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Abstract
Metal pollution has many dangerous environmental and human health consequences due to the bioaccumulation in the 
tissues. The present study aims to measure the bioaccumulation factor of the manganese (Mn) heavy metal in Biomphalaria 
alexandrina snails’ tissues and water samples. The current results showed the concentration of Mn heavy metal in water 
(87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. 
alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidicidal and cercaricidal activities. Also, this 
concentration decreased the mean total number of the hemocytes after exposure for 24 h or 48 h, while increasing both the 
mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the 
hemocytes of exposed snails after 24 or 48 h, where the granulocytes had irregular cell membranes and formed pseudopodia. 
Besides, levels of testosterone (T) and estradiol (E) were increased after exposure to 87.5 mg/l Mn metal compared to the 
control group. Also, it increased MDA (malonaldehyde) and TAC (total antioxidant capacity) contents, while decreasing 
SOD (superoxide dismutase). Besides, it caused significant histopathological damages in both hermaphrodite and digestive 
glands, represented in the degeneration of the gonadal, digestive, secretory cells, and the connective tissues. Therefore, B. 
alexandrina might be used as a sensitive bioindicator of pollution with Mn heavy metal to avoid ethics rules; besides, they 
are readily available and large in number.
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Introduction

Environmental metal pollution represents a dramatic problem 
in the world (Salih et al. 2021). The heavy metals are natural 
parts of the earth’s crust, but higher levels of these metals 
could threaten the environment and the biological system 
of human (Ugbaja et al. 2020; Briffa et al. 2020). Since the 
1940s, the rate of these heavy metal was increased worldwide 
due to industrialization and urbanization (Ali et al. 2019).

Heavy metals were classified as dangerous pollutants 
as they bioaccumulated in the organisms’ bodies after 
swallowed or inhaled causing biological and physiologi-
cal complications (Briffa et al. 2020). Some heavy metals 
are essential elements for life with small traces (Ni, Cu, 
Zn, and Cr) (Dhiman and Pant 2021). Heavy metals, such 
as manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), 
cadmium (Cd), chromium (Cr), lead (Pb), and iron (Fe), 
have high levels of toxicity and ability for bioaccumulation 
and combination into the aquatic food chain subsequently 
reaching in the aquatic ecosystems (Kibria et al. 2016). 
Heavy metal pollution of the aquatic environment caused 
severe damage to fish tissues and hence can affect human 
health (Ali et al. 2019). Manganese (Mn) is an essential 
metal required for enzymes and cofactors, but its higher 
concentration could cause several neurological disorders 
(Schmidt and Husted 2019).

Environmental biomonitoring could help to elucidate the 
harmful effects of the heavy metal on the biological systems 
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of the surrounding organisms (Morais et al. 2022). Bioindi-
cators are a group of species that reflected the natural state 
of the environment including biotic or abiotic changes in the 
habitat (McGeogh 1998). Several aquatic species have been 
used as bioindicators for chemical pollution (Ibrahim and 
Sayed 2019; Hamdi et al. 2021). Mollusks are widely used 
as bioindicators and biosensors of heavy metal poisoning 
due to their rapid accumulation of these toxic pollutants, 
widespread and have a moderate life span (Abd-Allah et al. 
1997; Ugbaja et al. 2020). These aquatic invertebrates could 
replace the higher vertebrate in ecological studies because 
of the ethical rules and the low cost (Ibrahim et al. 2018; 
Dhiman and Pant 2021).

Biomphalaria alexandrina snails the intermediate host 
for Schistosoma mansoni in Egypt (Abdel-Ghaffar et al. 
2016; Ibrahim and Abdalla 2017) are widely distributed 
throughout the Nile River (Ibrahim and Sayed 2019; 
Morad et al. 2022), where schistosomiasis can affect at 
least 236.6 million people in 2019, as it causes neuro-
toxicity, nephrotoxicity, and hepatotoxicity (Dkhil et al. 
2016; WHO 2022). Biomphalaria alexandrina can serve 
as a good and sensitive bioindicator of heavy metal pol-
lution (Habib et al. 2016). These snails proved to be a 
good bioindicator because of their adult and embryonic 
phases could reflect the pollution by both physical and 
chemical agents (Morais et al. 2022).

