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Abstract
The importance of water for all living organisms is unquestionable and protecting its sources is crucial. In order to reduce 
water contaminants, like toxic metals and organic dyes, researchers are exploring different techniques, such as adsorption, 
photocatalytic degradation, and electrolysis. Novel materials are also being sought. In particular, biopolymers like guar gum 
and xanthan gum, that are eco-friendly, non-toxic, reusable, abundant and cost-effective, have enormous potential. Gum-
based nanocomposites can be prepared and used for removing heavy metals and colored dyes by adsorption and degrada-
tion, respectively. This review explains the significance of gum-based nanomaterials in waste water treatment, including 
preparative steps, characterization techniques, kinetics models, and the degradation and adsorption mechanisms involved.
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Introduction

Water is essential for the survival of all living beings in the 
world (Khullar and Singh 2022). However, the availability 
of safe and accessible drinking water sources is a significant 
challenge that affects mankind. The degradation of water 
quality due to over-industrialization and urbanization is an 
important issue that requires urgent attention, in order to 
sustain the planet, its inhabitants, and the future generations.

Freshwater resources are scarce and their quality is being 
deteriorated, due to several contaminants and pollutants, like 
heavy metals and organic and inorganic dyes, which are dan-
gerous and toxic. The primary source of these pollutants is 
untreated waste water from several industries, such as paper, 

leather, petrochemical, textile, plastic, cosmetics, and others 
(Zaman et al. 2020).

Water pollution also harms aquatic species, as the colored 
dyes reflect sunlight back into the water, blocking its pen-
etration (Gupta 2016). Therefore, it is mandatory that imme-
diate actions are taken to overcome water pollution and 
ensure the sustainability of the water resources.

The discharge of dyes from various sources is a signifi-
cant concern, with the levels of chemical oxygen demand 
(>150 ppm), total organic carbon (>2900 mg/L), and bio-
logical oxygen demand (>80 mg/L) exceeding the accept-
able limits in many water sources (Larbi et al. 2019). This 
contamination has negative effects on the aquatic popula-
tions, resulting in mutagenic and carcinogenic effects that 
can lead to severe diseases in the human nervous system, 
digestive system, kidneys, and liver. Even a small amount of 
organic dyes (1 × 10−3 mg/L) can be harmful to both animals 
and humans (Tkaczyk et al. 2020).

In addition to dyes, heavy metals are also a growing prob-
lem in water released from industries, such as fertilizers, 
pesticides, refineries, leather, and mining. Heavy metals, like 
arsenic, selenium, zinc, chromium, nickel, cobalt, cadmium, 
mercury, lead, and copper are harmful to living organisms 
even in small quantities (Amjad et al. 2020). The accumula-
tion of these pollutants and contaminants in water turns it 
undrinkable and can cause serious health problems to living 
organisms (Liu et al. 2015).
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Due to these dangers, significant efforts are being made, 
in recent years, to find eco-friendly, affordable, and efficient 
processes to remove heavy metals and dyes from water. A 
variety of research is being conducted, using typical removal 
methods, such as coagulation, membrane filtration, ozona-
tion, adsorption, flocculation, electrochemical techniques, 
reverse osmosis, biological methods, electrolysis, advanced 
oxidation processes, ultrafiltration, and sedimentation for 
waste water treatment, as shown in Fig. 1 (Saya et al. 2021; 
Morin-Crini et al. 2022).

Most of the methods mentioned in the previous studies 
have some limitations, like restricted removal efficiency, 
expensiveness, difficulty in processing, and the generation 
of secondary contaminants as by-products (Katheresan et al. 
2018). Among all these techniques, adsorption is very popu-
lar, due to its many advantages, such as being cheaper, easier 
to handle, having great removal efficiency, low energy con-
sumption, eco-friendliness, and a smart design (Qasem et al. 
2021). In addition, photocatalytic degradation, combined 
with adsorption, is a promising strategy for the degradation 
of organic and inorganic dyes (Zaman et al. 2020).

