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Abstract
Pesticides applied to agricultural land have been shown to decrease the quality of water entering the Great Barrier Reef 
lagoon. This issue is addressed by the Reef 2050 Water Quality Improvement Plan which includes a pesticide reduction 
target. As part of a wider educational strategy, one method that could help meet the target is to provide stakeholders with 
information that assists in the selection and use of pesticide active ingredients (PAIs) that pose a lower risk to aquatic 
environments compared to those currently used. This study developed a Pesticide Decision Support Tool (PDST) in col-
laboration with stakeholders for the sugar cane industry. The PDST covers all PAIs registered and applied to sugar cane in 
Australia and four additional PAIs registered for use on crops grown in rotation with sugar cane. The PDST incorporates 
both the measure of mobility and persistence of a PAI and the measure of effect, which is based on the PAI application rate 
and ecotoxicity threshold value. The aquatic risk, which is the product of the measure of effect and the measure of mobil-
ity and persistence, is a measure of the likelihood that a PAI will reach the aquatic environment and cause harmful effects. 
Insecticide active ingredients (e.g., cadusafos, chlorpyrifos) posed the greatest aquatic risk, followed by herbicide active 
ingredients (e.g., MSMA, metolachlor), while fungicide AIs typically had a lower aquatic risk. An interactive spreadsheet 
allows characteristics, including application rate and tank mixes, to be considered when assessing the potential risk. While 
focusing on sugar cane, the results are equally appropriate to other crops that use the same PAIs provided the application 
rates are corrected to the new crop. In addition, the approach used in the PDST can be applied internationally and to any 
PAIs with sufficient toxicity, mobility, and persistence data.

Keywords  Pesticide active ingredients · Aquatic risk · Mobility · Persistence · Toxicity · Sugar cane

Introduction

Great Barrier Reef (GBR) ecosystems are in decline, with 
suspended sediment, nutrients, and pesticides identified as 
the main factors reducing water quality (Brodie et al. 2019). 
Despite comprising only around 1% of the total land in the 
GBR catchments, it has been demonstrated that sugar cane 
cultivation is one of the main contributors to the pesti-
cide load. This is particularly the case in the Wet Tropics, 
Burdekin, Mackay Whitsunday, and Burnett Mary natural 
resource management (NRM) regions (Bartley et al. 2017), 
where the area devoted to sugar cane production comprises 
a larger percentage of the catchment land use (Warne et al. 
2020). A recent study on the pesticide toxicity hazard in 
Australia identified the sugar cane-growing areas of Far 
North Queensland as aquatic ecotoxicity hazard hotspots 
(Navarro et al. 2021).
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Being much closer to the point of pesticide applica-
tion (i.e., agriculture), freshwater environments experi-
ence a greater risk from pesticide active ingredients (PAIs) 
than ecosystems further away such as nearshore or offshore 
marine environments (Brodie and Landos 2019). For exam-
ple, O'Brien et al. (2016) found that concentrations of photo-
system II (PSII) herbicide AIs ametryn, atrazine, and diuron 
frequently exceeded the proposed guideline values in Barratta 
Creek in the Burdekin region. Further, diuron and metolachlor 
concentrations exceeded guideline values in 84 and 53% of 
water samples collected from Sandy Creek in the Mackay 
Whitsunday region, respectively (Wallace et al. 2017). Lower 
PAI concentrations were detected in nearshore environments 
in the Wet Tropics compared to the river mouths, with no 
PAIs detected in mid- and outer-shelf reefs (Shaw et al. 2010).

Efforts to reduce pesticide inputs into the aquatic environ-
ment have primarily focused on the regulation of identified 
problem PAIs, improved farm management practices, and 
new application techniques. An additional complementary 
approach is to substitute problematic PAIs with alternative 
PAIs that pose a lower risk to aquatic environments. Factors 
involved in selecting lower risk PAIs include toxicity, sorp-
tion to soil, loss to runoff, application rate, and environmen-
tal half-life (Silburn et al. 2023). While there is a shift away 
from the use of traditional PSII herbicides such as diuron 
(driven by regulation) in the GBR catchments, many of the 
alternative herbicides being used as substitutes may pose a 
similar environmental risk (Davis et al. 2014). Consequently, 
there is a need for a simple tool to assess and compare the 
aquatic risk of PAIs registered for use on sugar cane.

Pesticide risk indicators are tools that can help support 
decision-making by assessing the risks associated with pes-
ticide use (Kookana and Oliver 2018). There are a number 
of pesticide risk indicators currently available, and these 
range from very simple tools with few input parameters to 
complex models (e.g., Padovani et al. 2004; Kookana et al. 
2005; Juraske et al. 2007; Le Bellec et al. 2015; Strasse-
meyer et al. 2017; Astaykina et al. 2020). Data availability 
is one limitation of the more complex pesticide risk indi-
cators. Consequently, some indicators assess risk based on 
readily available physicochemical properties and the toxic-
ity of the PAIs alone (e.g., Kudsk et al. 2018), while others 
also incorporate site-specific characteristics, such as rainfall, 
slope, and temperature (e.g., Kookana et al. 2005; Le Bellec 
et al. 2015). Pesticide risk indicators that include exposure-
toxicity ratios (i.e., the ratio between the PAI concentration 
in the environment and the toxicity of the PAI to relevant 
organisms) are considered more suitable for estimating the 
environmental risk than those that do not (Feola et al. 2011). 
Several pesticide risk indicators use the organic carbon-
water partition coefficient (KOC) as an indicator of pesticide 
transport in runoff (Kookana et al. 2005; Dabrowski and 
Balderacchi 2013). Further, many indicators apply acute 

toxicity data to evaluate the toxicity to aquatic organisms 
(e.g., Kookana et al. 2005; Juraske et al. 2007; Le Bellec 
et al. 2015), though chronic toxicity data are more suitable 
for estimating the longer-term risk from persistent ongoing 
exposure to levels of PAIs below acute toxicity thresholds. 
In order for pesticide risk indicators to be useful in a policy 
development and assessment context, Maud et al. (2001) 
developed a list of desirable characteristics, which included 
using readily available data, being simple and transparent, 
avoiding controversial weighting schemes, and being able to 
clearly differentiate between different products.