Therefore, the objective of the present study is to 
measure the concentration of the manganese heavy metal 
in water samples and B. alexandrina tissues and calcu-
lation of the bioaccumulation factor and then study its 
concentration in water on survival and infection rates 
of B. alexandrina with Schistosoma mansoni miracidia 
and its cercaricidal activities and also to elucidate its 
immunotoxicity, endocrine disruption, oxidative stress 
biomarkers, and histopathological effects on tissues of 
these snails.

Materials and methods

Field study

Snail samples and water collection

Snails were collected from different irrigation canals in 
Abu Rawash, Giza Governorate. It was placed in numbered 
plastic aquaria with water from these canals. Also, water 
samples were collected in sterilized 1-liter polyethylene 
bottles below the water’s surface of about 30 cm (Kaufmann 
et al. 1988). Both samples were transported in an ice box to 
the laboratory for analysis within 12 h.

Estimation of heavy metals in B. alexandrina snails’ soft 
tissue and water samples

Determination of heavy metals in water samples and snail’s 
tissues was performed by using atomic absorption spectro-
photometry (AAS) in Environmental Research Laboratory, 
Theodor Bilharz Research Institute (TBRI), according to the 
method of Abdel Kader et al. (2016).

1. Analysis of heavy metals in water: For the analysis 
of total heavy metals, water samples (200 ml) were 
digested with 5 ml of acidified concentrated nitric acid 
(HNO3) on a hot plate and filtered by Whatman No. 42 
filter paper and made up the volume to 50 ml by double 
distilled  (ddH2O) (Shaaban et al. 2017).

2. Analysis of heavy metals in B. alexandrina snails’ tissues: 
About 0.01 g of the snail’s soft tissues were separated 
from their shells, oven-dried at 50 °C, and then digested 
in 1 ml of conc. HNO3 at 70 °C for 2 h. The digested 
samples were then diluted with 5 ml ultrapure deionized 
water for analyzing heavy metals (Federici et al. 2007).

3. The bioaccumulation factor (BAF), which is the ratio of 
the chemical concentration in an organism or biota to the 
concentration in water (Gobas and Morrison 2000), was 
calculated as follows:

BAF < 1 indicates no contamination; 1 > BAF ≤ 10, the 
snail is tolerant; and BAF > 10, a hyperaccumulator (Ávila 
et al. 2017).

Lab study

Snails

Biomphalaria alexandrina (Ehrenberg, 1831) snails (9–10 mm) 
were maintained in Medical Malacology Laboratory, Theodor 
Bilharz Research Institute (TBRI), Giza, Egypt. Snails were kept 
in plastic aquaria (16 × 23 × 9 cm) with dechlorinated aerated 
tap water (10 snails/l), pH: 7 ± 0.2, and temperature (25 ± 2 °C). 
Oven-dried lettuce leaves, blue-green algae (Nostoc muscorum), 
and TetraMin were provided to aquaria for feeding and 30 mg/l 
calcium carbonate (CaCO3) for snails’ shell and fecundity (Eve-
land and Haseeb 2011; Ibrahim and Bakry 2019).

Manganese (Mn) and exposure conditions (Mn)

A stock solution (1000 mg/l) of manganese (as  MnCl2·4H2O, 
Fisher Scientific, Fair Lawn, NJ, USA) was made in distilled 
water.

