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Abstract
A waste management strategy needs accurate data on the generation rates of construction and demolition waste (CDW). 
The objective of this study is to provide a robust methodology for predicting CDW generation in Tanta City, one of the 
largest and most civilized cities in Egypt, based on socioeconomic and waste generation statistics from 1965 to 2021. The 
main contribution of this research involves the fusion of remote sensing and geographic information systems to construct a 
geographical database, which is employed using machine learning for modeling and predicting the quantities of generated 
waste. The land use/land cover map is determined by integrating topographic maps and remotely sensed data to extract the 
built-up, vacant, and agricultural areas. The application of a self-organizing fuzzy neural network (SOFNN) based on an 
adaptive quantum particle swarm optimization algorithm and a hierarchical pruning scheme is introduced to predict the waste 
quantities. The performance of the proposed models is compared against that of the FNN with error backpropagation and 
the group method of data handling using five evaluation measures. The results of the proposed models are satisfactory, with 
mean absolute percentage error (MAPE), normalized root mean square error (NRMSE), determination coefficient, Kling–
Gupta efficiency, and index of agreement ranging between 0.70 and 1.56%, 0.01 and 0.03, 0.99 and 1.00, 0.99, and 1.00. 
Compared to other models, the proposed models reduce the MAPE and NRMSE by more than 92.90% and 90.64% based on 
fivefold cross-validation. The research findings are beneficial for utilizing limited data in developing effective strategies for 
quantifying waste generation. The simulation outcomes can be applied to monitor the urban metabolism, measure carbon 
emissions from the generated waste, develop waste management facilities, and build a circular economy in the study area.

Keywords  Waste quantification · Socioeconomic analysis · Machine learning · Adaptive quantum particle swarm 
optimization algorithm · Hierarchical pruning · Prediction performance

Introduction

The building industry is one of the crucial sectors of eco-
nomic development in every country (Kittinaraporn et al. 
2022). A third of all energy generated is consumed by the 
building industry, which also produces 40% of carbon dioxide 
emissions to the environment (Luangcharoenrat et al. 2019). 
Moreover, the building sector consumes about 3 billion tons 
of the world’s raw materials annually (Guerra and Leite 
2021). The waste produced by construction, renovation, or 
demolition operations, referred to as construction and demo-
lition waste (CDW), represents 30% of the overall solid waste 
produced globally (Purchase et al. 2022; Ding et al. 2023). 
In Egypt, the generated CDW quantities are estimated to be 
50 million tons annually, increasing by 5 million tons per 
year (Albawabh News 2023). This waste stream comprises 
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inert and noninert components (e.g., glass, steel, wood, and 
concrete), and it occupies landfill space, causes consider-
able environmental degradation, generates geologic risks, 
and has other negative impacts (Jain et al. 2020; Kabirifar 
et al. 2020; Elshaboury and Marzouk 2021). Hence, govern-
ments and municipal authorities must manage CDW effec-
tively; however, the main obstacle that hinders waste reuse 
and recycling in Egypt is the absence of accurate estimates 
of their quantities. Recycling offers numerous benefits for 
sustainable development across societal, environmental, and 
economic dimensions (Wei et al. 2023). Many waste manage-
ment approaches, such as planning landfill space, adopting 
disposal levies or recycler subsidies, and establishing waste 
management plans, require accurate estimates of waste gen-
eration rates (Yu et al. 2021; Hua et al. 2023).

The assessment of waste generation at both the project 
and regional levels has attracted attention on a global scale. 
Elshaboury et al. (2022) conducted a bibliometric and scien-
tometric study on 895 publications related to CDW manage-
ment. The study found that management strategies, as well 
as estimation and quantification, are the primary emerging 
themes in this field. Estimation is essential in developing 
countries where no formal recording systems regularly 
gather and publish data on waste generation rates (Lu et al. 
2021). According to Gao et al. (2018), basic and compre-
hensive methods can be applied to predict CDW genera-
tion, including site visits (SV), generation rate calculations 
(GRC), variable modeling (VM), classification system accu-
mulation (CSA), material flow analysis (MFA), geographic 
information system (GIS), and building information mod-
eling (BIM). Each approach for estimating CDW generation 
has advantages and disadvantages. The SV technique neces-
sitates performing field surveys, including direct measure-
ment by weighing or measuring volume, as well as indirect 
measurement by utilizing other indicators, such as haulage 
tickets (Hoang et al. 2020). Using the GRC technique, the 
total waste volume may be estimated by multiplying the 
generation rate of a given unit by the associated quantity 
(Hu et al. 2023). VM can model the relationships between 
input variables and targeted output using machine learn-
ing, system dynamics, and other modeling approaches. The 
CSA approach quantifies each material by combining the 
GRC method with a waste categorization (Hu et al. 2021). 
MFA may assess the input and output of building materi-
als and determine the flow of materials during the entire 
construction activity (Abdelshafy and Walther 2022). Other 
approaches, such as employing GIS and BIM, do not fall 
into any of the abovementioned categories. This study will 
employ GIS and VM techniques for reliable prediction of 
regional waste generation.