Moreover, researchers aim to develop materials with a 
large surface area to enhance adsorption and improve deg-
radation (Nasrollahzadeh et al. 2021). Several adsorbent 
materials, like zeolites (Maharana and Sen 2021), CNTs 
(Sajid et al. 2022), metal-organic frameworks (Adegoke 
et al. 2020), and activated carbons (Mendes Ferreira and 
Melo 2021) have been extensively studied. Natural polysac-
charides are promising alternatives, as they are non-toxic, 

inexpensive, readily available, and abundant in nature, mak-
ing them suitable candidates for adsorption (Mignon et al. 
2019; Ge et al. 2023; Jalili et al. 2023; Mandal et al. 2023). 
The high number of active groups in the backbone of poly-
saccharides allows them to be easily modified to improve 
their adsorption capacity (Wei et al. 2017). Additionally, 
they can be incorporated in various ways with different 
materials, resulting in the development of new samples with 
improved properties (Saya et al. 2020).

Also, novel gum-based nanocomposites have been devel-
oped for the removal of heavy metal particles, organic, and 
inorganic dyes from contaminated water. This review high-
lights the working mechanism of the gum nanocomposites as 
adsorbents and their effectiveness in removing colored dyes 
and toxic metal ions. The review emphasizes the significant 
role of gum-based nanocomposites in efficiently removing 
pollutants from water and provides insights for researchers 
in their future investigations.

Structure of guar gum and its applications

Guar gum (GG) is a natural and inexpensive source of galac-
tomannan, with a structure consisting of alternate linear 
chains of galactose and mannose portions, as shown in Fig. 2. 
The ratio of mannose to galactose in GG is typically between 
1.6:1 and 1.8:1 (Adimule et al. 2022). GG has a high molecu-
lar weight, ranging from 1 × 106 to 3 × 106 g/mol and is very 
soluble in water (Zaeim et al. 2022). Its composition includes 

Fig. 1   Water purification techniques
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0.67% N, 1.05% ash, 3.5–4% protein, 7.75% water-insoluble 
portion, 0.006% phosphorous, 88.5% water-soluble polysac-
charides, and 1.5% alcohol-soluble compounds. GG also has 
interesting chemical characteristics, like chain length, steric 
obstacles, substituent groups, etc. It is insoluble in organic 
solvents but forms a highly viscous mixture in water, even 
at low concentrations, due to the presence of a galactose 
side chain that rapidly interlinks with water molecules. The 
viscosity of GG (3000-6000cP) is highly dependent on pH, 
concentration, impurities, and temperature. Moreover, the 
addition of GG can form gel-like materials (Thombare et al. 
2016; Soltani et al. 2021). GG has a high number of cis O–H 
groups in its backbone, as shown in Fig. 2, which facilitates 
its attachment to organic and hydrated minerals by hydro-
gen bonding. GG is also an effective coagulant for inorganic 
systems that resemble clay and for carboxyl and hydroxyl-
containing organic systems (Thombare et al. 2016).

GG can be extracted from the endosperm of the seeds 
of Cyamopsis tetragonoloba, a water shortage bearing 
plant belonging to the Leguminosae family and com-
monly known as “cluster bean” (Teja et al. 2022). Various 
extraction methods can be employed, including mechani-
cal stages, such as roasting, grinding, and sieving, fol-
lowed by polishing (Mudgil et al. 2014; Manjunath et al. 
2016). The seeds are then converted into powder and fur-
ther processed to obtain the desired outcome.

GG and its derivatives find extensive applications in the 
pharmaceutical industry, where they serve as disintegrants 
and impart cohesive properties to drugs (Verma and Sharma 
2021). GG also has remarkable potential in the cosmetic 
industry (Kumar et al. 2022a), owing to its high solubility in 
water, non-toxicity, affordability, easy availability, pH resist-
ance, and ability to form colloidal suspensions (Sharma et al. 
2018). GG is also utilized in food industry (Jiang et al. 2022), 
due to its low evaporation, high water capability, and modi-
fied freezing rate (Mudgil et al. 2014). It is also therapeuti-
cally used for its hypoglycemic (Xu et al. 2022), antimicrobial 
(Saurabh et al. 2018), appetite suppressant (Rao 2016), bulk-
forming laxative (Purohit and Mishra 2017), hypolipidemic 