In the current study, we developed a simple Pesticide 
Decision Support Tool (PDST) to assist famers, agrono-
mists, and resellers select PAIs that pose a lower ecological 
risk in receiving waters. The PDST included both the meas-
ure of mobility and persistence of a PAI and the measure 
of effect, which was based on the PAI application rate and 
inherent toxicity using ecotoxicity thresholds. The ecotoxic-
ity thresholds were derived using chronic toxicity data and 
either species sensitivity distributions or the assessment 
factor method. Data from freshwater species were prefer-
entially used to derive the ecotoxicity thresholds given that 
freshwater species are more likely to be exposed to higher 
pesticide concentrations than marine species, as freshwater 
environments are the primary receptor for agricultural runoff 
in GBR catchments. The PDST does not attempt to predict 
the concentration of a PAI in the aquatic environment at any 
individual point, but rather estimates the likelihood that a PAI 
will reach a waterway and cause harmful effects. The current 
study included 47 PAIs registered for use on sugar cane or 
crops grown in rotation with sugar cane or that are widely 
used in sugar cane-growing regions in Queensland, Australia.

Methods

Stakeholder engagement

The PDST was developed in consultation with stakeholders 
from government and key pesticide users including farm-
ers, resellers, extension officers, and agronomists. Twenty-
three stakeholder meetings were held during 2019 and early 
2020 to obtain information about relevant pesticide usage, 
key factors to consider, how simple or complex the PDST 
should be, the best format for presenting the information, 
and whether draft versions of the PDST were understand-
able, simple to use, and fit for purpose.

Active ingredient selection

A total of 47 PAIs were included in the PDST (Table S1 
of the Electronic Supplementary Material (ESM)). The 
majority are registered for use in sugar cane and were 
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selected by searching the Public Chemical Registration 
Information System (PubCRIS) (APVMA 2019), which 
is maintained by the Australian Pesticides and Veterinary 
Medicines Authority (APVMA). The list was screened 
by industry experts to identify PAIs currently applied to 
sugar cane, resulting in 42 PAIs. While wetting agents, 
adjuvants, and metallic PAIs are also registered for use in 
sugar cane, they were not included in the current study due 
to the general lack of appropriate fate and effect data. In 
Queensland, Australia, sugar cane is often grown in rota-
tion with crops such as mung bean, soybean, corn (maize), 
and rice. Therefore, four PAIs used on these rotation crops, 
chlorothalonil, fluazifop-P-butyl, haloxyfop, and terbuth-
ylazine, were also included. Finally, metsulfuron-methyl 
was included as it is used by sugar mills for weed control 
of cane train corridors (Rob Sluggett, pers. comm). Of the 
47 PAIs in the PDST, 32 are herbicides, 9 are insecticides, 
5 are fungicides, and 1 is a nematicide (Table 1). All of 
the 47 PAI included in the PDST are currently registered 
for use in Australia.

Active ingredient application rates

Pesticide labels for each PAI were collected from PubCRIS 
(APVMA 2019). The concentration of PAI in the product, 
usually in units of g/kg or g/L, was expressed as a percent-
age. The minimum and maximum product application rates 
to sugar cane in units of kg/ha or L/ha were obtained from 
the label, with the PAI application rate determined by mul-
tiplying the product application rate and PAI concentration 
percentage. This data determines the concentration of each 
PAI applied to a unit of land. The insecticide imidacloprid 
is used in both liquid and slow release pellet forms, with 
the latter being applied once every 4 years (although until 
recently its application rate was once every 3 years). Both 
forms of imidacloprid were considered in the PDST, with 
the slow-release application rate divided by four to obtain 
an estimated annual application rate to facilitate compari-
son with the liquid form as the formulation is specifically 
designed (and tested) to release an equal dosage of imida-
cloprid each year for a 4-year period. In the case of the PAIs 
used for rotation crops, the application rates to sweet corn 
were used for chlorothalonil, while the application rates to 
soybeans were used for fluazifop-P-butyl, haloxyfop, and 
terbuthylazine. Of the four rotation crops, chlorothalonil 
can only be applied to corn, fluazifop-P-butyl can only 
be applied to soybeans, and haloxyfop and terbuthylazine 
can both be applied to soybean and mung bean at similar 
application rates. A representative application rate of 0.005 
to 0.007 kg of PAI per hectare (kg PAI/ha) was used for 
metsulfuron-methyl (Allan Blair, pers. comm.). Product and 
PAI application rates and concentration percentage for each 
PAI are provided in Table S2, ESM.

Physicochemical properties

Physicochemical properties of the selected PAIs including solu-
bility, the organic carbon-water partition coefficient (KOC), acid 
dissociation constant (pKa), degradation half-life in soil and water, 
and octanol-water partition coefficient (KOW) were collected from 
the Pesticide Properties Database (PPDB) (University of Hertford-
shire 2013) and US EPA EPI Suite (US EPA 2012) (Table S1). 
As experimental KOC values were not available for all PAIs in the 
PPDB, KOC values predicted using the OPEn structure–activity 
Relationship App (OPERA) model were collected from the US 
EPA CompTox Chemistry Dashboard (US EPA 2019c).

Water quality guideline values and ecotoxicity 
threshold values

Proposed freshwater Australian and New Zealand default 
guideline values (DGVs) or ecotoxicity threshold values 
(ETVs) were used as the ecotoxicity thresholds for the PAIs. 
Proposed DGVs were obtained from the Queensland Depart-
ment of Environment and Science (DES) (DES 2019), with 
earlier versions of the proposed DGVs (available in King et al. 
(2017a) and King et al. (2017b)). In cases where proposed 
DGVs were not available, ETVs were derived as part of this 
study using the same methodology proposed by Warne et al. 
(2018) for establishing DGVs. Briefly, this involved collating 
ecotoxicity data from the ECOTOX Knowledgebase (US EPA 
2019a) and the OPP (Office of the Pesticide Program) Pesti-
cide Ecotoxicity database (US EPA 2019b) and then screening 
and evaluating the quality of the data using the aforemen-
tioned methodology. Acceptable data were used to calculate 
a single toxicity value for each species, which were then used 
to generate a species sensitivity distribution using the Bur-
rlioz V2 (CSIRO 2016) software package to determine the 
concentration that should protect 99%, 95%, 90%, and 80% 
of species (i.e., PC99, PC95, PC90, and PC80). PC95 values 
were used for the PDST, with the exception of PAIs with a 
log KOW of 4 or greater, where the PC99 was used as recom-
mended by Warne et al. (2018) due to the potential of these 
PAIs to bioaccumulate (ANZECC and ARMCANZ 2000). 
In cases where there were not sufficient acceptable toxicity 
data, ETVs were estimated using the less reliable Australian 
and New Zealand Assessment Factor method (Warne 2001). 
Briefly, this involved selecting the single lowest toxicity value 
and dividing it by an appropriate assessment factor. All ETVs 
were expressed as μmol/L, as this allows the toxicity of the 
PAIs to be compared and ranked.