The major objective of this research is to predict the 
CDW quantities in Tanta City, which is the second most 
populous city in the world, the third-most civilized Egyptian 

city, and the largest city in the Delta (Egypt Independent 
2022). The spatial data are acquired from the city maps and 
classification of satellite images after validation to extract 
the utilized factors, which are used as inputs for the model 
development. The proposed models incorporate the appli-
cation of a self-organizing fuzzy neural network (SOFNN) 
modeling approach based on an adaptive quantum particle 
swarm optimization (AQPSO) algorithm and a hierarchical 
pruning scheme (HPS). The performance of the AQPSO-
SOFNN and SOFNN-HPS models is evaluated by consid-
ering socioeconomic, urban growth, and waste-generation 
statistics. The novelty of this research is the integration of 
remote sensing and geographic information systems to estab-
lish a geographical database, which is employed for predict-
ing the generated waste quantities using machine learning. 
Moreover, it is the first application of AQPSO-SOFNN and 
SOFNN-HPS for modeling and quantifying CDW volumes. 
Additionally, the performance of these models is compared 
with other state-of-the-art competitors, including FNN with 
an error backpropagation (FNN-EBP) learning approach 
and group method of data handling (GMDH). As for the 
verification and evaluation of prediction models, K-fold 
cross-validation is conducted to verify the proposed models. 
Moreover, performance measures that reflect the relationship 
between observed and predicted values are used to assess the 
performance of predictive models. The research objective is 
aligned with Egypt Vision 2030, which targets a substantial 
improvement in the collection and efficiency of solid waste 
(MPED 2023). It also serves waste management law No. 202 
of 2020, which emphasizes the importance of developing a 
database that records the quantities of various types of waste 
and the existing and new landfills in each governorate (Offi-
cial Gazette 2022). Furthermore, providing a robust meth-
odology for quantifying the waste volumes is crucial to the 
operation of 38 crushers that were allocated at a total cost 
of 518.6 million pounds. These crushers aim to facilitate the 
reuse of CDW in all Egyptian governorates to develop an 
effective and sustainable waste management system.

Quantifying CDW generation

Estimating CDW generation has been acknowledged as a 
cornerstone for waste management. In recent years, machine 
learning models have been widely employed to predict CDW 
generation. These models include support vector regres-
sion (SVR), artificial neural network (ANN), random forest 
(RF), K-nearest neighbor (KNN), multiple linear regression 
(MLR), support vector machine (SVM), and decision tree 
(DT). Song et al. (2017) developed a gray model-SVR model 
that enhanced the gray model’s forecasting performance by 
modifying the residual series using the SVR technique and 
a transition matrix for predicting the CDW in China. The 
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application of the proposed model allowed for examining 
the volume, components, and distribution of waste in various 
Chinese provinces. Akanbi et al. (2020) developed deep neu-
ral network models to forecast the salvage and waste material 
from a demolished building. Datasets for the model develop-
ment were gathered from 2280 building demolition data in 
the UK. The models were developed to forecast the quantity 
of reused, recycled, and landfilled materials. The building 
characteristics, including the number of floors, building vol-
ume, gross floor area, building type (i.e., office, retail, and 
education), and building type (i.e., steel, concrete, masonry, 
and timber), were among the input variables. The mean 
determination coefficient (R2) was 0.97, while mean abso-
lute error (MAE) values ranged from 17.93 to 19.04. Four 
building design scenarios were used to test the models. The 
developed models exhibited high accuracy in estimating the 
salvage materials given the building’s basic characteristics.

Cai et al. (2020) proposed a hybrid intelligent strategy 
that combined SVR, single spectrum analysis (SSA), and 
long short-term memory network (LSTM) networks to pre-
dict CDW generation rates in Hong Kong. The trend and 
fluctuation in time series data were captured using SSA, 
and the SVR and LSTM models were then employed and 
aggregated for better prediction results. The optimal model 
parameters were defined using grid search optimization. 
The results revealed the outperformance of the proposed 
approach against the benchmark methods and its viabil-
ity for CDW generation forecasting. Huang et al. (2020) 
developed a time-series forecasting approach based on the 
LSTM network to anticipate construction waste in Shang-
hai and Hong Kong. The proposed LSTM model exhibited 
better performance when compared to existing time-series 
forecasting models, including SVR, ridge regression, and 
ANN. Moreover, the overfitting problem of the proposed 
model was addressed by adding a dropout layer to enhance 
its generalization performance. The findings demonstrated 
the model’s superior ability to address univariate nonlinear 
forecasting problems. Lu et al. (2021) quantified the con-
struction waste generation in Greater Bay, China, using the 
data acquired by the local government agencies. These data 
included building-related, socioeconomic, and CDW gen-
eration statistics from 2005 to 2019. Four different machine 
learning models were used to analyze the data: MLR, ANN, 
DT, and Grey model. The developed models yielded R2 
values ranging from 0.756 to 0.977 throughout the testing 
phase. According to this analysis, the Greater Bay generated 
around 364 million m3 of building waste in 2018.