(Setayesh et al. 2022), antiproliferative (Ghosh et al. 2018), 
antianemic (Ganie et al. 2021), anti-inflammatory effects in 
colitis (Jhundoo et al. 2021; Hu et al. 2022), and Crohn’s dis-
ease (Varma et al. 2016). It is also used as a food additive 
in various dietary products such as cakes, tomato ketchup, 
pasta, ice cream, and in personal care products, like shaving 
creams, lotions, face creams, and toothpaste (Mudgil et al. 
2014; Behera et al. 2022; Treudler and Simon 2022). Figure 3 
depicts the different applications of GG in several fields.

Although GG has a wide range of applications, its use 
is limited in some fields. Its modification can be achieved 
by introduction of different substituents in its backbone or 
embedding it with other materials to form semi-synthetic or 
nanomaterials. However, these modified materials may retain 
their inherent features, which can restrict their applications in 
certain areas (Hongbo et al. 2013; Kumar et al. 2015).

One of the most significant applications of GG-based 
nanocomposites is in waste water treatment (Ahmad et al. 
2022), where they play an efficient role in providing solu-
tions to the problems of pure water supply (Dalei and Das 
2022). These nanocomposites are often used as hybrid 
hydrogels, that have a spongy structure and are favorable 
adsorption materials (Jing et al. 2013). The embedding of 
hydrogels with natural materials decreases the cost and gives 
materials for specific needs and great efficiency. Addition-
ally, hydrogels can be reused because of their good mechan-
ical strength and unchanged nature during stirring. These 
GG-based nanocomposites exhibit adsorptive behavior 
towards toxic metal ions, like lead, chromium, cadmium, 
zinc, astatine, and others, as well as selective adsorption of 
dyes (cationic and anionic) depending on the morphological 
and chemical parameters (Saya et al. 2021). Some metal-
grafted composites also exhibit photocatalytic degradation.

Adsorption studies

Adsorption occurs on surfaces of some materials and is often 
described as the buildup of an excessive amount of an ingre-
dient called an adsorbent on the outer surface of adsorb-
ate, which is caused by the unequal surface residual forces 
found on the surface (Ighalo et al. 2022). It involves various 
interacting forces, like van der Waals, n-n interaction, hydro-
gen bonding, etc. The adsorption process plays a key role 
in waste water treatment (Chakraborty et al. 2022), due to 
its special features like cost effectiveness, efficient removal, 
eco-friendliness, and simplicity (Gautam et al. 2020). A 
large number of adsorbent materials can be obtained with 
good adsorption capacity and removal efficiency.

Different parameters can have a significant effect on the 
removal efficiency, such as time of contact, pH, quantity 
of adsorbent and adsorbate, temperature, etc. The effect 
of these parameters can be investigated by changing one 
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Fig. 2   Structure of guar gum
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parameter while keeping all others constant, as different 
parameters have different effects. Since adsorption is a heat-
evolving process (exothermic), the equilibrium is disturbed 
by increasing temperature and thus the desorption process 
increases. Similarly, by raising the quantity of adsorbent and 
the time of contact, the adsorption process increases but only 
up to a certain point. After that, there will be no more effect 
because, after the establishment of the equilibrium, the sur-
face is fully saturated and is unable to further accept any 
more adsorbate.

Like other parameters, pH also influences the adsorp-
tion ability of the adsorbent, which is described by the zeta 
potential. As the pH alters, it changes the charge of the 
adsorbent surface and also has an impact on the interaction 
of the nanocomposite with pollutants. In order to analyze 
the pH effect, adsorption on the dye is observed on the sur-
face when all other parameters are kept constant, like tem-
perature, time for contact and initial concentration, and the 
impact of pH is analyzed at regular intervals of time. This is 
consistent with the adsorption findings, which show efficient 
adsorption at alkaline pH around 5.1–7.6 for crystal violet 
(cationic dyes) and metal ions. Moreover, sometimes, by 
changing pH, protonation, and deprotonation of functional 
groups occur, which affect the interacting ability of the 
adsorbent as well. For example, in the case of an anionically 
developed GG/SiO2 nanocomposites, in which deprotonation 
of –COOH group of hydrolyzed polyacrylamide is carried 
out in a basic medium, this results in a negatively charged 
surface that interacts with cationic or metal ions instead of 
anionic particles (Patra et al. 2017).