Bioaccumulation factor (BAF) = concentration of the metal in snail tissues

(mg∕g dry weight)

∕concentration of the metal in water (mg∕l).
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Bioassays

Miracidicidal and cercaricidal activities

Five milliliter of 87.5 mg/l of Mn solution was mixed with 5 
ml of water containing about 100 freshly hatched miracidia 
or cercariae. As well as another 10 ml of dechlorinated tap 
water containing 100 freshly hatched miracidia or cercariae 
was kept as a control (Ibrahim et al. 2021). After intervals 
of 30, 50, 70, 90, 110, and 130 min, the alterations in the 
movement of miracidia and cercariae were observed under 
a dissecting microscope (Eissa et al. 2011).

Survival and infection rates

Laboratory juveniles B. alexandrina snails (4–7 mm) were 
exposed individually to 4–6 freshly hatched S. mansoni 
miracidia for 24 h and then transferred to separate aquaria. 
From day 21 post-exposure, each snail was tested weekly for 
the shedding of cercariae by exposing it to fluorescent light 
in 1 ml of water for 1 h at 25 °C (Hung et al. 2015).

Toxicity on snails

Snails were subjected to 87.5 mg/l of manganese solution 
for either 24 h or 48 h followed by 1 day of recovery. For 
each exposure time, 30 adult snails (9–12 mm in shell 
diameter) were used in three replicates, each of 10 snails/
liter. The control group was also set up in triplicates using 
only distilled water (WHO 1965).

Hemolymph collection and light microscopy preparation The 
hemolymph of the living snails from each group was col-
lected according to Nduku and Harrison (1980). Total hemo-
cyte count was done by a Bürker-Turk hemocytometer (Der 
Knaap et al. 1981). Blood smears were done as monolayers 
to show the different shapes of the hemocytes (Ibrahim et al. 
2018). To measure the phagocytic index, hemocyte suspen-
sion of 100 μl collected from each specimen was smeared on 
glass slides and incubated with activated charcoal particles 
for 1 h at 37 °C in a humid chamber for cell adherence. The 
phagocytic index was calculated as per the following for-
mula: Phagocytic index= Number of cells with phagocytized 
charcoal particle/ Total number of cells counted x 100. 

Also, to measure the mortality index, cells were treated with 
50 μl of 0.25% trypan blue dye solution for 5 min. Cells that 
have taken up the dye are dead. The percentage of blue-stained 
cells represents a mortality index (Guria 2018): Mortality 

Phagocytic index =
Number of cells with phagocytized charcoal particle

Total number of cells counted
× 100

index= Number of cells with blue stained cytoplasm/ Total 
number of cells counted x 100. 

Tissue preparation From each treated group and the control 
group, soft tissues of snails were withdrawn from the shell 
using forceps, weighed (1g tissue/10 ml phosphate buffer) 
and then homogenized by a glass Dounce homogenizer. The 
homogenates were centrifuged at 3000 rpm for 10 min, and 
the supernatants were stored at −80 °C until used.

Investigation of testosterone and estradiol hormones Hor-
mone concentrations (T and E) were assayed for all groups 
according to the manufacturer instructions of T EIA kit (Enzo 
Life Science, MI, USA, ADI-900-065) and E EIA kit (Cay-
man Chemical Company, MI, USA, item no. 582251).

Investigation of the antioxidant responses SOD, the oxidative 
stress marker (malondialdehyde (MDA)), and total antioxi-
dant capacity The supernatant of the soft tissue homogenate 
from each group was used. Biodiagnostic kits (Biodiagnostic 
Dokki, Giza, Egypt) were used for the determination of SOD 
(Damerval et al. 1986). Malondialdehyde (lipid peroxide) 
was done according to Ohkawa et al. (1979), and total anti-
oxidant capacity was estimated by kit (Cat. No. TA 2513) 
(Koracevic et al. 2001).

Histological studies Sections of the digestive and hermaph-
rodite glands of B. alexandrina snails of either control or 
exposed groups were done and stained with hematoxylin and 
eosin according to Romeis (1948).

Statistical analysis

Student’s t-test was used for comparing the means of experi-
mental and control groups (Murray 1981). All biochemical 
measurements were presented as mean ± SD.