Cha et al. (2020) employed RF to estimate demolition gen-
eration based on small datasets. The model accounted for build-
ing structure (e.g., masonry, wood, and reinforced concrete), 
building use (e.g., residential, commercial, and residential/
commercial), region, wall material (e.g., reinforced concrete, 
brick, block, and soil), roofing material (e.g., slab, slab and 

roofing tile, roofing tile, and roof with asbestos), and gross 
floor area. The results showed the capability of the RF predic-
tion model (Pearson’s correlation coefficient: R = 0.69–0.87 
and R2 = 0.55–0.80) to deal with a small dataset of demolition 
waste. In another study, Cha et al. (2022a) incorporated cat-
egorical principal components analysis (CATPCA) with the 
SVR and ANN techniques to improve prediction accuracy 
for small datasets. The CATPCA-SVR model (R2 = 0.59 and 
R = 0.77) ranked the best among the constructed models. Cha 
et al. (2022b) compared the performances of several machine 
learning models for forecasting demolition waste generation 
in South Korea. The hyperparameters of the developed ANN, 
RF, KNN, MLR, and SVM models were adjusted to enhance 
their outcomes. The findings confirmed the outperformance 
of ANN-ReLu (R2 = 0.90 and ratio of percent deviation 
(RPD) = 3.16), SVM polynomial (R2 = 0.89 and RPD = 3.00), 
and ANN-logistic (R2 = 0.88 and RPD = 2.92). The average 
errors of the developed models were 7.3%, 7.4%, and 7.5%, 
respectively. Yuan et al. (2023) quantified the urban material 
stock using data from 71 demolished buildings in Hong Kong. 
The proposed model accounted for six features: construction 
year, building type, perimeter, height, total floor area, and num-
ber of floors. An MLR model produced a reliable estimate of 
construction material stockpiles with a root mean square error 
of 474.13, a mean absolute percentage error of 9.1%, and an R2 
of 0.93 compared to other machine learning models.

On a national level, Elgizawy et al. (2016) compared and 
evaluated the CDW quantification methods in the literature, 
highlighting their advantages and shortcomings. The study 
evaluated the construction waste index for two medium-
sized residential projects and two LEED-certified projects 
in Egypt. The average indices for the former projects were 
0.115 ton/m2, but the respective indices of the latter projects 
were roughly 0.025 ton/m2 and 0.026 ton/m2. The computed 
index for these small- to medium-sized projects was four 
times larger than the one for large-scale projects. This index 
could serve as a foundation for comparing various project 
types in Egypt and anticipating the quantities of waste gener-
ated from future projects. Elshaboury and Attia (2022) mod-
eled the CDW quantities in four Egyptian governorates using 
six input factors: population size, percentage of residential to 
nonresidential structures, built-up and demolished areas, and 
the number of building units. The data was gathered from 
the Central Agency for Public Mobilization and Statistics for 
2010–2019. The developed ANN models yielded an average 
R-value of 0.89, with a typical validity percent value rang-
ing from 0.73 to 0.84. The conclusions demonstrated the 
capability of ANN models to predict the generated quantities 
of CDW in El-Gharbia, Kafr El Sheikh, Assiut, and Qena.

The previous research studies have not jointly tackled the 
following points: (1) investigating the factors influencing the 
CDW generation in Egypt, (2) quantifying the CDW volume 
in an Egyptian city using GIS and machine learning, and (3) 



106536	 Environmental Science and Pollution Research (2023) 30:106533–106548

1 3

improving the search capabilities of conventional machine 
learning models that are constrained by local minima trapping 
and poor convergence. In this regard, the major objective of 
this research is to provide a robust methodology for modeling 
CDW generation rates in Tanta City, one of the largest and 
most civilized cities in Egypt. The following are the major 
contributions of this research study: (1) incorporating the 
socioeconomic and waste-generation statistics to estimate the 
CDW quantities, (2) employing the classification of satellite 
images that were acquired over long periods to estimate the 
urban growth as well as vacant and agricultural areas, (3) fore-
casting the waste generation using hybrid SOFNN modeling 
approaches (i.e., AQPSO-SOFNN and SOFNN-HPS), (4) 
validating the performance of the developed models against 
state-of-the-art competitors using several evaluation measures, 
and (5) reducing the mean absolute percentage error (MAPE) 
and normalized root means square error (NRMSE) metrics 
of the developed FNN-EBP and GMDH models by at least 
92.90% and 90.64%, respectively. This research study can help 
the government monitor urban metabolism and establish effi-
cient waste management systems in the study region.

Materials and methods

Study area

Tanta City is the capital of Gharbia governorate, which lies iwest 
of the Nile Delta and north of Egypt (see Fig. 1). It is located 

120 km southeast of Alexandria and 90 km north of Cairo. It is 
located 10 m above sea level at the latitude 30° 47′ 28″ N and 
longitude 30° 59′ 53″ E. The city has experienced a fast expan-
sion in urban growth during the past 25 years (Abdrabo et al. 
2021). It has the largest area and population size in the Delta, in 
addition to being the most civilized city after Cairo, the capital, 
and Alexandria. Between 1996 and 2017, the population nearly 
expanded 1.4 times, and it is anticipated to reach 558,383 people 
in 2027. On a global level, it came in second place in the list 
of the most densely populated cities in the world with 27,800 
inhabitants/km2 for the year 2022 (Egypt Independent 2022). 
This figure can be attributed to the nonexistence of a desert hin-
terland and the fact that the city is surrounded by an agricultural 
hinterland, limiting its expansion opportunities. The problem 
is compounded by the urban sprawl on agricultural lands and 
construction violations following the 25 January revolution in 
2011, exacerbating congestion in the city (Mostafa et al. 2023). 
In this regard, the city can either amend the administrative bor-
ders of the governorate, which are considered only suitable in 
the medium and long term, or utilize the vacant areas such as 
illegal waste disposal areas. The second option is more applica-
ble shortly, as it allows for establishing services that offer people 
a high quality of life and reduce the adverse effects of overpopu-
lation (Elwatan News 2022).