When adsorbent and adsorbate come into contact 
with each other, adsorption occurs. But at the same time, 

desorption also starts, but its value is small in the beginning. 
As time progresses, desorption also increases and equilib-
rium between both processes (adsorption and desorption) 
takes place. Depending on many factors, several kinetic 
models can be used to predict the rate and feasibility of the 
adsorption process and mechanism.

To examine the kinetics models, the concentration of dye 
or metals can be calculated by ultraviolet-visible (UV-Vis) 
spectrophotometry at comparable λmax. The pseudo-first-
order kinetics model of Lagergren only gives the physical 
relationship of adsorbate and adsorbent (González-Ipia et al. 
2020), whereas the second order model explains chemisorp-
tion. While the intraparticle diffusion model expects adsorp-
tion, which involves three steps, one or a mixture of these 
steps can be the rate-determining steps: (1) movement of 
mass through the outer bordered layer film of liquid; (2) fast 
adsorption of adsorbate on an adsorbent surface by chem-
isorption or physisorption; (3) diffusion of adsorbate on an 
adsorbent active spot, which is commonly the rate-determin-
ing stage (Wu et al. 2009). In the model of liquid diffusion, 
the rate controlling stage is the diffusion phase of liquid film 
in spite of intraparticle diffusion.

Similarly, a detailed investigation of adsorption isotherm 
models helps in the investigation of the interaction of the adsor-
bent with dyes/metals or metal ions (adsorbate). In order to 
obtain the adsorption isotherm, after a fixed duration from the 
concentration at the initial point, the equilibrium concentration 
of the adsorbate solution can be determined. The Langmuir 
adsorption isotherm model proposes a monolayer of adsorb-
ate (metal ion/dyes) on the adsorbent surface at a specific num-
ber of active spots with negligible steric hindrance effect and 
interaction molecules that are adsorbed (Zafar et al. 2022). So, 

Fig. 3   Applications of guar gum
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after the complete coverage of the surface, no more adsorption 
occurs. Freundlich isotherm also gives monolayer predictions 
with no restriction on the multilayer of adsorption (Chen et al. 
2022a). Dubinin-Radushkevich’s model explains the formation 
of multilayer physical adsorption through the interaction of 
van der Waal’s forces. This model is useful in the separation of 
physical and chemical adsorption mechanisms (Al Jaberi et al. 
2020). The sips model explains the combination of the Freun-
dlich and Langmuir isotherms in the same manner and removes 
the restrictions of the Freundlich adsorption model (Chen et al. 
2022a). Toth’s model also provides the best estimates on adsorp-
tion isotherms (Yeo et al. 2023). The whole data are included 
into specific equations of each adsorption isotherm model and 
the topmost-fitted models are chosen based on the regression 
coefficient (R2) for describing the mechanism of adsorption.

Photocatalytic degradation studies

The mechanism of degradation explains how large dyes are 
broken down, resulting in small molecules like CO2, H2O, 
O2, etc., in the presence of light. The possibility and dye deg-
radation depends on the band gap energy of the nanoparticles.

The photocatalytic degradation of dyes can be explained 
in two possible ways:

1.	 Photocatalytic degradation by synergistic adsorption. 
This involves the photocatalytic degradation of dyes 
when adsorption immediately occurs on the adsorbent 
surface, without the need of putting it in the dark (Chen 
et al. 2022b).

2.	 Equilibrium adsorption in the darkness by photocata-
lytic degradation. In this step, a dynamic equilibrium is 
formed between the adsorbed and the unabsorbed mol-
ecules of dye in the dark when the dye is adsorbed on 
the surface of nanoparticles. After a certain time, the 
solution is exposed to sunlight for further photocatalytic 
degradation of the dye (Guo et al. 2022).

