Skip to main content

Advertisement

Log in

The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Poisoning by arsenic affects people worldwide, and many human illnesses and health issues, including neurotoxicity, have been linked to chronic exposure to arsenic. When exposed to arsenic, the body produces intracellular reactive oxygen species (ROS), which influence a variety of alterations in cellular activity and directly harm molecules through oxidation. Arsenic-induced lesions are improved by antioxidants with the ability to lower ROS levels. Therefore, the current research aimed to assess how well apigenin protected PC12 cells from the toxicity caused by inorganic arsenic salt (iAs). For 24 and 48 h, iAs and/or apigenin were applied to PC12 cells. Then, oxidative stress indicators like malondialdehyde (MDA), nitric oxide (NO), and ROS in addition to the enzymatic and non-enzymatic antioxidant molecules such as catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) were assessed. Moreover, after exposure to iAs, PC12 was examined for nuclear factor erythroid 2–related factor 2 (Nrf2) expression to clarify how apigenin manifests its neuroprotection. Furthermore, NF-kB p65 concentration and IL-1B, IL-6, and TNF-α mRNA expression were measured to assess neuroinflammation. Bax, caspase-3, and Bcl-2 levels were measured to investigate apigenin's potential to protect PC12 cells from iAs poisoning. The obtained results revealed that, the cell survival rate in the iAs group was significantly lower (P < 0.05), and the number of viable cells steadily increased after apigenin treatment. Furthermore, the study found that iAs decreased GSH, CAT, and SOD in the PC12 cells while increasing ROS, MDA, and NO levels. In PC12 cells, the capacity of iAs to cause oxidative stress was linked to the induction of neuroinflammation and apoptosis. Interestingly, apigenin pre-treatment of PC12 cells resulted in exceptional protection against iAs-induced neuroinflammation, oxidative stress, and apoptotic cell death. Nrf2 upregulation in PC12 cells may explain the neuroprotection effect of apigenin against iAs toxicity. In conclusion, the obtained results of the present study have clinical significance and indicate that apigenin is a promising candidate for shielding the nervous system from toxic effects caused by arsenic. These findings require further investigation using in vivo experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Al Aboud D, Baty RS, Alsharif KF, Hassan KE, Zhery AS, Habotta OA et al (2021) Protective efficacy of thymoquinone or ebselen separately against arsenic-induced hepatotoxicity in rat. Environ Sci Pollut Res Int 28(5):6195–6206. https://doi.org/10.1007/s11356-020-10955-1

    Article  CAS  Google Scholar 

  • Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE (2020) Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. Sci Total Environ 137969. https://doi.org/10.1016/j.scitotenv.2020.137969.

  • Al-Brakati AY, Kassab RB, Lokman MS, Elmahallawy EK, Amin HK, Abdel Moneim AE (2019) Role of thymoquinone and ebselen in the prevention of sodium arsenite-induced nephrotoxicity in female rats. Hum Exp Toxicol 38(4):482–493. https://doi.org/10.1177/0960327118818246

    Article  CAS  Google Scholar 

  • Almeer RS, Soliman D, Kassab RB, AlBasher GI, Alarifi S, Alkahtani S et al (2018) Royal Jelly Abrogates Cadmium-Induced Oxidative Challenge in Mouse Testes: Involvement of the Nrf2 Pathway. Int J Mol Sci 19(12):ijms19123979

    Article  Google Scholar 

  • Al-Megrin WA, Metwally DM, Habotta OA, Amin HK, Abdel Moneim AE, El-Khadragy M (2020) Nephroprotective effects of chlorogenic acid against sodium arsenite-induced oxidative stress, inflammation, and apoptosis. J Sci Food Agric. https://doi.org/10.1002/jsfa.10565

    Article  Google Scholar 

  • Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE (2022) Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-19166-2

    Article  Google Scholar 

  • Behl T, Makkar R, Sehgal A, Singh S, Sharma N, Zengin G et al (2021) Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int J Mol Sci 22(14):ijms22147432

    Article  Google Scholar 

  • Brown E, Yedjou CG, Tchounwou PB (2008) Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG(2)). Met Ions Biol Med 10:583–587

    Google Scholar 

  • Burnichon V, Jean S, Bellon L, Maraninchi M, Bideau C, Orsiere T et al (2003) Patterns of gene expressions induced by arsenic trioxide in cultured human fibroblasts. Toxicol Lett 143(2):155–62. https://doi.org/10.1016/S0378427403001711

    Article  CAS  Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208

    Article  Google Scholar 

  • Dkhil MA, Abdel Moneim AE, Bauomy AA, Khalil M, Al-Shaebi EM, Al-Quraishy S (2020) Chlorogenic acid prevents hepatotoxicity in arsenic-treated mice: role of oxidative stress and apoptosis. Mol Biol Rep 47(2):1161–1171. https://doi.org/10.1007/s11033-019-05217-4

    Article  CAS  Google Scholar 

  • El-Khadragy MF, Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mahgoub S et al (2021) Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 333:109333 (S0009-2797(20)31594-5)