Research methodology

The proposed flowchart for estimating the waste quanti-
ties starts by defining the influential factors such as year, 

Fig. 1   Location and urban growth map of Tanta City in Egypt
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population, gross domestic product (GDP) per capita, built-
up area, vacant area, and agricultural area. Figure 2 pre-
sents the research methodology phases and the reported 
outcomes. The types, formats, and sources of the utilized 
data are depicted in Table 1 and described as follows: Time 
series of the city population (capita) and the GDP per cap-
ita ($/capita) for the period 1965–2021 are obtained from 
the city population (2023) and the World Bank (2023), 
respectively. The detailed geoprocessing and analysis of 
the remaining factors are presented in Fig. 3. The built-up 
areas (m2) for the period 1930–1950 are acquired based 

on El-Kholei et al.’s (2016) map that is rectified (accord-
ing to UTM zone 36 N projection, WGS 1984 datum) and 
digitized as a polygon feature class geographical database. 
The areas from 1975 to 2022 are acquired based on the 
geoprocessing and analysis of satellite images. Table 2 
describes the spectral characteristics and spatial resolu-
tion of the utilized satellite images.

The accuracy assessment process of satellite image clas-
sification is applied using topographic maps and OpenStreet-
Map (OSM) in addition to El-Kholei et al.’s (2016) map 
to validate the years 1985, 1995, and 2005. As such, the 

Fig. 2   Flowchart of the research study

Table 1   Types, formats, and sources of the utilized data

Data Type Format Source

Statistics (population, GDP, and CDW quantities) Table .xlsx City Population (2023), World Bank (2023), and WMRA (2017)
City built-up areas (1985, 1995, and 2005) Raster Paper (scanned 

and converted 
to digital jpg 
format)

El-Kholei et al. (2016)

Satellite images (1972–2022) Raster Geo-tiff format https://​earth​explo​rer.​usgs.​gov/
Topographic map (2 sheets), No. NH36-16c and 

NH36-15d, scale 50,000
Raster Paper (scanned 

and converted 
to digital jpg 
format)

Egyptian General Survey Authority, Tanta east and west map 
sheets (1997), 50,000, Ministry of Water Resources and Irriga-
tion, Cairo, Egypt

Study area/administrative unit boundary Vector Shapefile https://​www.​diva-​gis.​org/​Data based on https://​gadm.​org/ (ver-
sion 1.0)

Base map OSM Map tiles https://​www.​opens​treet​map.​org/

https://earthexplorer.usgs.gov/
https://www.diva-gis.org/Data
https://gadm.org/
https://www.openstreetmap.org/
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built-up area for the study period is calculated based on the 
urban growth formula shown in Eq. (1), assuming the stabil-
ity of the rest of the factors affecting urban growth.

(1)R =
[(
Vpresent − Vpast

)
∕Vpast

]
× 100

where R , Vpresent , and Vpast denote the growth rate, present or 
future value, and past or present value, respectively. It shall 
be noted that the annual growth rate is simply the percent 
growth divided by the number of years, considering that the 
computed rate represents the average of rates over different 
periods.

Fig. 3   Geo-processing and 
analysis of the built-up, vacant, 
and agricultural areas
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The vacant and agricultural areas (m2) are deduced from 
several land use/land cover maps that are extracted from the 
visual interpretation and classification of satellite images. 
The percentage of vacant areas is determined by studying 
the map of land uses in different periods. Moreover, there is 
a decrease in agricultural areas resulting from the growth of 
the built-up area over the study period. As such, the vacant 
and agricultural areas are deduced for the subsequent peri-
ods under investigation through area field calculations within 
the attribute tables of multi-temporal land use/land cover 
layers in the geographical database. These attribute tables 
are generated automatically when the geographical data-
base layer type is specified as a feature class (polygon) and 
structured under a metric coordinate framework (here, UTM-
WGS 1984 zone 36 N). The waste quantities are extracted 

from the report published by the waste management regula-
tory authority for the Gharbia governorate (WMRA 2017).

After specifying the input and output factors, the data are 
analyzed using the AQPSO-SOFNN, SOFNN-HPS, FNN-
EBP, and GMDH models. These models are employed to fore-
cast the waste generation rates in Tanta City based on k-fold 
cross-validation. Cross-validation assesses how effectively the 
proposed machine learning models can forecast the outcome 
of new data. The AQPSO-SOFNN employs a cooperative 
adaptive adjustment approach for attractor, coefficient, and 
boundary to achieve the optimal balance between exploration 
and exploitation of the algorithm. It uses an improved fuzzy 
recursive least squares technique to determine the nonlinear 
dynamical system. Finally, the Lyapunov stability theory is 
used to demonstrate the convergence of the proposed model 

Table 2   Spectral characteristics and spatial resolution of the utilized satellite images

a Band 6 on Landsat 7 is divided into 2 bands, high and low gain
Source: (http://​glcf.​umd.​edu/) [scene pass 177/row 039]

Satellite Sensor and spectral reso-
lution (µM)

Band Spatial resolu-
tion (M.)