When a dye is adsorbed on the surface of a nanomate-
rial, both degradation strategies yield a decrease in adsorp-
tion band intensities. When a dye is adsorbed on the sur-
face of a nanoparticle, the dye removal process increases 
and the degradation time decreases. The percentage of 
degraded dye can be calculated by the following equation 
Eq. 1 (Alnassar et al. 2022).

where the concentration at the initial point is C0 and concen-
tration at time t is Ct.

(1)%degradation =
C0 − C

t

C0

× 100

The pseudo-first-order rate equation can be used to find 
the rate kinetics of photocatalytic degradation of dyes by 
Eq. 2 (Rauf et al. 2022).

where kapp is the apparent rate constant. At and A0 are con-
centration after time t and before illumination, respectively.

GG‑based nanocomposites for the removal 
of dyes

There are several nanocomposites containing GG that can 
be used in the removal of dyes. Table 1 presents some exam-
ples. The most important ones and their major preparation 
methods are listed in the following sections.

Nanocomposites made of natural and synthetic 
polymers

This kind of nanocomposites can be prepared in several 
ways, as will be explained below.

Co‑precipitation method

The main intention of co-precipitation is the fabrication 
of a multicomponent material through the formation of an 
intermediate precipitate. Chemical homogeneity is achieved 
by calcination. Typically, the precipitation process involves 
mixing aqueous metal salts at an appropriate temperature in 
the presence of a base, which acts as the precipitating agent 
(Bajaj and Joshi 2021). This method is the most used for the 
synthesis of GG and other polysaccharides, due to its abil-
ity to be combined with other procedures, like polymeriza-
tion, to form the desired products, as shown in Fig. 4. For 
example, pectin-crosslinked-guar gum/superparamagnetic 
iron oxide (Pc-cl-GG/SPION) nanomaterials can be syn-
thesized using co-precipitation or polymerization (Sharma 
et al. 2017). The co-precipitation involves mixing equimolar 
concentrations of FeCl3 and FeCl2, followed by the addi-
tion of ammonium hydroxide to maintain a pH of 10. The 
resulting sol is then added to biopolymeric GG and pectin, 
and ammonium persulfate and methylene bisacrylamide are 
added as the initiator and crosslinker, respectively. The reac-
tion mixture is stirred vigorously to form a hydrogel, which 
is effective in removing o-chlorophenol and m-cresol.

Solution intercalation method

The solution intercalation method is a versatile approach 
widely employed in materials science to introduce for-
eign species into the interlayer spaces of host materials, 

(2)ln At∕A0 = kappt
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thereby enhancing their properties and functionalities. 
This method involves dispersing the desired species within 
a solvent, followed by immersing or infiltrating the host 
material into the solution. The intercalation process can 
be facilitated through various mechanisms, such as ion 
exchange, electrostatic interactions, or van der Waals 
forces, depending on the nature of the host and intercal-
ant. Numerous studies have successfully utilized solution 
intercalation to modify the properties of various materials, 
including layered compounds, polymers, and nanomateri-
als (Rajapakse et al. 2021).

An eco-friendly and sustainable adsorbent can be formed 
by attaching GG onto an aluminum phyllosilicate clay, spe-
cifically bentonite, which mainly consists of montmorillonite. 
The resulting bio-nanomaterial shows remarkable efficiency in 
removing cationic dyes and heavy metal ions from waste water.

In a previous study, a nanocomposite was prepared using 
the solution intercalation method. Bentonite was added to 
double-distilled water, then mixed with a solution of GG, 
and subjected to ultrasonication (Ahmad and Mirza 2018).

Sonication

The process of sonication includes applying sound energy 
to a liquid containing particles using an ultrasonic bath or 
probe. To achieve optimal dispersion, researchers have dis-
covered the benefits of combining sonication with mixing 
techniques, especially when employing probe sonicators. 
While the latter concentrate power into a smaller volume, 
their low shear forces may not ensure that all the polymer 
passes through this region, leading to incomplete disper-
sion. However, incorporating high-speed mixing alongside 

Table 1   Several nanomaterials obtained by different synthesis methods used in the removal of diverse dyes from water

Nanomaterial Synthesis Dyes Adsorption capacity (mg 
g−1)/removal efficiency (%)