Results

The present results showed that Mn heavy metal could accu-
mulate in the tissue of B. alexandrina, P. acuta, and H. duryi 
snails. The bioaccumulation of Mn heavy metal in H. duryi 
tissue was higher than that in tissues of P. acuta and B. alex-
andrina snails (Table 1).

The present results showed that Mn heavy metal (87.5 
mg/l) has miracidial and cercaricidal activities, where after 
80 min all miracidia had died compared to 35% deaths in 
the control group (Fig. 1). Also, all cercariae had died after 
130 min of exposure compared to 25% of control group.

The present results showed that after exposure of B. alex-
andrina snails to 87.5 mg/l Mn heavy metal for 24 h, the 
survival rate was significantly decreased, while the infection 

Mortality index =
Number of cells with blue − stained cytoplasm

Total number of cells counted
× 100
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rate was increased. After exposure for 48 h, both survival 
and infection rates were significantly decreased (Fig. 2).

The present results showed that Mn heavy metal (87.5mg/l) 
significantly decreased the mean total number of the hemocytes 
(p ˂ 0.05) after exposure for 24 h or 48 h compared with B. 
alexandrina control group, while it significantly increased both 
the mean mortality index and the mean phagocytic index of the 
hemocytes of these snails (Table 2).

Examination of the hemocytes’ monolayers showed the 
presence of three shapes of B. alexandrina snails’ hemocytes 
in the normal control group: (a) small hemocytes, (b) granu-
locytes, and (c) hyalinocytes. After exposure to Mn heavy 
metal (87.5mg/l) for 24 h, the granulocytes had irregular 
cell membranes, forming pseudopodia and numerous gran-
ules. The nucleus of some hyalinocytes shrank and some had 
two nuclei divided in the same cell (Fig. 3D, E, F). After 
exposure for 48 h, some granulocytes had an irregular cell 
membrane with incomplete cell division, numerous gran-
ules, and forming pseudopodia. Hyalinocytes had a shrunk 
nucleus; others had two nuclei with irregular outer mem-
branes (Fig. 3G, H, I).

The present results showed that both levels of testosterone 
(T) and estradiol (E) were significantly increased (p < 0.05) 
after exposure to Mn heavy metal (87.5 mg/l) for 24 h or 48 
h compared with control group (Table 3).

Table 1  Bioaccumulation of Mn heavy metal in B. alexandrina snails’ 
soft tissue and water samples collected from Abu Rawash, Giza

Snails Conc in 
tissue (ppb)

Conc in 
water 
(ppb)

Bioaccumulation 
factor

Biomphalaria 
alexandrina

0.231 0.0875 2.64

Physa acuta 0.289 0.0875 3.302
Helisoma duryi 0.3114 0.0875 3.558

Fig. 1  A Miracidicidal and B cercaricidal activities of Mn heavy metal (87.5mg/l)

Fig. 2  Histogram shows the 
effect of 87.5 mg/l Mn heavy 
metal exposure on survival and 
infection rates of B. alexandrina 
after 24 h or 48 h
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Exposure of B. alexandrina snails to Mn heavy metal 
(87.5 mg/l) to either 24 h or 48 h exhibited a significant 
increase (p < 0.05) in MDA and TAC contents compared 
with the control group. On the other hand, tissue SOD was 
significantly (p < 0.05) decreased after exposure in a time-
dependent manner (Table 4).

The hermaphrodite gland of control B. alexandrina is 
composed of the male reproductive cells and the female 
oogenic cells. After exposure to Mn heavy metal (87.5 
mg/l) for either 24 h or 48 h, there was a great damage in 
these gonadal cells including degeneration of sperms, some 

ova, oocytes, and spermatocytes. Also, the connective tis-
sue between the acini was raptured, and the vacuoles were 
increased (Fig. 4A, B, and C).