Swath (km) Scene size (km × km) Altitude (km)

Landsat 5 TM
Band 1: 0.45–0.52 Blue 30 185 170 × 183 705
Band 2: 0.52–0.60 Green 30
Band 3: 0.63–0.69 Red 30
Band 4: 0.76–0.90 Near IR 30
Band 5: 1.55–1.75 Mid IR 30
Band 6: 10.4–12.5 Thermal 120
Band 7: 2.08–2.35 Mid IR 30

Landsat 7 ETM + 
Band 1: 0.450–0.515 Blue 30 185 170 × 183 705
Band 2: 0.525–0.605 Green 30
Band 3: 0.630–0.690 Red 30
Band 4: 0.760–0.900 Near IR 30
Band 5: 1.550–1.750 Mid IR 30
Band 6a: 10.40–12.5 Thermal 60
Band 7: 2.080–2.35 Mid IR 30
Band 8: 0.52–0.92 Pan 15

Landsat 8 and 9 OLI
Band 1: 0.43–0.45 Visible 30 185 170 × 185 705
Band 2: 0.450–0.51 Visible 30
Band 3: 0.53–0.59 Visible 30
Band 4: 0.64–0.67 Red 30
Band 5: 0.85–0.88 Near-IR 30
Band 6: 1.57–1.65 SWIR 1 30
Band 7: 2.11–2.29 SWIR 2 30
Band 8: 0.50–0.68 PAN 15
Band 9: 1.36–1.38 Cirrus 30
TIRS
Band 10: 10.6–11.19 TIRS 1 100
Band 11: 11.5–12.51 TIRS 2 100

http://glcf.umd.edu/
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precisely. The SOFNN-HPS algorithm devises an online self-
organizing strategy for concurrently determining the network 
topology and parameters to achieve the optimum balance 
between system accuracy and network complexity. Moreover, 
it utilizes an adaptive allocation strategy to decide the ante-
cedent parameters of fuzzy rules. The resultant parameters 
of the derived fuzzy rules are then updated using a modified 
recursive least squares technique to hasten the convergence 
of the error. Finally, after initializing the model parameters, 
the models are developed and assessed using five metrics to 
identify the optimum prediction model.

Machine learning models

Four machine learning models are applied to predict the 
CDW quantities in Tanta City, Egypt. Each of these models 
is described in detail in the next subsections.

AQPSO‑SOFNN

In this study, the SOFNN architecture has four layers: the input 
layer, the membership function layer, the rule layer, and the 
output layer (Zhang and Wang 2022). The input layer com-
prises neurons, each representing a different input variable. 
This layer requires no weight modifications because the input 
neuron is transmitted directly to the next layer. Each neuron in 
the membership function layer acts as a membership function 
to carry out the fuzzification method. Each neuron in the rule 
layer corresponds to a fuzzy rule’s IF part (antecedent param-
eters). The output variable is the weighted summation of input 
signals, and it is generated using a defuzzification algorithm.

The basic background and procedures of this algorithm 
are described as illustrated in Fig. 4 (Zhou et al. 2022). Com-
pared to particle swarm optimization (PSO), quantum PSO 
(QPSO) eliminates particle velocity information and delivers 
better search performance with a more streamlined model 
structure. However, QPSO also encounters premature con-
vergence and entrapment in a local optimum. To this end, a 
cooperative adaptive adjustment technique for the attractor, 
the coefficient, and the boundary is proposed. The resulting 
AQPSO algorithm balances exploration and exploitation 
capacities. The global optimal solution is found using this 
approach, enhancing the precision of the solution. The free 
parameters and network topology are updated simultane-
ously by building the fitness function, utilizing the network 
complexity and system accuracy during the learning process. 
An improved fuzzy recursive least squares (FRLS) technique 
is subsequently presented to estimate the output weights of 
SOFNN. Also, the Lyapunov stability theory establishes the 
convergence of the AQPSO-SOFNN to guarantee its ability 
to solve real-world engineering problems. The center, width, 
and fuzzy rule number of the SOFNN are finally modified 
using the suggested AQPSO.

SOFNN‑HPS

SOFNN based on a HPS is proposed to attain the ideal bal-
ance between network accuracy and complexity by adjusting 
the network topology and parameters (Zhou et al. 2020). The 
procedures of SOFNN-HPS are described in Fig. 5 as follows: 
The capacity of fuzzy rules to characterize nonlinear systems 
is enhanced using asymmetric Gaussian functions that can split 
the input space. HPS is used to create fuzzy rules while auto-
matically eliminating redundant fuzzy rules without pre-setting 
the pruning threshold or inadvertently deleting significant rules. 
Finally, the fuzzy rules’ antecedent parameters are chosen using 
an adaptive allocation technique throughout the learning pro-
cess. By modifying the area of the generalized ellipsoidal basis 
functions, this method strikes a compromise between rule-base 
interpretability and accuracy for a better local approximation. 
The resultant parameters of the obtained fuzzy rules are finally 
updated using a modified recursive least squares method to has-
ten the convergence of the estimation error.

FNN‑EBP

The FNN-EBP learning approach comprises fuzzy processing 
and a standard BP network. The membership function in the 
fuzzy processing component applies fuzzy processing to the 
network input, and the results are sent to the BP network for 
additional processing. The output data are compared to the 
expected output to determine the network connection weights, 
which are then modified based on an error function (Li et al. 
2011). The FNN architecture comprises the input layer, the 
membership function layer, the rule layer, and the output layer. 
The neurons in the input layer are sent directly to the following 
layer without any weight modifications. Meanwhile, neurons in 
the membership function layer are responsible for the fuzzifi-
cation process. The symmetric width constraint of the Gauss-
ian function is circumvented by using an asymmetric Gaussian 
function with dynamic widths. This layer has the same number 
of neurons and fuzzy rules. A defuzzification method deter-
mines the output variable, which is the weighted sum of the 
input signals. The FNN-EBP network structure expands when 
additional fuzzy rules are specified without improving the 
algorithm’s performance. On the other hand, applying fewer 
fuzzy rules might compromise the generalization performance 
and prediction accuracy of the model.