Measure of effect

The measure of effect indicates the potential of a PAI to 
exert harmful effects on aquatic organisms and incorporates 
the inherent toxicity of the PAI and the amount of that PAI 
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Table 1   The proposed freshwater default guideline values (DGVs) and ecotoxicity threshold values (ETVs) for the studied pesticide active ingre-
dients and the method used to derive them and their reliability

AF assessment factor, SSD species sensitivity distribution
a These chemicals have log KOW values greater than four and are classed as potential biomagnifiers. Therefore, we have used PC99 for these 
chemicals, rather than PC95 as recommended in Warne et al. (2018)
b These ETVs could not be adjusted for biomagnification as they were not derived using the species sensitivity distribution method

Pesticide active ingredient Chemical class Limit used (μmol/L) Type of limit Derivation method 
(reliability)

2,4-D Herbicide 0.19 ETV (current study) SSD (high)
Ametryn Herbicide 0.00044 Proposed DGV (King et al. 2017a) SSD (high)
Amicarbazone Herbicide 0.0083 ETV (current study) SSD (low)
Asulam Herbicide 0.94 ETV (current study) SSD (moderate)
Atrazine Herbicide 0.018 Proposed DGV (DES 2019) SSD (very high)
Bifenthrin Insecticide 0.00000043 ETV (current study) SSD (low)
Cadusafos Insecticide 0.0000067 ETV (current study) AF (unknown)
Carbofuran Insecticide 0.0090 ETV (current study) SSD (very high)
Chlorothalonil Fungicide 0.0018 Proposed DGV (King et al. 2017b) SSD (high)
Chlorpyrifos Insecticide 0.00000013a ETV (current study) SSD (very high)
Clothianidin Insecticide 0.0012 ETV (Spilsbury 2018) SSD (low)
Dicamba Herbicide 0.28 ETV (Oekotoxzentrum 2020) SSD (high)
Diquat dibromide Herbicide 0.0032 ETV (current study) SSD (low)
Diuron Herbicide 0.0030 Proposed DGV (King et al. 2017a) SSD (high)
Fipronil Insecticide 0.000020a ETV (current study) SSD (moderate)
Fluazifop-P-butyl Herbicide 0.012a,b ETV (current study) AF (unknown)
Fluensulfone Nematicide 0.041 ETV (current study) SSD (moderate)
Flumioxazin Herbicide 0.000012 ETV (current study) SSD (moderate)
Fluroxypyr Herbicide 1.2 Proposed DGV (King et al. 2017b) SSD (moderate)
Flutriafol Fungicide 0.79 ETV (current study) SSD (low)
Glufosinate ammonium Herbicide 0.48 ETV (current study) SSD (low)
Glyphosate Herbicide 1.5 Proposed DGV (King et al. 2017a) SSD (moderate)
Halosulfuron-methyl Herbicide 0.00011 ETV (current study) SSD (low)
Haloxyfop Herbicide 5.5 Proposed DGV (King et al. 2017b) SSD (low)
Hexazinone Herbicide 0.0044 Proposed DGV (King et al. 2017a) SSD (low)
Imazapic Herbicide 0.0015 Proposed DGV (King et al. 2017a) SSD (very low)
Imidacloprid Insecticide 0.00047 Proposed DGV (King et al. 2017a) SSD (moderate)
Isoxaflutole Herbicide 0.0013 Proposed DGV (King et al. 2017a) SSD (low)
MCPA Herbicide 0.011 ETV (Spilsbury 2018) SSD (very high)
Metolachlor Herbicide 0.0016 Proposed DGV (King et al. 2017a) SSD (very high)
Metribuzin Herbicide 0.012 Proposed DGV (King et al. 2017a) SSD (high)
Metsulfuron-methyl Herbicide 0.000063 Proposed DGV (King et al. 2017a) SSD (moderate)
MSMA Herbicide 0.0050 ETV (current study) AF (unknown)
Paraquat dichloride Herbicide 0.011 Proposed DGV (DES 2019) SSD (moderate)
Pendimethalin Herbicide 0.00017a Proposed DGV (King et al. 2017b) SSD (moderate)
Permethrin Insecticide 0.000026a Proposed DGV (DES 2019) SSD (moderate)
Picloram Herbicide 2.3 Proposed DGV (DES 2019) SSD (low)
Propiconazole Fungicide 0.029 Proposed DGV (King et al. 2017b) SSD (moderate)
S-Metolachlor Herbicide 0.00081 ETV (current study) SSD (low)
Tebuconazole Fungicide 0.017 ETV (Oekotoxzentrum 2020) SSD (moderate)
Terbuthylazine Herbicide 0.0052 Proposed DGV (King et al. 2017b) SSD (very high)
Terbutryn Herbicide 0.0015 Proposed DGV (King et al. 2017b) SSD (moderate)
Triadimenol Fungicide 0.41 ETV (current study) SSD (moderate)
Trichlorfon Insecticide 0.00013 ETV (current study) SSD (very high)
Trifloxysulfuron sodium Herbicide 0.00081 ETV (current study) SSD (low)
Trifluralin Herbicide 0.0000098a ETV (current study) SSD (moderate)
Trinexapac-ethyl Herbicide 0.37 ETV (current study) SSD (low)
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that can be applied to an area of land for the purposes of pest 
management in the relevant cropping situation. The measure 
of effect for each PAI can be considered a surrogate for an 
exposure to toxicity ratio and was calculated using Eq. 1:

where DGVPAI is the default guideline value for the PAI 
and ETVPAI is the ecotoxicity threshold value for the PAI in 
μmol/ML. The maximum application rate is in μmol PAI/
ha. Further information about the PAI application rates and 
DGVs/ETVs can be found in the sections above.

Measure of mobility and persistence

The measure of mobility and persistence indicates the poten-
tial of a PAI to move from farmland into the aquatic environ-
ment via runoff and to persist in that environment. KOC was 
used as an indicator of mobility. To evaluate the suitability 
of KOC for predicting mobility, experimental runoff loss data 
from field trials from the Wet Tropics region (Fillols et al. 
2018) were compared with KOC. The experimental runoff 
data were for two different soil types, a well-drained deep 
sandy soil and a poorly drained hydrosol soil, both with a 
green cane trash blanket with simulated rainfall applied 2 
days after pesticide application. The PAIs were ranked in 
terms of their mobility (e.g., proportion of PAI loss) in the 
sandy soil and hydrosol, and each was then compared with 
the rank of the corresponding KOC values using a Spear-
man rank correlation coefficient test. For both soil types, 
there was a negative trend between ranked experimental PAI 
loss and ranked KOC (Figure S1), but the correlation was 
only statistically significant for the hydrosol (r = − 0.592, 
P = 0.017). However, when negatively charged MCPA was 
removed from the sandy soil comparison, the correlation 
coefficient between runoff loss and KOC became significant 
(r = − 0.607, P = 0.019). Weak linear relationships, with 
R2 values of 0.432 and 0.232, were observed between log 
KOC values and PAI losses in hydrosols and sandy soil, 

(1)Measure of effect =
Maximum application rate

DGV
PAI

or ETV
PAI

respectively (Fig. 1). The relationship between log KOC and 
experimental runoff loss from the hydrosol soil was used 
to predict the percent of pesticide transported from soil for 
each PAI (Eq. 2):

Percent of PAI transported was converted to proportion 
of PAI transported by dividing by 100. The relationship 
between KOC and proportion of PAI transported is curvilin-
ear and does not assume that the gradient equals 1.