References

Table
GG/β-cyclodextrin

Sonication Basic fuchsine 24 mg g−1 Zhang et al. (2012)

GG-MWCNT (GG multi-
walled carbon nanotubes 
composite)

Sonication Methylene blue 61.92 mg g−1 Yan et al. (2012)

GG/CTNC (guar gum-
cerium (IV) tungstate 
nanocomposite)

Sol-gel Methylene blue 99% Dassanayake et al. (2019)

Modified GG-PAAm Sonication and polymeri-
zation

Crystal violet and azure B >85% Hiremath and Vishalakshi 
(2015)

g-GG/ SiO2 (g. grafting) Sol-gel Reactive blue 4 and congo 
red

714.285 mg g−1 and 
819.672 mg g−1

Guezzen et al. (2021)

GG/acrylic acid/nano clay Microwave irradiation 
technique

Crystal violet 89% Shruthi et al. (2016)

GG/SiO2 Sol-gel Safranin and malachite 
green

281.69mg g−1 and 
781.25mg g−1

Sharma et al. 2018

(Pc-cl-GG/SPION) Polymerization/co-precipi-
tation method

m-cresol and o-chloro-
phenol

176.1mg g−1 and 75.6 mg 
g−1

Sharma et al. (2017), Singh 
(2021)

Fe3O4-GG Co-precipitation Congo red Dabi and Loonker (2021)
GG-g-(Am-co-SA-co-

ASP)
Green polymerization Methyl violet 53.28mg g–1 Singha et al. (2018)

Aminated GG/GO Sonication Rhodamine B 75% Gopi et al. (2019)
GG-GH Condensation and oxida-

tion
Bromophenol blue 904.7 mg g−1 Duan et al. (2019)

AgNPs/GG/Poly (AA) Cross linking and polym-
erization

Methylene blue 833.33mg g−1 Singh and Dhaliwal (2021)

(ZnO NPs/GG) Co-precipitation Reactive red and rhoda-
mine B

70.44 mg g−1 and 
72.96 mg g−1

Rezk et al. (2019)

P(PrAm/AMPS) Free radical polymeriza-
tion

Basic violet 1 96.25% Karadağ et al. (2021)

GG/NiWO4 Sol-gel Phloxine B and crystal 
violet

220.21mg g−1 and 
170.42mg g−1

Hussain et al. (2021)

CMC/GG/CuO2 Simple stirring Malachite green 92.4% Naeini et al. (2021)
PF/Ag/PVDF-GG/UiO-66 CTAB and Congo red 89.4% and 92.3% Mofradi et al. (2021)
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probe sonication has been reported as a relatively successful 
method for achieving nanoparticle dispersion. This combina-
tion approach effectively enhances dispersion, resulting in 
more consistent and uniform results (Taylor 2010).

GG is a versatile natural polysaccharide that can be com-
bined with other natural polysaccharides to create nano-
composites with excellent adsorption properties. One such 
example is a nanocomposite made by embedding GG with 
β-cyclodextrin microspheres in various ratios, which exhib-
its an impressive adsorption potential of 24 mg/g towards 
basic fuchsine.

The nanostructured was prepared by converting the 
hydroxyl groups on GG into epoxy groups with epichlo-
rohydrin. The resulting epoxidized GG was then allowed 
to interact with β-cyclodextrin: a mixture of epichlorohy-
drin, perchloric acid, ethanol, and distilled water was stirred 

with GG and toluene to obtain chloropropyl hydroxyl GG 
(cl-GG). Next, cl-GG was combined with β-cyclodextrin 
microspheres, sodium carbonate, and water. The pH was 
then lowered with hydrochloric acid, and the excess mate-
rial was filtered and rinsed with N,N-dimethylformamide 
(DMF), ethanol, and acetone (Zhang et al. 2012).