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  • Gao AM, Ke ZP, Wang JN, Yang JY, Chen SY, Chen H (2013) Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34(8):1806–14. https://doi.org/10.1093/carcin/bgt108

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–8. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  Google Scholar 

  • Han XD, Zhang YY, Wang KL, Huang YP, Yang ZB, Liu Z (2017) The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO(2)-induced hepatotoxicity. Oncotarget 8(39):65302–65312. https://doi.org/10.18632/oncotarget.18582

    Article  Google Scholar 

  • He Z, Zhang Y, Zhang H, Zhou C, Ma Q, Deng P et al (2021) NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in Oli-neu cells. Ecotoxicol Environ Saf 223:112554. https://doi.org/10.1016/j.ecoenv.2021.112554

    Article  CAS  Google Scholar 

  • Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q et al (2021) Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 12:749035

    Article  CAS  Google Scholar 

  • Huang Z, Li J, Zhang S, Zhang X (2009) Inorganic arsenic modulates the expression of selenoproteins in mouse embryonic stem cell. Toxicol Lett 187(2):69–76 (S0378-4274(09)00055-1)

    Article  CAS  Google Scholar 

  • Hussein MM, Althagafi HA, Alharthi F, Albrakati A, Alsharif KF, Theyab A et al (2022) Apigenin attenuates molecular, biochemical, and histopathological changes associated with renal impairments induced by gentamicin exposure in rats. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20235-9

    Article  Google Scholar 

  • Kashyap P, Shikha D, Thakur M, Aneja A (2022) Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 46(4):e13950. https://doi.org/10.1111/jfbc.13950

    Article  CAS  Google Scholar 

  • Kassab RB, Lokman MS, Daabo HM, Gaber DA, Habotta OA, Hafez MM et al (2020) Ferulic acid influences Nrf2 activation to restore testicular tissue from cadmium-induced oxidative challenge, inflammation, and apoptosis in rats. J Food Biochem 44(12):e13505

    Article  CAS  Google Scholar 

  • Khan S, Vala JA, Nabi SU, Gupta G, Kumar D, Telang AG et al (2012) Protective effect of curcumin against arsenic-induced apoptosis in murine splenocytes in vitro. J Immunotoxicol 9(2):148–159. https://doi.org/10.3109/1547691X.2011.637530

    Article  CAS  Google Scholar 

  • Khan S, Telang AG, Malik JK (2013) DNA fragmentation, apoptosis and cell cycle arrest induced by sodium arsenite in cultured murine Sertoli cells: prevention by curcumin. Toxicol Environ Chem 95(6):1006–1018. https://doi.org/10.1080/02772248.2013.828883

    Article  CAS  Google Scholar 

  • Kharroubi W, Haj Ahmed S, Nury T, Andreoletti P, Sakly R, Hammami M et al (2017) Mitochondrial dysfunction, oxidative stress and apoptotic induction in microglial BV-2 cells treated with sodium arsenate. J Environ Sci (China) 51:44–51 (S1001-0742(16)30987-1)

    Article  CAS  Google Scholar 

  • Kim JK, Park SU (2020) Recent insights into the biological functions of apigenin. EXCLI J 19(984–991):2020–2579

    Google Scholar 

  • Li Z, Liu Y, Wang F, Gao Z, Elhefny MA, Habotta OA et al (2021) Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact 337:109392 (S0009-2797(21)00028-4)

    Article  CAS  Google Scholar 

  • Liu Y, Liang Y, Zheng B, Chu L, Ma D, Wang H et al (2020) Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats. Drug Des Devel Ther 14(1921–1931):247947

    Google Scholar 

  • Metwally DM, Alajmi RA, El-Khadragy MF, Yehia HM, Al-Megrin WA, Akabawy AMA et al (2020) Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J Funct Foods 75:104202. https://doi.org/10.1016/j.jff.2020.104202

    Article  CAS  Google Scholar 

  • Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of Action of Arsenic Trioxide1. Can Res 62(14):3893–3903

    CAS  Google Scholar 

  • Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo JJ (2004) Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways. Nutr Cancer 50(1):90–100. https://doi.org/10.1207/s15327914nc5001_12

    Article  CAS  Google Scholar 

  • Mumtaz F, Albeltagy RS, Diab MSM, Abdel Moneim AE, El-Habit OH (2020) Exposure to arsenite and cadmium induces organotoxicity and miRNAs deregulation in male rats. Environ Sci Pollut Res Int 27(14):17184–17193. https://doi.org/10.1007/s11356-020-08306-1

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  • Othman MS, Al-Bagawi AH, Obeidat ST, Fareid MA, Habotta OA, Moneim AEA (2021) Antitumor activity of zinc nanoparticles synthesized with berberine on human epithelial colorectal adenocarcinoma (Caco-2) cells through acting on Cox-2/NF-kB and p53 pathways. Anticancer Agents Med Chem 22(10):2002–2010. https://doi.org/10.2174/1871520621666211004115839

    Article  CAS  Google Scholar 

  • Paredes-Gonzalez X, Fuentes F, Jeffery S, Saw CL, Shu L, Su ZY et al (2015) Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm Drug Dispos 36(7):440–451. https://doi.org/10.1002/bdd.1956