Degradation half-life in soil and water was used as a sur-
rogate for persistence. The measure of mobility and per-
sistence was calculated as the product of the soil half-life 
(t1/2 soil), the aqueous phase half-life (t1/2 water), and the pro-
portion of pesticide transported from soil (Eq. 3):

Results and discussion

Measure of effect

Of the 47 PAIs included in the PDST, proposed DGVs were 
available for 21. The Swiss have developed chronic water 
quality standards for dicamba and tebuconazole (Oeko-
toxzentrum 2020), and the data used to develop these stand-
ards were extracted to generate ETVs using the Australian 
and New Zealand derivation method (Warne et al. 2018). 
Further, Spilsbury (2018) derived ETVs for clothianidin 
and MCPA using the method of Warne et al. (2018). ETVs 
were derived for the other 22 PAIs as part of the current 
study (Section S1 of the ESM). For 19 of the 22 PAIs, there 
were sufficient toxicity data (i.e., for at least five species 
from four taxonomic groups) available to derive ETVs using 
the preferred species sensitivity distribution method (Warne 
et al. 2018). The remaining three PAIs, cadusafos,  fluazi-
fop-P-butyl, and MSMA, did not have sufficient ecotoxicity 
data to use the species sensitivity distribution approach, so 

(2)
Percent of PAI transported = −10.076 × log KOC + 39.123

(3)
Measure of mobility and persistence

= t1∕2 soil × t1∕2 water × proportion of PAI transported

Fig. 1   Linear regression of log 
KOC and experimental percent 
of PAI transported for hydrosol 
and sandy soil
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the Australian and New Zealand assessment factor method 
(Warne 2001) was used to derive their ETVs.

All proposed DGVs or ETVs used in this study are listed 
in Table 1, along with their derivation method and reliabil-
ity. Their reliability was determined using the method in 
Warne et al. (2018) which considers the type of toxicity data 
(chronic or acute), the number of phyla and species there 
are data available for, and the fit of the species sensitivity 
distribution to the toxicity data. The method classifies each 
DGV and ETV as having a very low, low, moderate, high, or 
very high reliability. Insecticide AIs bifenthrin, cadusafos, 
and chlorpyrifos were the most toxic, though it should be 
noted that chlorpyrifos and bifenthrin have a log KOW greater 
than 4, so the PC99 was used for the ETV, rather than the 
PC95 for non-bioaccumulating PAIs. There was also very 
limited toxicity data available for cadusafos, so the ETV was 
derived using the assessment factor method, which is less 
scientifically rigorous than the species sensitivity distribu-
tion method, and ETVs derived using this method are often 
more conservative (lower) than values derived by the species 
sensitivity distribution method (Warne et al. 2018).

A set of DGVs or ETVs (PC99, PC95, PC90, and PC80) 
was derived for each PAI from chronic or converted acute 
toxicity data to protect against adverse effects from long-term 
exposure. In contrast, many other pesticide risk indicators use 
acute toxicity values to determine the risk to individual aquatic 
species, such as fish, daphnids, and algae (e.g., Juraske et al. 
2007; Kookana and Oliver 2018). Dabrowski and Balderacchi 
(2013) used species sensitivity distributions to derive toxic-
ity values for their predicted relative risk (PRRI) indicator, 
but this was also based on acute data. The toxicity data used 
in deriving the species sensitivity distribution and PC val-
ues for each PAI in this study were selected depending on 
whether the data were unimodal or bimodal. If the data were 
unimodal toxicity data for all species were used, whereas if 
the data were bimodal, then only the toxicity data for the most 
sensitive group of organisms were used (Warne et al. 2018). 
Which groups of organisms were compared depended on the 
mode of action of the PAI. For example, for an insecticide 
AI, the sensitivity of arthropods (including insects) would 
be compared to all other organisms, and for a herbicide AI, 
the sensitivity of phototrophs would be compared to all other 
organisms. With bimodal data, this approach ensures that the 
PC values provide the desired level of protection to the most 
sensitive group of organisms.

The potential of a PAI to induce an adverse effect will 
depend on both its inherent toxicity and the exposure con-
centration. The application rate of each PAI was used as a 
surrogate for exposure, with the maximum permitted appli-
cation rate selected as the default value to permit a uniform 
comparison of the risk for all PAIs. A broadcast or blanket 
spray regime, where the PAI is applied to the whole hectare, 
was also assumed in the measure of effect calculations.

The measure of effect values ranged from 0.04 for the 
herbicide AI haloxyfop to 21,276,596 for the insecti-
cide AI chlorpyrifos (Table 2). There was approximately 
a 2,000,000-fold variation in measure of effect values for 
herbicide AIs, a 14,000-fold variation in measure of effect 
values for insecticide AIs, and a 14,000-fold variation in 
measure of effect values for fungicide AIs. The application 
rates had a significant effect on the measure of effect values. 
This is illustrated by the herbicide AI metsulfuron-methyl, 
which was the seventh most toxic PAI based on its ETV 
but was ranked 30th based on measure of effect due its low 
maximum application rate (0.007 kg PAI/ha). In contrast, 
herbicide AI MSMA was the 24th most toxic PAI based on 
its ETV, but as it had the highest maximum application rate 
of any of the studied PAIs (4.75 kg PAI/ha), it was ranked 
11th based on measure of effect.

Pesticide active ingredients are not always applied at their 
maximum permitted rate, so the measure of effect was also cal-
culated based on the minimum and average application rates. 
This changed the measure of effect values but had little dif-
ference on the order of PAIs (Figure S49). The purpose of the 
PDST is to allow farmers, agronomists, and resellers to select 
PAIs that pose a lower risk to the aquatic environment, so it is 
the ranking, rather than the absolute value, that is important. 
Therefore, the effect of using different application rates on the 
measure of effect values was tested using a Spearman rank 
correlation coefficient test to compare the rank of measure of 
effect values based on maximum, minimum, and average appli-
cation rates. The Spearman rank correlation coefficient (r) was 
at least 0.95, and the P value was < 0.001 for all comparisons.