GMDH

A self-organized system called the GMDH was introduced 
for dealing with nonlinear problems (Ivakhnenko 1971). 
It identifies data relationships, selects the ideal structure 
or network design, and enhances the precision of existing 
techniques while considering all conceivable input com-
binations. A quadratic polynomial connects the neurons in 
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each layer, generating new neurons in the subsequent layers. 
Even though standard GMDH offers systematic prediction 
and system modeling, there are still several limitations to 
its use (Mulashani et al. 2022): (1) difficulty in determining 
the best dataset split and elimination of important features 
resulting in slight differences in the model accuracy, (2) high 
propensity to produce excessively intricate solutions when 
handling nonlinear problems due to its generic architecture 
(quadratic polynomial), (3) difficulty of determining neuron 
weights by a quadratic polynomial, (4) unfit convergence or 
divergence caused by the incorrect selection of the variables, 
and (5) the need to conduct several runs using different ini-
tial assumptions to obtain the global optimum.

Performance metrics

In this research, MAPE, NRMSE, R2, Kling–Gupta effi-
ciency (KGE), and index of agreement (IOA) metrics are 

utilized to assess the performance of the proposed models 
as per Eqs. (2)–(6). The MAPE measures the magnitude 
of errors (in percentage terms) encountered by the devel-
oped models in predicting the outcomes. The NRMSE is 
the proportion of the RMSE related to the range of the 
observed value. Lower values of MAPE and NRMSE 
indicate more accurate predictions from the developed 
model, and vice versa. The R2 value measures the per-
formance of the prediction model to predict an outcome 
in linear regression. The KGE metric is a revised version 
of the Nash–Sutcliffe efficiency to prevent the associa-
tion between bias and variability ratios. Finally, the ratio 
between the mean square error and the potential error is 
represented by the IOA. It can detect changes between 
the observed and predicted values, but it is sensitive to 
extreme values because of the squared differences. Higher 
values of R2, KGE, and IOA metrics indicate robust model 
performance and vice versa.

Fig. 4   Flowchart of AQPSO-SOFNN model
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where n is the number of available data records, Oi is the 
observed waste quantities in the ith year, and Pi is the pre-
dicted waste quantities using the developed models in the 
ith year.
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Fig. 5   Flowchart of SOFNN-
HPS model
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Results and discussion

The main input factors include the year, population, GDP 
per capita, built-up area, vacant area, and agriculture area, 
while the output factor denotes the quantities of waste. 
The input and output sample data are handled using four 
machine learning models to accomplish the nonlinear 
approximation of the input factors to the CDW quantities. 
A total of 57 data records were gathered in Tanta City, 
Egypt. A fivefold cross-validation was conducted to vali-
date the outcomes of the developed models. The hyperpa-
rameters of the AQPSO-SOFNN are outlined as follows: 
balance factor = 0.4, population size = 50, and maximum 
number of steps = 200. Considering the SOFNN-HPS, 
it is assumed that the maximum error = 1.0, the pruning 
cycle = 50, the desired precision = 0.09, and the minimum 
and maximum lengths of the input space = 0.1 and 1.0, 
respectively. The control parameters of the FNN-EBP are 
defined such that the rule number = 10 and the learning 

rate = 0.001. For the GMDH, the maximum number of lay-
ers = 2, the maximum number of neurons in a layer = 10, 
and the selection pressure (in layers) = 0.6. Additionally, 
the maximum number of iterations is set at 100 to ensure 
a fair comparison between the performances of the mod-
els. MATLAB version R2019a is utilized to perform the 
proposed models.

The performance of the developed models is assessed 
using hexagonal bin plots with marginal histograms (Fig. 6). 
Each hexagonal bin in these plots represents a cluster of 
data points, with the x-axis indicating observed quantities 
and the y-axis representing predicted quantities. Meanwhile, 
the color intensity shows the density of data points, allow-
ing the detection of high-concentration areas and prediction 
accuracy patterns.

By comparing the predictions of four models, it can be 
shown that AQPSO-SOFNN predicts waste quantities with 
a substantially higher degree of accuracy than FNN-EBP 
and GMDH. The AQPSO-SOFNN hexagonal bins are 
more densely concentrated around the 45° regression line, 

Fig. 6   Hexagonal bin plots 
with marginal histograms of the 
observed and predicted waste 
quantities using the machine 
learning models

SPH-NNFOS)b(NNFOS-OSPQA)a(

(c) FNN-EBP (d) GMDH
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suggesting a closer match between observed and predicted 
quantities. Despite the outperformance of this model, the 
SOFNN-HPS model also demonstrates comparable perfor-
mance, with hexagonal bins closely aligned with the diago-
nal line. The AQPSO-SOFNN and SOFNN-HPS models 
have close equivalence to the observed values for the entire 
dataset. As a result, these models demonstrate high per-
formance in estimating waste volumes compared to other 
models.