Polymerization method

Polymerization plays a crucial role in the synthesis and fab-
rication of nanomaterials, enabling the creation of advanced 
materials with tailored properties. This process involves the 
reaction of monomers, small molecular units, to form long 
chains or networks, resulting in the formation of polymers 
at the nanoscale. The method offers precise control over the 
molecular structure, size, and morphology of the resulting 
nanomaterials, thereby influencing their physical, chemical, 
and mechanical characteristics. Various polymerization meth-
ods, such as radical polymerization, controlled/living polym-
erization, and ring-opening polymerization, have found exten-
sive applications in the field. These techniques have facilitated 
the development of a wide range of nanomaterials for applica-
tions in diverse fields, including electronics, energy, medicine, 
and environmental remediation. Through polymerization, 
researchers can tailor nanomaterial properties to suit specific 
needs, leading to innovative solutions and advancements in 
various industries (Zhuang et al. 2015)

This method is schematically shown in Fig. 5. Grafting 
of GG and attachment of acrylamidosodiumpropanoate 
(ASP) by solution polymerization of acrylamide (Am) and 
sodium acrylate (SA) resulted in the synthesis of a sustain-
able GG-g-(Am-co-SA-co-ASP)/GGAMSAASP. The new 
GG-grafted terpolymer hydrogel nanocomposite showed 
adsorption through a different mechanism, specifically, the 
adsorption of methyl violet (MV) and Hg (II) by ligand 
selectivity (Singha et al. 2018).

Clinoptilolite, a natural zeolite, has been utilized to produce 
various biodegradable nanocomposites through the free radi-
cal polymerization method. Highly porous propenamide/2-
acrylamido-2-methyl-1-propanesulfonic acid/guar gum/
clinoptilolite biohybrid hydrogels P(PrAm/AMPS/CLP) were 
also prepared using a similar technique. The process involved 

Fig. 4   Co-precipitation method

Fig. 5   Polymerization technique Nanomaterial

Monomer solu�on Dispersion

Solvent Extrac�on

Polymeriza�on Polymer Nanocomposite
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using 0.25 mL of filtered water and 0.25 mL of a 2.0% CLP/
water suspension instead of 0.5 mL of filtered water. The same 
procedure can be used to produce hybrid hydrogels with vary-
ing amounts of clinoptilolite (CLP) that were used to adsorb 
basic violet 1 (Karadağ et al. 2021).

Condensation method

This method enables the synthesis of nanostructured materi-
als distinguished by their ultrafine grains, precise grain size 
distributions, well-defined grain boundaries, and exceptional 
resistance to grain growth. The condensation process affords 
a high level of control over various physical and chemical 
parameters, making it possible to achieve narrow particle 
and grain size distributions, ultimately enhancing the overall 
quality of the resulting materials (Suryanarayana and Prabhu 
2007). Polymethyl methacrylate-modified dialdehyde guar 
gum containing hydrazide groups (GSA) was obtained by 
condensation between polyhydrazide and dialdehyde guar 
gum (DAG). Acrylic acid (AA) and methyl methacrylate 
(MMA) monomers were polymerized using potassium per-
sulfate as the initiator to obtain poly(AA-co-MMA). N,N′-
methylenebisacrylamide (MBA) utilized as the cross-linker 
by aqueous radical polymerization. Then poly(AA-co-MMA) 
was reacted with with hydrazine hydrate to obtain Poly(AA-
co-MMASH). The functionalized GG nanocomposite showed 
excellent adsorption potential for methylene blue and mala-
chite green from waste water (Wen et al. 2022).

Crosslinked method

A nano form catalyst based on an interpenetrating network 
(IPN) of polyacrylamide was developed using crosslinking 
and polymerization methods. The network structure of the 
nanocomposite was controlled by two cross-linkers. Upon 
saponification of the amide group, the resulting gel contained 
amino and carboxyl groups that exhibited significant adsorp-
tion towards cationic dyes such as azure B and crystal violet.

The guar gum–polyacrylamide (GG-PAAm) gel was pre-
pared using free radical polymerization and crosslinking. GG 
was added to water. AAm and potassium persulfate (KPS) 
were dissolved in water and added to the GG solution. Then, 
methylene-bis-acrylamid (MBA) and GA were dissolved in 
water and mixed with the above solution. The resulting GG-
PAAm gel was purified and subjected to alkaline hydrolysis 
modification (Hiremath and Vishalakshi 2015).