Measure of mobility and persistence

KOC was selected as a surrogate for mobility in the PDST. 
Several other pesticide risk indicators have also used KOC as 
an indicator of transport (Kookana et al. 2005; Dabrowski 
and Balderacchi 2013), while Rice et al. (2010) found that 
KOC correlated reasonably well with experimental pesticide 
runoff (R2 = 0.60). Experimental KOC values were not avail-
able for all PAIs, but there was generally a good relationship 
between experimental KOC values from the PPDB (Univer-
sity of Hertfordshire 2013) and KOC values modelled using 
OPERA (US EPA 2019c) when both were available (Fig-
ure S50). The largest difference between experimental and 
modelled KOC values were for diquat dibromide (1917-fold 
difference) and paraquat dichloride (937-fold difference). 
Both these PAIs are divalent cations, meaning the OPERA 
model may not be suitable for such compounds. Conse-
quently, experimental KOC values were used where possible 
and OPERA values were only used when experimental val-
ues were not available. Experimental values were available 
for approximately 66% of the studied PAIs, including diquat 
dibromide and paraquat dichloride.
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Table 2   The measure of 
mobility and persistence, 
measure of effect (based on 
the maximum application 
rate), and aquatic risk for the 
sugar cane active ingredients. 
Pesticide active ingredients with 
a lower aquatic risk are less 
environmentally harmful, while 
pesticide active ingredients with 
a higher aquatic risk are more 
environmentally harmful. NB: 
values have been rounded off

Pesticide active ingredient Measure of mobility and 
persistence

Measure of effect 
(maximum)

Aquatic risk (× 100)

2,4-D 18 52 9
Ametryn 155 20,000 31,000
Amicarbazone 305 350 1100
Asulam 48 16 8
Atrazine 1138 782 8900
Bifenthrin 0 208,333 21
Cadusafos 182 2,197,802 4,000,000
Carbofuran 35 1500 520
Chlorothalonil 0.13 3450 5
Chlorpyrifos 4 21,276,596 850,000
Clothianidin 3938 1724 68,000
Dicamba 87 5 4
Diquat dibromide 0 335 < 1
Diuron 136 2478 3400
Fipronil 777 5618 43,600
Fluazifop-P-butyl 40 48 20
Fluensulfone 26 160 40
Flumioxazin 4 85,366 3500
Fluroxypyr 27 2 1
Flutriafol 9977 1 100
Glufosinate ammonium 6 10 1
Glyphosate 12 13 2
Halosulfuron - methyl 40 2074 830
Haloxyfop 22 0.04 < 1
Hexazinone 1274 480 6100
Imazapic 6 234 15
Imidacloprid (L) 1046 2083 43,600
Imidacloprid (SR) 1046 4167 21,800
Isoxaflutole 0.06 326 < 1
MCPA 71 494 350
Metolachlor 1170 3757 44,000
Metribuzin 168 600 1000
Metsulfuron-methyl 268 292 780
MSMA 1354 5831 79,000
Paraquat dichloride 0 148 < 1
Pendimethalin 0 30,531 3
Permethrin 0 10,000 1
Picloram 1871 0.32 6
Propiconazole 37 3 1
S - Metolachlor 69 7513 5200
Tebuconazole 242 24 58
Terbuthylazine 67 875 830
Terbutryn 100 3056 3100
Triadimenol 1345 0.25 3
Trichlorfon 6 17,647 1100
Trifloxysulfuron sodium 177 100 180
Trifluralin 0 6261 1
Trinexapac-ethyl 0.14 2 < 1
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While experimental KOC correlated reasonably well with 
modelled KOC values and experimental loss data, particularly 
for the hydrosol (Fig. 1), there are some limitations with using 
KOC as an indicator of mobility. In addition to soil organic car-
bon, the clay and mineral content of soil is important for sorp-
tion for more polar chemicals (Wauchope et al. 2002), while 
many of the studied PAIs are ionizable compounds (Table S1), 
so soil pH will also affect sorption for these compounds. As a 
result, some pesticide risk indicators use PAI pKa to correct 
for the effect of pH on KOC (Kookana and Correll 2008). Pes-
ticide mobility is far more complex than can be captured by 
one parameter. Pesticide runoff is related to the pesticide soil 
surface concentration, which can be affected by application rate 
and dissipation, including leaching into the soil profile (Silburn 
and Kennedy 2005). Further, some strongly sorbed pesticides, 
such as paraquat, can be transported in the sediment phase of 
runoff (Leonard et al. 1979). Despite this, KOC was used to 
determine mobility as KOC values are available for a larger 
number of PAIs compared to other mobility parameters (e.g., 
experimental or modelled loss data), which is important based 
on the criteria described in Maud et al. (2001) and in order to 
be able to include all the PAIs in the PDST.

Many pesticide risk indicators include PAI half-life in soil 
as a measure of persistence (e.g., Kookana et al. 2005; Le Bel-
lec et al. 2015; Kudsk et al. 2018). This is because while a PAI 
may have a low sorption capacity, it may decay quickly in the 
environment, reducing the amount transported to the aquatic 
environment. It should be noted that pesticide half-life can vary 
considerably in different tropical Queensland soils and is often 
different to available soil half-life values in PPDB (Shaw et al. 
2013). However, half-life values from PPDB were used as they 
provide a consistent set of values that allow for direct indicative 
comparisons between molecules and are readily available.

The measure of mobility and persistence values ranged 
from approximately 0.01 for PAIs with log KOC values greater 
than 4 (e.g., bifenthrin, diquat dibromide, paraquat dichloride, 
pendimethalin, permethrin, and trifluralin) to 9977 for the 
fungicide AI flutriafol. In addition to flutriafol, the PAIs most 
likely to move from farmland to waterways and persist in the 
environment were the insecticide AI clothianidin and herbicide 
AI picloram. There was a 200,000-fold variation in measure of 
mobility and persistence values for herbicide AIs, a 400,000-
fold variation in measure of mobility and persistence values 
for insecticide AIs, and a 75,000-fold variation in measure of 
mobility and persistence values for fungicide AIs.