The tubules of the digestive gland of normal B. alexandrina 
snails were lined by two types of cells, the digestive and secre-
tory cells, and in between, there is the connective tissue. After 
exposure to Mn heavy metal (87.5 mg/l) for either 24 h or 48 
h, there were great deleterious rupture and degeneration of the 
digestive cells and the secretory cells. Also, the vacuoles and 
lumen inside the tubules were increased, and the connective 
tissue was dissolved and ruptured (Fig. 5D, E, and F).

Table 2  Toxic effect of Mn heavy metal (87.5mg/l) on the total number of hemocytes/mm3, mean mortality, and mean phagocytic index of 
hemocytes of B. alexandrina snails

*Significant difference from control at p < 0.05

Groups Hemocytes/mm3 ± S.D % reduction Phagocytic index Mortality index

Control 648.33 ± 22.5 44.2 10
24 h 416.66 ± 28.86* 35.73 72.4 50
48 h 258.3 ± 38.18* 60.15 84.25 81.5

Fig. 3  Photomicrographs show normal (control) hemocytes of adult B. 
alexandrina snails (A, B, and C) (×40). D, E, and F: After exposure 
to Mn for 24 h. G, H, and I: After exposure to Mn for 48 h. CY, cyto-

plasm; G, granulocyte; GR, granules; H, hyalinocyte; N, nucleus; PS, 
pseudopodia; S, round small. Arrow showed incomplete cell division
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Discussion

Heavy metal pollution has gained a great attention in 
research because of its dangerous consequences. The present 

results showed that the concentration of Mn heavy metal in 
water was 87.5 mg/l. This obtained concentration is higher 
than the allowable FAO limits for manganese metal (0.20 
mg/l) (Simmons 2000). The present results showed that Mn 
heavy metal could accumulate in the tissue of B. alexand-
rina, P. acuta, and H. duryi snails. The bioaccumulation of 
Mn heavy metal in H. duryi tissue was higher than that in 
tissues of P. acuta and B. alexandrina snails. These results 
were in good accordance with Abdel Kader et al. (2016) who 
found that P. acuta and H. duryi were the highest snails that 
could accumulate heavy metals in their tissue and reasoned 
the high variation in BAF values depended on the type of 
the snail and the metal. The present results showed that BAF 
is higher than one in the three snails type and this indicated 
that these snails were tolerant (Liao et al. 2003; Ávila et al. 
2017; Kachenga et al. 2020).

The present study elucidated the effect of 87.5 mg/l Mn 
exposure on different parameters of B. alexandrina snails. 
Results showed that this concentration of Mn (87.5 mg/l) 
has miracidial and cercaricidal activities, where after 80 min 
all miracidia had died and 130 min of exposure all cercariae 
had died. Cercariae and miracidia might be used as excel-
lent indicator organisms for heavy metal pollution (Mor-
ley et al. 2003b). Cross et al. (2001) studied the effect of 

Table 3  Effect of Mn heavy metal (87.5 mg/l) on T and E of B. alex-
andrina snails after 24 h and 48 h

*Significant difference from control at p < 0.05
**Significant difference from control at p < 0.01

Groups Testosterone (nmol/L) Estradiol (pg/ml)

Control 18.6 ± 0.2 96.8 ± 4.3
24 29.1 ± 0.1* 250 ± 4.2*
48 36.3 ± 0.6** 450 ± 5.4**

Table 4  Effect of Mn heavy metal (87.5 mg/l) on MDA, SOD, and 
TAC of B. alexandrina snails

*significant difference from control at p < 0.05

Parameters MDA (nmol/g tissue) SOD (U/g tissue) TAC (mM/l)

Control 10.1 ± 0.12 9.13 ± 0.1 1.505 ± 0.4
24 h 12.12 ± 0.3* 5.2 ± 0.2* 1.88 ± 0.21
48 h 15.7 ± 0.13* 4.9 ± 0.32* 2.3 ± 0.13*

