 28:175–188

    CAS  Google Scholar 

  • Sun L, Song F, Zhu X, Liu S, Liu F, Wang Y, Li X (2021) Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch Agron Soil Sci 67:245–259

    CAS  Google Scholar 

  • Sun L, Wang R, Ju Q, Xing M, Li R, Li W, Li W, Wang W, Deng Y, Xu J (2023) Mitigation mechanism of zinc oxide nanoparticles on cadmium toxicity in tomato. Front Plant Sci 14:1162372

    Google Scholar 

  • Thakur S, Asthir B, Kaur G, Kalia A, Sharma A (2021) Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat. Cereal Res Commun, 1–12

  • Thounaojam TC, Panda P, Choudhury S, Patra HK, Panda SK (2014) Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings. Protoplasma 251:61–69

    CAS  Google Scholar 

  • Ulhassan Z, Ali S, Gill RA, Mwamba TM, Abid M, Li L, Zhang N, Zhou W (2018) Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling. Ecotoxicol Environ Saf 161:634–647

    CAS  Google Scholar 

  • Ulhassan Z, Gill RA, Ali S, Mwamba TM, Ali B, Wang J, Huang Q, Aziz R, Zhou W (2019a) Dual behavior of selenium: insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere 225:329–341

    CAS  Google Scholar 

  • Ulhassan Z, Huang Q, Gill RA, Ali S, Mwamba TM, Ali B, Hina F, Zhou W (2019b) Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC Plant Biol 19:1–16

    Google Scholar 

  • Ulhassan Z, Khan I, Hussain M, Khan AR, Hamid Y, Hussain S, Allakhverdiev SI, Zhou W (2022) Efficacy of metallic nanoparticles in attenuating the accumulation and toxicity of chromium in plants: current knowledge and future perspectives. Environ Pollut 315:120390

    CAS  Google Scholar 

  • Ulhassan Z, Yang S, He D, Khan AR, Salam A, Azhar W, Muhammad S, Ali S, Hamid Y, Khan I (2023a) Seed priming with nano-silica effectively ameliorates chromium toxicity in Brassica napus. J Hazard Mater 131906

  • Ulhassan Z, Yang S, Khan AR, Hamid Y, Muhammad S, Azhar W, Salam A, Sheteiwy MS, Aftab T, Wei JA (2023b) Potential toxic effects of metal or metallic nanoparticles in plants and their detoxification mechanisms, emerging contaminants and plants: interactions, adaptations and remediation technologies. Springer, pp. 67–85

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya R, Tiwari M, Sharma N (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Google Scholar 

  • Wan B, Yan Y, Huang R, Abdala DB, Liu F, Tang Y, Tan W, Feng X (2019) Formation of Zn-Al layered double hydroxides (LDH) during the interaction of ZnO nanoparticles (NPs) with γ-Al2O3. Sci Total Environ 650:1980–1987

    CAS  Google Scholar 

  • Wan J, Wang R, Bai H, Wang Y, Xu J (2020) Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environ Sci Nano 7:2968–2981

    CAS  Google Scholar 

  • Wang X, Sun W, Zhang S, Sharifan H, Ma X (2018) Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environ Sci Technol 52:10040–10047

    CAS  Google Scholar 

  • Wang R, Sun L, Zhang P, Wan J, Wang Y, Xu J (2023) Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regul 100:85–96

    CAS  Google Scholar 

  • Waraich E, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Google Scholar 

  • Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371:299–312

    CAS  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    CAS  Google Scholar 

  • White PJ, Whiting SN, Baker AJ, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytologist, 201–207

  • Wu C, Dun Y, Zhang Z, Li M, Wu G (2020a) Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicol Environ Saf 190:110091

    CAS  Google Scholar 

  • Wu F, Fang Q, Yan S, Pan L, Tang X, Ye W (2020b) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27:26974–26981

    CAS  Google Scholar 

  • Wu J, Yu C, Hunag L, Wu M, Liu B, Liu Y, Song G, Liu D, Gan Y (2020c) Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in rice and Arabidopsis. Plant Growth Regul 90:163–171

    CAS  Google Scholar 

  • Wu J, Yu C, Huang L, Gan Y (2021a) A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. Physiol Plant 173:1120–1135

    CAS  Google Scholar 

  • Wu P, Cui P, Du H, Alves ME, Zhou D, Wang Y (2021b) Long-term dissolution and transformation of ZnO in soils: the roles of soil pH and ZnO particle size. J Hazard Mater 415:125604

    CAS  Google Scholar 

  • Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    CAS  Google Scholar 

  • Xu X, Wang Q, Li W, Hu T, Wang Q, Yin Y, Liu X, He S, Zhang M, Liang Y (2022) Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. Int J Biol Macromol 206:799–811

    CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    CAS  Google Scholar 

  • Yang S, Ulhassan Z, Shah AM, Khan AR, Azhar W, Hamid Y, Hussain S, Sheteiwy MS, Salam A, Zhou W (2021) Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiol Biochem 166:1001–1013

    CAS  Google Scholar 

  • Yasmin H, Mazher J, Azmat A, Nosheen A, Naz R, Hassan MN, Noureldeen A, Ahmad P (2021) Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicol Environ Saf 218:112262

    CAS  Google Scholar 

  • Youssef MS, Elamawi RM (2020) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ Sci Pollut Res 27:18972–18984

    CAS  Google Scholar 

  • Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv Kowsar). Sci Total Environ 738:140240

    CAS  Google Scholar 

  • Zaidi SHR, Zakari SA, Zhao Q, Khan AR, Shah JM, Cheng F (2019) Anthocyanin accumulation in black kernel mutant rice and its contribution to ROS detoxification in response to high temperature at the filling stage. Antioxidants 8:510

    CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    CAS  Google Scholar 

  • Zeeshan M, Hu YX, Iqbal A, Salam A, Liu YX, Muhammad I, Ahmad S, Khan AH, Hale B, Wu HY (2021) Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. Ecotoxicol Environ Saf 225:112738

    CAS  Google Scholar 

Download references

Funding

The research was funded by the National Key R&D Program of China (2022YFD1200400), Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22C130002), and National Natural Science Foundation of China (Grant No. U2202204).

Author information

Authors and Affiliations

Authors

Contributions

Ali Raza Khan: conceptualization; writing—original draft; and prepared illustrations. Wardah Azhar: conceptualization, review, and editing. Xingming Fan: review and editing. Zaid Ulhassan: writing, review, and editing. Abdul Salam: review and editing. Muhammad Ashraf: review and editing. Yihua Liu: review and editing. Yinbo Gan: conceptualization, review, and editing.

Corresponding author

Correspondence to Yinbo Gan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Azhar, W., Fan, X. et al. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives. Environ Sci Pollut Res 30, 110047–110068 (2023). https://doi.org/10.1007/s11356-023-29993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29993-6

Keywords

Navigation