Aquatic risk

The measure of effect and measure of mobility and persis-
tence values of the 47 selected PAIs were plotted in Fig. 2. 
Separate measure of effect and measure of mobility and per-
sistence plots for herbicides, insecticides, and fungicides are 
provided in Figures S51 to S53. The vertical axis, measure 

of effect, indicates the potential for a PAI to cause harm-
ful effects should it enter the aquatic environment, with 
increasing measure of effect values indicating PAIs with 
a greater potential for environmental harm. The horizon-
tal axis, measure of mobility and persistence, indicates the 
potential of a PAI to move from farmland into the aquatic 
environment via runoff and to persist in that environment. 
Increasing values indicate PAIs with a greater potential to 
move into and persist in waterways. The aquatic risk is the 
product of the measure of effect and the measure of mobil-
ity and persistence and indicates the likelihood that a PAI 
will reach a waterway and cause harmful effects. Pesticide 
active ingredients with larger measure of effect and measure 
of mobility and persistence values (larger aquatic risk) will 
occur closer to the top right of Fig. 2. In contrast, PAIs with 
smaller measure of effect and measure of mobility and per-
sistence values (smaller aquatic risk) will occur closer to the 
bottom left of Fig. 2. So, if an alternate PAI lies below and 
to the left of the PAI currently being used, it poses a lower 
risk to aquatic ecosystems and could be selected for use. 
Conversely, if an alternate PAI lies above and to the right 
of the PAI currently being used, then it poses a greater risk 
to aquatic ecosystems and hopefully would not be chosen. 
But in many instances, it is not easy to determine if an alter-
nate PAI is less harmful to aquatic ecosystems or not—as it 
may be below (less toxic) but to the right (more mobile and 
persistent) of the currently used PAI or it could lie above 
(more toxic) but to the left (less mobile and persistent) of 
the currently used PAI. This is where the aquatic risk values 
(Table 2) become important as they always clearly identify 
the risk posed by alternate PAIs—the larger the risk value, 
the greater the risk to aquatic ecosystems and vice versa.

The aquatic risk approach gives equal weighing to meas-
ure of effect and measure of mobility and persistence as both 
determine the likelihood of an adverse effect. For example, 
if two PAIs, “A” and “B,” have the same measure of effect 
value, but A is 10 times more mobile and persistent than B, 
then the risk posed by A will be 10 times greater than for B. 
Aquatic risk values for the selected PAIs (Table 2) ranged 
from 0.3 for trinexapac-ethyl to 4.0 × 108 for cadusafos. The 
insecticide AIs cadusafos and chlorpyrifos posed the greatest 
potential aquatic risk, followed by the herbicide AI MSMA. 
Fungicides often had lower measure of mobility and persis-
tence and lower measure of effect values than herbicides and 
insecticides, resulting in lower aquatic risk values. While not 
focusing on sugar cane and using different methodologies, 
the PAI aquatic risk rankings from the literature overlapped 
to some extent with the current study. For example, PAIs 
chlorpyrifos, clothianidin, and atrazine were among the top 
priority PAIs in Canadian waters (Anderson et al. 2021), 
while metolachlor, imidacloprid, and fipronil were among 
the prioritized compounds of concern in the Great Lakes 
Basin (Oliver et al. 2023).
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Focusing on the example of PSII herbicide AIs, ametryn 
poses the highest aquatic risk, followed by atrazine, hex-
azinone, diuron, terbutryn, amicarbazone, metribuzin, and 
terbuthylazine (Fig. 3, Table 2). Ametryn has the highest 
measure of effect (20,000) of any PSII herbicide AI and 
the fifth highest measure of mobility and persistence (155) 
resulting in an aquatic risk of 3.1 × 106 (Table 2). Con-
versely, hexazinone has the second lowest measure of effect 
(480), but the highest measure of mobility and persistence 
of any studied PSII herbicide (1274), resulting in the third 
highest aquatic risk (6.1 × 105).

Comparison with other pesticide risk indicators

Compared to other pesticide risk indicators, the PDST does 
not include site-specific information, such as soil type, rain-
fall, or slope. As such, the PDST should be viewed as a 
generic tool to select PAIs that pose a lower aquatic risk 
based on toxicity, application rate, mobility, and persistence. 
However, factors such as land slope or proximity to sensi-
tive sites or waterbodies can be considered by the PDST in 

a qualitative manner by selecting less mobile and persistent 
PAIs. Overall, the preference should be to select the least 
mobile and persistent and least toxic PAIs—PAIs with the 
lowest aquatic risk. It is particularly important to select less 
mobile PAIs in situations where the ground slope is high, 
or the point of application is near a sensitive receptor such 
as a waterway. It is also important to note that the PDST 
only considers PAI transport to surface water via surface 
runoff and does not consider loss due to leaching (although 
it may be appropriate for this purpose as the characteristics 
considered in the PDST would also be relevant to leaching), 
soil erosion, or spray drift. Other more advanced models 
could be applied in parallel to the PDST if more site-specific 
guidance is required.

Of the available risk indicators, the pesticide impact rat-
ing index (PIRI) was used to rank the risk of 25 herbicide 
AIs used on sugar cane, including six PSII herbicide AIs 
(ametryn, atrazine, diuron, hexazinone, terbutryn, and ter-
buthylazine) in different GBR regions (Davis et al. 2014). 
PIRI determines a risk class separately for algae, daphnids 
(Daphnia sp.), and fish (rainbow trout) using the single 

Fig. 2   Plot of the measure 
of effect and the measure of 
mobility and persistence for all 
the 47 selected pesticide active 
ingredient (PAIs) registered for 
application to sugar cane or its 
rotation crops. The closed sym-
bols were derived using PC95 
values, and the open symbols 
were derived using PC99 val-
ues. PAIs with DGVs or ETVs 
with moderate, high, or very 
high reliability are indicated in 
italics, while PAIs with DGVs 
or ETVs with unknown, low, 
or very low reliability are indi-
cated in normal font. Note both 
slow release (SR) and liquid (L) 
imidacloprid are included
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lowest acute toxicity value for each group of organisms. The 
lowest toxicity value is not modified using an assessment 
factor, nor was a species sensitivity distribution used. The 
outputs of PIRI for the six PSII herbicides, which were based 
on mobility in a Wet Tropics silt soil and toxicity to algae, 
were compared to the outputs from the PDST (Table 3). Risk 
classes based on toxicity to algae were selected as algae are 
the most sensitive group of organisms to PSII herbicides. 
While it is difficult to compare the aquatic risk values and 
ranking from the PDST with the risk classes from PIRI, it is 
clear that the ranking of the PSII herbicide AIs from greatest 
risk to lowest risk is different. Irrespective of this, the main 
point of this comparison is to show that grouping PAIs into 
various risk classes decreases the ability to determine if one 
PAI is less harmful than another in the same risk class. For 
example, it is not possible to determine whether atrazine 
or metribuzin, which are both considered high to very high 
risk, would be less harmful based on the PIRI risk classes 
(Table 3). However, 3.6 times more atrazine is needed to 
provide sufficient residual control of broadleaf weeds com-
pared to metribuzin (e.g., 0.75 kg PAI/ha of metribuzin vs 

2.7 kg PAI/ha of atrazine); thus, including these two PAIs 
in the same risk class is misleading as atrazine will pose 
a greater risk to the aquatic environment. The aquatic risk 
values generated by the PDST (Table 3) permit users to 
determine which of these PAIs would be less harmful for 
aquatic ecosystems. This inability to differentiate the risk 
of PAIs in the same risk class could lead to PAIs that are 
worse for aquatic environments being selected, as outlined 
in the example above.