Fig. 4  Light micrographs of 
B. alexandrina snails sections 
(H&E, ×40). A Control her-
maphrodite gland. B Hermaph-
rodite gland after exposure to 
Mn heavy metal (87.5 mg/l) for 
24 h. C Hermaphrodite gland 
after exposure to Mn heavy 
metal (87.5 mg/l) for 48 h. CT, 
connective tissue; DO, degener-
ated ova; DOC, degenerated 
oocytes; DSPC, degenerated 
spermatocytes; DSP, degener-
ated sperms; MO, mature ovum; 
OC, oocytes; SP, sperms; SPC, 
spermatocytes; V, vacuoles. The 
arrow pointed to Mn particles 
in the hermaphrodite acinus 
(×100).
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4 mg/l manganese in artificial seawater on the cercariae of 
the marine trematode Cryptocotyle lingua and showed that 
this concentration induced reductions in cercarial quality 
which might lead to failure of transmission of this disease 
and concluded that the metal pollution could alter parasite 
populations and communities. Also, Morley et al. (2003a) 
found that the survival of S. mansoni exposed to Cd/Zn 
mixtures was significantly reduced at concentrations of 10 
mg/l or higher. The authors reasoned this reduction in the 
effect of these metals on the enzymatic function of miracidia 
and leading to their death. These results could explain the 
decrease in the survival and infection rates of adult snails 
in the present study. Where, after exposure of snails to 87.5 

mg/l Mn heavy metal for 24 h, the survival rate was sig-
nificantly decreased, while the infection rate was increased. 
While, after exposure to 87.5 mg/l Mn heavy metal for 48 h, 
both survival and infection rates were significantly decreased. 
Similarly, Morley et al. (2003a) found that the survival rate 
of the infected Lymnaea peregra and L. stagnalis snails was 
severely reduced by exposure to cadmium metal.

Snails have an open circulatory system that contains the 
hemolymph, and it acted as the defense system against the 
foreign particles (Baroudi et al. 2020). The present results 
showed that Mn heavy metal (87.5 mg/l) significantly 
decreased the mean total number of the hemocytes after 
exposure for 24 h or 48 h compared with B. alexandrina 

Fig. 5  Light micrographs of 
B. alexandrina snails sections 
(H&E, ×40). D Control diges-
tive gland. E Digestive gland 
after exposure to Mn heavy 
metal (87.5 mg/l) for 24 h. F 
Digestive gland after exposure 
to Mn heavy metal (87.5 mg/l) 
for 48 h. CT, connective tissue; 
V, vacuoles; DC, digestive cells; 
DDC, degenerated digestive 
cells; DSC, degenerated secre-
tory cells; DT, digestive tubules; 
L, lumen; RCT, ruptured con-
nective tissue; RSC, ruptured 
secretory cells; SC: secretory 
cells. The arrow pointed to Mn 
particles in the digestive tubule 
(×100)
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control group. This decrease could be due to the sharing of 
these hemocytes in repairing the damages that occurred by 
Mn in both hermaphrodite and digestive glands (Esmaeil 
2009; Ibrahim et al. 2018).

The main cellular component of the snails’ immune 
system is the hemocytes which are responsible for 
phagocytosis (Baroudi et al. 2020). The present investigation 
showed that Mn heavy metal (87.5 mg/l) significantly 
increased both the mean mortality index and the mean 
phagocytic index of the hemocytes of exposed snails. The 
increase in the mortality index is an indication of cell death 
or apoptosis (Guria 2018). This increase depends on the 
nature and the type of the stressors (Ibrahim and Sayed 
2020).