    Article  CAS  Google Scholar 

  • Perker MC, Orta Yilmaz B, Yildizbayrak N, Aydin Y, Erkan M (2019) Protective effects of curcumin on biochemical and molecular changes in sodium arsenite-induced oxidative damage in embryonic fibroblast cells. J Biochem Mol Toxicol 33(7):e22320. https://doi.org/10.1002/jbt.22320

    Article  CAS  Google Scholar 

  • Rahaman MS, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T et al (2020) Investigating the protective actions of D-pinitol against arsenic-induced toxicity in PC12 cells and the underlying mechanism. Environ Toxicol Pharmacol 74:103302 (S1382-6689(19)30177-2)

    Article  CAS  Google Scholar 

  • Rahaman MS, Banik S, Akter M, Rahman MM, Sikder MT, Hosokawa T et al (2020) Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. Ecotoxicol Environ Saf 200:110756 (S0147-6513(20)30595-9)

    Article  CAS  Google Scholar 

  • Rahman MM, Uson-Lopez RA, Sikder MT, Tan G, Hosokawa T, Saito T et al (2018) Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis. Chemosphere 196:453–466. https://doi.org/10.1016/j.chemosphere.2017.12.149

    Article  CAS  Google Scholar 

  • Ramadan SS, Almeer R, Albasher G, Abdel Moneim AE (2021) Lycopene mitigates arsenic-induced nephrotoxicity with activation of the Nrf2 pathway in mice. Toxin Rev 1–11. https://doi.org/10.1080/15569543.2021.1891938

  • Ruela-de-Sousa RR, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1(1):e19–e19. https://doi.org/10.1038/cddis.2009.18

    Article  CAS  Google Scholar 

  • Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A et al (2019) The Therapeutic Potential of Apigenin. Int J Mol Sci 20(6):ijms20061305

    Article  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526–39. https://doi.org/10.1038/cdd.2014.216

    Article  CAS  Google Scholar 

  • Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E et al (2020) Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 11:694. https://doi.org/10.3389/fphys.2020.00694

    Article  Google Scholar 

  • Shavali S, Sens DA (2008) Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells. Toxicol Sci 102(2):254–61. https://doi.org/10.1093/toxsci/kfm302

    Article  CAS  Google Scholar 

  • Shayan M, Mehri S, Razavi BM, Hosseinzadeh H (2022) Minocycline as a Neuroprotective Agent in Arsenic-Induced Neurotoxicity in PC12 Cells. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03376-3

    Article  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  Google Scholar 

  • Sun H, Yang Y, Shao H, Sun W, Gu M, Wang H et al (2017) Sodium Arsenite-Induced Learning and Memory Impairment Is Associated with Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Hippocampus. Front Mol Neurosci 10:286. https://doi.org/10.3389/fnmol.2017.00286

    Article  CAS  Google Scholar 

  • Umar M, Muzammil S, Zahoor MA, Mustafa S, Ashraf A, Hayat S et al (2022) Fisetin Attenuates Arsenic-Induced Hepatic Damage by Improving Biochemical, Inflammatory, Apoptotic, and Histological Profile: In Vivo and In Silico Approach. Evid Based Complement Alternat Med 2022:1005255. https://doi.org/10.1155/2022/1005255

    Article  Google Scholar 

  • Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI (2006) Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochem Pharmacol 72(6):681–692. https://doi.org/10.1016/j.bcp.2006.06.010

    Article  CAS  Google Scholar 

  • Wang S, Li X, Song X, Geng Z, Hu X, Wang Z (2012) Rapid equilibrium kinetic analysis of arsenite methylation catalyzed by recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT). J Biol Chem 287(46):38790–9 (S0021-9258(20)62342-0)

    Article  CAS  Google Scholar 

  • Xu X, Li M, Chen W, Yu H, Yang Y, Hang L (2016) Apigenin Attenuates Oxidative Injury in ARPE-19 Cells thorough Activation of Nrf2 Pathway. Oxid Med Cell Longev 2016:4378461. https://doi.org/10.1155/2016/4378461

    Article  CAS  Google Scholar 

  • Yan X, Qi M, Li P, Zhan Y, Shao H (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7(50):179

    Google Scholar 

  • Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi J et al (2018) Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology 394:45–53. https://doi.org/10.1016/j.tox.2017.12.001

    Article  CAS  Google Scholar 

  • Zhu X-X, Yao X-F, Jiang L-P, Geng C-Y, Zhong L-F, Yang G et al (2014) Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. Food Chem Toxicol 70:144–150. https://doi.org/10.1016/j.fct.2014.05.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R96), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R96), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

R. Almeer and N.M. Alyami designed the project, performed the experiments, and drafted and edited the manuscript. R. Almeer analyzed the data, interpreted the data, supplied the chemicals and reagents, and drafted and edited the manuscript. All authors approved the final draft.

Corresponding author

Correspondence to Rafa Almeer.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeer, R., Alyami, N.M. The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells. Environ Sci Pollut Res 30, 106625–106635 (2023). https://doi.org/10.1007/s11356-023-29884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29884-w

Keywords

Navigation