As an example, the cost per hectare of the three PSII her-
bicide AIs in the very high risk class (based on PIRI) at the 
top rate for application to sugar cane is $37.87 for diuron 
900 WG (1.9 kg/ha), $78.77 for ametryn 800 WG (2.8 kg/
ha), and $87.47 for terbutryn (as terbutryn + MCPA at 4 L/
ha) (based on costs obtained from a commercial pesticide 
supplier in March 2023). Assuming the three PAIs have the 
same efficacy, it is quite likely that diuron would be selected 
due to it posing the same risk but being roughly half the 
cost. However, the continuous aquatic risk values provide by 
the PDST combined with the cost could lead to a different 
decision being made. This demonstrates the advantage of 

Fig. 3   Plot of the measure 
of effect and the measure of 
mobility and persistence for 
PSII herbicide AIs registered for 
application to sugar cane. Pes-
ticide active ingredients (PAIs) 
with DGVs or ETVs with 
moderate, high, or very high 
reliability are indicated in ital-
ics, while PAIs with DGVs or 
ETVs with unknown, very low, 
or low reliability are indicated 
in normal font
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presenting the aquatic risk as a continuum of values, rather 
than risk classes, as it provides clearer advice to users.

Another recent study used experimental pesticide runoff 
concentrations and toxicity relative to diuron to rank the risk 
of 12 herbicides applied to sugar cane (Silburn et al. 2023). 
Runoff was assessed using simulated rainfall for both bare 
soil and soil with green cane trash blanket for four loca-
tions in the Great Barrier Reef catchment area. Similar to 
the current study, PSII herbicides ametryn and hexazinone 
were ranked as having a greater risk, while pendimethalin, 
glyphosate, and fluroxypyr had a lower risk ranking.

Compared to some other pesticide risk indicators, the 
PDST meets all the criteria proposed by Maud et al. (2001) 
as being important in a pesticide risk indicator. The PDST 
uses readily available data (i.e., PAI application rate, KOC, 
half-life, and DGV or ETV), is simple and transparent, 
excludes risks to humans, and does not use a weighting sys-
tem to rank pesticide risk. The PDST was also developed 
through extensive consultation with stakeholders to ensure it 
was fit for purpose. Further, PDST generates a single aquatic 
risk value based on a species sensitivity distribution that 
used as much of the available chronic toxicity data as pos-
sible. The aquatic risk value allows differentiation between 
the different PAIs, with aquatic risk calculated based on 
the likelihood that a PAI will reach a waterway and cause 
harmful effects. Given the generic nature of the PDST, rel-
atively small differences in aquatic risk values should be 
interpreted cautiously whereas large differences are likely 
to indicate actual differences in risk under field conditions. 
For example, dicamba, picloram and 2,4-D, which are all 
synthetic auxins, have aquatic risk values 400, 600, and 900, 
respectively, and therefore may pose similar risks under field 
conditions. In contrast, the PSII herbicides atrazine and ami-
carbazone have aquatic risk values of approximately 900,000 
and 110,000 respectively. Amicarbazone is likely to pose a 
lower risk under field conditions and be a better option.

Risk classes were not used in the PDST as the cutoff 
points for each class will always be arbitrary, while methods 
that treat risk as a discrete entity do not allow differentiation 
between PAIs within the same risk class.

Application and future work

The measure of effect and aquatic risk values presented in 
Fig. 2 and Table 2 were calculated assuming the maximum 
application rate and a broadcast spray regime, but farmers 
may use different application rates or spray regimes (e.g., 
spot or band spraying). Therefore, an interactive Excel ver-
sion of the PDST was developed to allow users to enter 
the PAI concentration percentage and product application 
rate, as well as the percentage of land to be spot or band 
sprayed (see the ESM). For example, the aquatic risk of a 
diuron decreases 10-fold from 3370 to 339 in moving from 
broadcast application to band spraying of 10% of the field 
(assuming band spraying applies 10% of the maximum per-
mitted product application rate for broadcast spraying). By 
considering application rates, the efficacy of different PAIs is 
included in the PDST and thus comparisons of the potential 
aquatic risk pesticide PAIs pose are done on an equal (or 
near equal) efficacy basis. Further, the interactive Excel ver-
sion of the PDST allows users to compare the aquatic risk of 
chemical groups (e.g., organophosphates or PSII inhibitors) 
to help select less harmful PAIs that control the same pest 
issue as more harmful PAIs.

The interactive Excel version of the PDST can also be 
used to compare the aquatic risk of current and alternative 
tank mixes, where combinations of PAIs are mixed for a 
single application. Users can sum the aquatic risk values 
for the PAIs used in each tank mix and then compare the 
results. By summing the aquatic risk, it is assumed that the 
PAIs have the same mode of action (e.g., exert their toxicity 
in the same manner) when, in reality, the PAIs in a tank mix 
may have different modes of action. When pesticides with 
different modes of action are combined, their joint toxicity 
is typically described by the independent action (IA) model 
which usually leads to lower estimates of joint toxicity than 
the concentration addition (CA) model (Faust et al. 1994; 
Backhaus et al. 2000; Dyer et al. 2000; Chèvre et al. 2006; 
Junghans et al. 2006); however, the toxicity values are gen-
erally not statistically significantly lower (Dyer et al. 2011). 
Mixes of pesticides with different modes of action can also 
have antagonistic (where the joint toxicity is less than pre-
dicted by the CA and IA models) or synergistic (where the 
joint toxicity is more than predicted by the CA and IA mod-
els) joint toxicity. Other than conducting toxicity tests, there 
is currently no way of predicting whether a mixture will 
have synergistic or antagonistic joint toxicity (De Zwart and 
Posthuma 2005). However, a number of meta-studies have 

Table 3   The ranking, from highest to lowest risk, of six photosystem 
II inhibiting (PSII) herbicides by the PIRI (Davis et  al. 2014) and 
PDST methods. The PIRI classes are based on mobility and toxicity 
to algae on a Wet Tropics silt soil

PIRI ranking and risk class PDST ranking and 
aquatic risk values (× 
100)

Ametryn, diuron, terbutryn (very high risk) Ametryn (31,000)
Atrazine, metribuzin (high to very high 

risk)
Atrazine (8900)

Hexazinone (high risk) Hexazinone (6100)
Diuron (3400)
Terbutryn (3100)
Metribuzin (1000)
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examined the available mixture toxicity data and have come 
to the conclusion that the vast majority of mixtures conform 
to either the CA or IA models of joint toxicity (Belden et al. 
2007; Dyer et al. 2011; Warne et al. 2020). Therefore, the 
summed aquatic risk for tank mixes should be considered 
as an indicative aquatic risk, not a definitive aquatic risk, as 
we do not have information about the combined toxicity of 
each tank mix.