The comparison goes beyond hexagonal bins, and the 
marginal histograms reflect the distribution of errors along 
the x-axis and y-axis. This allows for analyzing the overall 
distribution of errors and identifying biases in predictions.

The fivefold cross-validation average predictive perfor-
mances of the four machine learning models are compared 
using MAPE, NRMSE, R2, KGE, and IOA evaluation met-
rics, as depicted in Table 3. The AQPSO-SOFNN model 
is associated with a maximum determination coefficient of 
1.00. This implies a perfect alignment between observed 
and predicted values, demonstrating the model’s outstand-
ing predictive capacity. Meanwhile, the KGE and IOA met-
rics are equal to 0.99 and 1.00 for the AQPSO-SOFNN and 
SOFNN-HPS models, respectively. As for the FNN-EBP 
and GMDH models, the R2, KGE, and IOA values lie in 
the range of [0.02, 0.95], [0.01, 0.67], and [− 0.03, 0.95], 
respectively. The varying performance values represent 
the different degrees of accuracy across the models. The 
same results can be interpreted by checking the average 
MAPE and NRMSE of the four comparative algorithms. 
The proposed AQPSO-SOFNN model reduces the MAPE 
by 55.13%, 92.90%, and 98.43% compared to the SOFNN-
HPS, FNN-EBP, and GMDH, respectively. Additionally, 
it reduces NRMSE by more than 55.13% compared to all 
the other models. The simulation outcomes show that the 
AQPSO-SOFNN model can accurately predict the CDW 
quantities.

The error histogram diagrams for the complete dataset are 
shown in Fig. 7. As depicted in the figure, the x-axis reflects 
the error values, while the y-axis shows the frequency of 
each error value. The frequency and distribution of errors 
within the histogram give useful information about the per-
formance of prediction models. The frequency of errors 
approaches zero as modeling accuracy improves. In light 
of this, the optimal modeling performance is represented by 
the bell-shaped error histogram with a mean of zero. This 
signifies that the predictions closely match the observed val-
ues. It is obvious that the AQPSO-SOFNN model has the 
least errors, as evidenced by its tighter distribution around 
zero error. Following this, the SOFNN-HPS, FNN-EBP, and 
GMDH models exhibit broader distributions, indicating dis-
parities between predictions and observations. However, the 
FNN-EBP and GMDH models have a higher frequency of 
nonzero errors.

Moreover, the histogram reveals the nature of errors, dis-
criminating between overestimation and underestimation. 
Overestimation and underestimation are indicated by posi-
tive and negative errors, respectively. The AQPSO-SOFNN 
and SOFNN-HPS models underestimate the waste quanti-
ties, unlike the FNN-EBP, which mostly overestimates the 
outputs. Additionally, the GMDH model shows both under-
estimation and overestimation of the outcomes.

Additionally, the histogram provides insights into the 
magnitude of errors by visualizing the range of errors for 
each model on the y-axis. The errors of the AQPSO-SOFNN, 

Table 3   Average performance of the developed machine learning 
models for the entire dataset

Metrics AQPSO-SOFNN SOFNN-HPS FNN-EBP GMDH

First fold
MAPE 1.50% 3.50% 11.40% 47.70%
NRMSE 0.02 0.06 0.134 0.511
R2 1.00 0.98 0.98 0.01
KGE 0.99 0.94 0.64  − 0.07
IOA 1.00 0.99 0.95  − 0.16
Second fold
MAPE 0.70% 0.00% 10.10% 49.50%
NRMSE 0.01 0.00 0.13 0.53
R2 1.00 1.00 0.98 0.02
KGE 1.00 1.00 0.66  − 0.14
IOA 1.00 1.00 0.95  − 0.31
Third fold
MAPE 0.60% 0.00% 7.70% 39.70%
NRMSE 0.01 0.00 0.10 0.45
R2 1.00 1.00 0.99 0.03
KGE 0.99 1.00 0.746 0.17
IOA 1.00 1.00 0.98 0.29
Fourth fold
MAPE 0.70% 0.00% 8.80% 50.10%
NRMSE 0.02 0.00 0.13 0.53
R2 1.00 1.00 0.93 0.03
KGE 0.99 1.00 0.70  − 0.17
IOA 1.00 1.00 0.95  − 0.40
Fifth fold
MAPE 4.30% 0.00% 11.30% 35.70%
NRMSE 0.07 0.00 0.16 0.42
R2 0.96 1.00 0.87 0.074
KGE 0.97 1.00 0.66 0.27
IOA 0.99 1.00 0.92 0.43
Average
MAPE 0.70% 1.56% 9.86% 44.54%
NRMSE 0.01 0.03 0.13 0.49
R2 1.00 0.99 0.95 0.02
KGE 0.99 0.99 0.67 0.01
IOA 1.00 1.00 0.95  − 0.03
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SOFNN-HPS, FNN-EBP, and GMDH range between 
[− 0.0001, 9.13], [− 17.22, 2267.23], [− 65.79, 9048.78], 
and [− 74.59, 17,343.53], respectively. These ranges empha-
size the capacity of the AQPSO-SOFNN model to minimize 
errors.