Three types of hemocytes were found in smears of 
B. alexandrina. The more reactive cell was known as 
granulocytes, followed by small undifferentiated and then 
hyalinocytes that were found at the site of wounds (Ibrahim 
and Abdel-Tawab 2020). After exposure to Mn (87.5 mg/l) 
for 24 h, the granulocytes had irregular cell membranes, 
forming pseudopodia and numerous granules. The nucleus 
of some hyalinocytes shrank, and some have two nuclei 
divided in the same cell. After exposure for 48 h, some 
granulocytes had irregular cell membranes with incomplete 
cell division, numerous granules, and forming pseudopodia. 
Hyalinocytes had a shrunk nucleus; others had two nuclei 
with irregular outer membranes. Guria (2018) concluded 
that the alterations in the cytomorphology of hemocytes of 
Lamellidens marginalis (Bivalvia: Eulamelli branchiata) 
were due to the toxic effect of lead (Pb) heavy metal. The 
formation of pseudopodia of the granulocyte after exposure 
was a way to remove the foreign materials through the 
phagocytic process (Ibrahim et al. 2022).

Exposure to heavy metals causes deleterious health effects 
in the liver, kidney, brain, reproductive system, and other body 
systems. It impaired the hormonal regulation, steroidogenesis, 
and gametogenic process which is known as an endocrine 
disruptors (Verma et al. 2018). The present results showed 
that both levels of testosterone (T) and estradiol (E) were sig-
nificantly increased after exposure to Mn heavy metal (87.5 
mg/l) compared with the control group.

The present study showed that exposure of B. alexandrina 
snails to Mn heavy metal (87.5 mg/l) to either 24 h or 48 h 
exhibited a significant increase in MDA and TAC contents, 
while SOD was decreased compared with the control group. 
Khalil et al. (2017) conclude that the altered activities of 
SOD, CAT, GPx, GST and GR, and MDA levels could be 
useful biomarkers of water pollution with the heavy metals. 
These results in accordance with Siwela et al. (2010) who 
reported that the bioaccumulation of heavy metals in Lym-
naea natalensis tissues increased malondialdehyde (MDA) 
levels, while decreased SOD and catalase (CAT) activities 
and reasoned these alterations due to the metal-induced 

oxidative stress. Also, Atailia et al. (2016) concluded that 
exposure of the terrestrial land snail Helix aspersa to metals 
under field and laboratory conditions caused changes in the 
non-enzymatic and enzymatic oxidative biomarkers, where 
it increased the activity of catalase and lipid peroxidation, 
while decreased GST activity and GSH level.

The present results showed that exposure of B. alexandrina 
snails to Mn heavy metal (87.5 mg/l) for either 24 h or 48 h 
caused great histopathological damages in both hermaphrodite 
and digestive glands. The damage in the gonadal cells 
included degeneration of sperms, some ova, oocytes, and 
spermatocytes with vacuoles and ruptured connective tissue 
between the acini. Also, there were great deleterious ruptures 
and degeneration of the digestive cells and the secretory 
cells. Also, the vacuoles and lumen inside the tubules were 
increased, and the connective tissue was degenerated.

These histopathological alterations might be related to the 
direct toxic effects of the heavy metals on the edible organs 
of target animals like fish (Elwasify et al. 2021; Morad et al. 
2023), where the metal caused vacuolated hepatocytes, 
dilated central veins, compressed blood sinusoids, and con-
gestion were seen in fish liver. Similarly, Abdel-Tawab et al. 
(2022) reported that cerium oxide nanoparticles synthesized 
with Moringa oleifera seeds at a concentration of 314.5 mg/l 
caused great damages in both hermaphrodite and digestive 
glands. From the previous result, it was noticed that the man-
ganese heavy metal affects negatively many of the biologi-
cal activities of B. alexandrina snail. So it is important to 
estimate the quantity of such metals in freshwater snails to 
determine snails’ ability to be bioindicators for these metals 
in the aquatic environment.

Conclusion

The results demonstrated that manganese metal had a 
significant effect on B. alexandrina snail causing great 
damage and elevating the levels of testosterone and estradiol 
as well as other biological and physiological factors such as 
increasing the mean mortality and phagocytic index of the 
hemocytes. Additionally, it has an impact on S. mansoni 
larval stage activities that control disease transmission. As 
a result of their capacity to accumulate these toxins in their 
tissues, B. alexandrina snails could be employed as sensitive 
heavy metal pollution bioindicators.
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