When applying the PDST, it is still necessary to consider 
the general principles related to pesticide application and 
integrated pest management, such as varying the pesticides 
used to minimize developing pest resistance and spraying for 
pest control prior to the start of the wet season, where possi-
ble. The PDST does not override these principles but should 
be considered in conjunction with them. For example, the 
PDST can be used to select several lower aquatic risk pesti-
cide PAIs for rotation. Further, the PDST is based on PAIs, 
but pesticide formulations can also contain adjuvants and 
wetting agents, which have not been considered in the PDST.

The PDST can also provide guidance on pesticide selec-
tion in different seasons. The regions where sugar cane is 
grown in Queensland have a distinct wet and dry season. The 
wet season, which typically runs from November to April, is 
when most of the rain occurs. During the wet season, there 
is a far greater chance that pesticides will be transported to 
rivers and creeks, and it is therefore increasingly important to 
select PAIs that have low measure of mobility and persistence 
values (further to the left in Fig. 2). During the dry season, 
when the chance of pesticides being transported to rivers and 
creeks is dramatically lower, the mobility and persistence of 
the PAIs is not such an important issue and choosing a PAI 
with lower measure of effect (lower in Fig. 2) might be more 
important to consider when selecting PAIs for use.

As part of general principles of pesticide management, 
pesticide use should always be minimized, for example, by 
only applying them where they are actually required rather 
than using them in a prophylactic manner or applying them 
as a form of insurance. It should be noted that a prophylactic 
application does not include those applications that are con-
ducted as a well-considered preventative measure. In many 
situations, pest occurrence is known to occur in conjunction 
with particular environmental triggers, so products that work 
to prevent the pest from occurring or proliferating can be 
used to strategically mitigate such issues. An example is the 
use of pre-emergent herbicides, which can prevent or inhibit 
the germination of target weeds before they emerge from the 
ground. These products are a very important component of 
an integrated management system.

The PDST is designed to assist farmers, agronomists, 
extension officers, and resellers select PAIs that pose a lower 
risk to the aquatic environment than the PAIs that they cur-
rently use to control a particular pest. The PDST only pro-
vides information on the potential aquatic risk that PAIs pose. 

It does not include other important factors that are likely to 
be considered in deciding which PAIs are to be applied to 
sugar cane, such as the PAI efficacy against the target pest or 
its cost per hectare. The PDST only considers PAIs that are 
registered for use by the sugar cane industry, and therefore, 
it does not identify PAIs that cannot be used. Also, as it pro-
vides generic information, it should be used in combination 
with advice from resellers, agronomists, or extension officers 
about the most appropriate pesticide to use in a given situa-
tion (i.e., weed or crop types, integrated management strate-
gies, economics, efficacy, site characteristics). The PDST can 
be used as a component of pesticide management planning, 
as is being done in Project Bluewater in the Mackay Whitsun-
day and Burdekin regions of Queensland, Australia, which 
provides participating sugar cane farmers with pesticide man-
agement plans for each parcel of land on a farm.

The current version of the PDST had been extensively 
road-tested for its appropriateness and ease of use and 
interpretation with farmers, resellers, and agronomists, 
as well as agricultural and ecotoxicological scientists. 
All groups appreciated the amount and robustness of the 
data that underpins the PDST and that the PDST sum-
marized and presented the results of the assessment in a 
simple graphical format and with numerical aquatic risk 
values that were easy to understand and increased their 
understanding of the key factors controlling the potential 
risk posed by PAIs. Initially, it was felt that the generic 
PDST would be followed by the development of an app 
that could give guidance on pesticide use at an individual 
paddock scale. There was strong support for this among 
stakeholders initially. However, once the PDST was 
developed and presented to stakeholders, they were asked 
whether they would prefer the development of an app for 
the 47 selected PAIs or for the PDST to be expanded to 
cover all the additional PAIs that are currently registered 
for use on mung bean, soybean, corn, and rice—the four 
main crops grown in rotation with sugar cane in Queens-
land. Stakeholders overwhelmingly supported the expan-
sion of the PDST to cover all the PAIs used in sugar cane 
farming. This will therefore be the focus of future work. 
In addition, ongoing work is required to evaluate the suc-
cess of the PDST in changing pesticide use. This will 
be achieved through ongoing monitoring of pesticides in 
rivers in the GBR catchments by the Great Barrier Reef 
Catchment Loads Monitoring Program conducted by the 
Queensland Department of Environment and Science and 
pesticide application data provided by participating farm-
ers in Project Bluewater. This will be the subject of future 
publications. Further, while this study focuses on PAIs 
applied to sugar cane in Queensland, the generic nature 
of the PDST means that it can be applied internationally 
and to any PAIs with sufficient toxicity, mobility, and 
persistence data.
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Currently, training and educational materials are being 
developed to inform stakeholders and facilitate adoption of 
the PDST.

Conclusions

The current study developed a simple Pesticide Decision 
Support Tool (PDST) to assess the potential aquatic risk 
of active ingredients in pesticides that are registered for 
application to sugar cane and associated rotation crops in 
Queensland, Australia. This considered the likelihood that a 
PAI will reach a waterway and cause an adverse effect. The 
PDST was developed in collaboration with representatives 
of government, pesticide users, advisers, and resellers. It 
considers application rate, and thus, comparisons of poten-
tial aquatic risk are made on an equal (or near equal) efficacy 
basis. Insecticide AIs, such as cadusafos, chlorpyrifos, and 
clothianidin, posed the greatest aquatic risk, followed by 
herbicide AIs MSMA, metolachlor, and ametryn. Fungicide 
AIs typically posed lower aquatic risk. Compared to other 
pesticide indicators that use risk classes, the PDST presents 
the aquatic risk as a continuum of values, allowing users 
to easily identify and select less environmentally harmful 
PAIs to control the pest issue they face, should they wish to. 
Further, the PDST is available as an interactive Excel tool, 
which allows farmers to calculate the aquatic risk based on 
the spray regimes they use or compare different tank mixes. 
The PDST does not include site-specific information, such 
as soil type, rainfall, or slope, and consequently should be 
viewed as a generic tool to select PAIs that pose a lower 
potential aquatic risk. The PDST should also be applied in 
conjunction with advice from agronomists and extension 
officers. Further work is required to expand the PDST to all 
PAIs used in crops grown in rotation with sugar cane.
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