The violin plot diagram of the observed and forecasted 
waste quantities is displayed in Fig. 8. Examining the resem-
blance between the distribution of observed and modeled 
waste quantities is the primary function of this plot. The 
modeling accuracy increases in case the modeled distribu-
tion resembles the shape of the observed waste quantities. 
The distribution of the AQPSO-SOFNN and SOFNN-HPS 
models closely fits that of the observed data, given that 
the medians of the modeled and observed data point in the 
same direction. The same lengths of interquartile ranges 
show similar data dispersion for both models. The FNN-
EBP comes in third place, followed by the GMDH, whose 
distribution differs significantly from the observed data. The 
AQPSO-SOFNN and SOFNN-HPS models rely on fuzzy 
neural networks, and as such, they have a greater capacity to 
identify nonlinear systems than other networks. The former 
model employs a cooperative adaptive adjustment approach, 
an improved FRLS technique, and Lyapunov stability theory 
to enhance its nonlinear dynamical approximation capabil-
ity. Furthermore, the latter model has strong ability and 
robustness as a result of integrating the hierarchical prun-
ing strategy, the adaptive allocation strategy, the generalized 

ellipsoidal basis function, and the modified recursive least 
squares method.

The results of the present study are compared to those 
reported in the literature. The AQPSO-SOFNN and SOFNN-
HPS models have an average R2 of 0.995 and offer more 
precise predictions than the deep learning models developed 
by Akanbi et al. (2020), which had a R2 value of 0.97 and 
MAE ranging between 17.93 and 19.04. The same inter-
pretations can be found by investigating Cha et al.’s (2020) 
study that employed the random forest model (R = 0.69–0.87 
and R2 = 0.55–0.80) to predict demolition waste genera-
tion. Additionally, the proposed models outperformed the 

Fig. 7   Error histograms of 
waste quantities using the 
developed models for the entire 
dataset

Fig. 8   Violin plots for comparing observed and modeled waste quan-
tities using machine learning models
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CATPCA-SVR model (R2 = 0.59, R = 0.77) developed 
by Cha et al. (2022a) and the ANN-ReLu (R2 = 0.90 and 
RPD = 3.16), SVM-polynomial (R2 = 0.89 and RPD = 3.00), 
and ANN-logistic (R2 = 0.88 and RPD = 2.9) models that 
were employed by Cha et al. (2022b) to predict the genera-
tion rates of demolition waste.

Conclusion

The building and construction industry is crucial to the eco-
nomic development of any country. It consumes resources 
and raw materials, pollutes the environment, and generates 
waste. To ensure effective CDW management, govern-
ments and local authorities must have precise estimates 
of waste generation rates because waste quantification is 
necessary for many waste management strategies, includ-
ing designing landfill space, enacting disposal levies or 
recycling subsidies, and developing waste management 
plans. In this regard, waste quantification prediction models 
may be developed utilizing socioeconomic, urban growth, 
and waste-generation statistics. This research applies the 
AQPSO-SOFNN and SOFNN-HPS models to model the 
generated CDW quantities in Tanta City, Gharbia governo-
rate, Egypt. The outperformance of the proposed models 
is exhibited by comparing their performances against those 
of the FNN-EBP and GMDH models using five evalua-
tion measures: MAPE, NRMSE, R2, KGE, and IOA. For 
the AQPSO-SOFNN and SOFNN-HPS models, the KGE 
and IOA metrics are equivalent to 0.99 and 1.00, respec-
tively. The R2, KGE, and IOA values for the GMDH and 
FNN-EBP models lie in the range of [0.02, 0.95], [0.01, 
0.67], and [− 0.03, 0.95], respectively. The average MAPE 
and NRMSE of the four prediction models can be used to 
interpret the same results. The suggested AQPSO-SOFNN 
model decreases the NRMSE by at least 55.13% in addi-
tion to reducing the MAPE for the SOFNN-HPS, FNN-EBP, 
and GMDH by 55.13%, 92.90%, and 98.43%, respectively, 
when compared to other models. The simulation results 
demonstrated that the AQPSO-SOFNN model performs 
much better when compared to other comparative models 
and slightly better than the SOFNN-HPS model. This paves 
the way for the model’s application in predicting waste quan-
tities at the city level. This can be attributed to the higher 
capacity of AQPSO-SOFNN and SOFNN-HPS to identify 
nonlinear systems than other networks. The former model 
increases its capacity for nonlinear dynamical approximation 
by incorporating a cooperative adaptive adjustment strategy, 
a modified FRLS method, and Lyapunov stability theory. 
The latter model, however, combines the HPS, the adaptive 
allocation strategy, the generalized ellipsoidal basis function, 
and the modified recursive least squares technique, offering 
considerable ability and robustness. Owing to the enormous 

volumes of generated waste and the scarcity of landfills, it is 
acknowledged that the proposed methodology for estimating 
the CDW quantities at a city level can assist the government 
in planning the optimal capacity of required landfills and 
in establishing the necessary legislation for effective waste 
management systems. However, certain limitations in the 
applicability of our methodology to other contexts must be 
acknowledged. The current methodology’s performance is 
optimized for Tanta City and may require modification when 
applied to other cities with different characteristics or data 
availability. Factors including building location, type (e.g., 
residential and commercial), and structure (e.g., reinforced 
concrete, brick, and wood) can all impact the model’s perfor-
mance. Future studies might focus on conducting compara-
tive studies across different cities, regions, or countries to 
examine differences in CDW generation rates, waste man-
agement strategies, and policy implications. This could offer 
valuable insights into the factors driving waste management 
efficacy.
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