GG‑based nanocomposites of main group elements

Carbon-based nanomaterials, such as graphene oxide, 
activated carbon, and multi-walled carbon nanotubes 

(MWCNTs), were used to enhance the surface area and 
adsorption capacity of GG by grafting. For example, a 
nanocomposite of GG and activated carbon showed effec-
tive adsorption of anionic dyes such as Congo red (Yan 
et al. 2012).

Condensation and oxidation method

Galacylhydrazine grafted GG (GG-GH) was synthesized 
using condensation and oxidation methods and exhibited 
exceptional adsorption towards various dyes, such as 
bromophenol blue, methylene blue, methyl orange, and 
rhodamine B, with maximum adsorption capacities of 
904.7, 1522.2, 868.83, and 1359.96 mg g−1, respectively.

The synthesis process involved dissolving aminated 
guar gum (AGG) in ethanol, then AGG and galacylhydra-
zine were heated, yielding a yellow precipitate (GG-GH) 
(Duan et al. 2019).

Hydrogel method

The hydrogel method stands as a versatile and promising 
technique in terms of biomaterials and tissue engineer-
ing. It revolves around the synthesis and manipulation 
of hydrogels, three-dimensional networks of crosslinked 
hydrophilic polymers that exhibit the remarkable capability 
of absorbing and retaining substantial amounts of water. 
These hydrogels possess a range of unique properties, 
including biocompatibility, tunable mechanical strength, 
and the ability to encapsulate cells or bioactive molecules 
(Utech and Boccaccini 2016). GG-grafted with graphene 
oxide (AGG/GO) and carbon nanotubes (GG-CNT) demon-
strated excellent adsorption towards cationic dyes (Gupta 
et al. 2020). To prepare the AGG/GO hydrogel, GO was 
sonicated in distilled water and then mixed with aminated 
GG. Next, a cross-linker solution of borax was added to the 
mixture, which was stirred until the hydrogel was formed. 
The hydrogel was then left without stirring to further solid-
ify, and excess borax was removed by rinsing with water.

GG‑based nanocomposites of transition, lanthanide, 
and actinide elements

Co‑precipitation

GG-based zinc oxide nanostructures, including nanocubes 
and nanoparticles, have excellent thermal stability. Among 
them, ZnO NPs/GG show very high photocatalytic deg-
radation towards cationic and anionic dyes, such as rho-
damine B (Rezk et al. 2019). They were synthesized by 
co-precipitation.
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Magnetic nanoparticles of iron oxide (Fe3O4-GG) embed-
ded in GG were very effective in removing various dyes, 
including Congo red, methylene blue, eriochrome black T, 
methyl blue, methyl orange, and malachite green. Congo red 
was found to have the highest efficiency, with a removal rate 
of up to 97% (Sahoo 2019; Dabi and Loonker 2021).

Sonication

GG-based tungsten oxide nanomaterials were prepared using 
a simple sonication method and demonstrated exceptional 
adsorption performance towards methylene blue, achieving 
up to 96% removal efficiency across varying concentrations 
of tungsten oxide.

To prepare the nanocomposites, polyvinyl alcohol (PVA) 
was dissolved in distilled water and mixed with a GG solu-
tion that was mixed with tetraethyl orthosilicate (TEOS) and 
sonicated. The composite was obtained after drying at room 
temperature in a dust-free environment (Hussain et al. 2021; 
Ahmad et al. 2022).

Sol‑gel method

A highly efficient nanocatalyst was prepared using the sol-
gel method by incorporating GG with nickel tungstate to 
create a homogeneous dispersion, followed by the addition 
of a ammonium persulfate (APS) solution. (Hussain et al. 
2021). After stirring, a precipitate was obtained. This cata-
lyst demonstrated great adsorption capacity for crystal violet 
and phloxine B

The sol-gel method is a widely-used technique for fabri-
cating important catalysts, as shown in Fig. 6, which depicts 
two common variants: sol-gel dip coating and sol-gel spin 

coating. In the former, a substrate is immersed in a sol-gel 
solution, withdrawn at a controlled rate, and allowed to dry. 
While simple, this technique may not always produce uni-
form coatings over large areas. On the other hand, sol-gel 
spin coating involves spinning a substrate while dropping a 
sol-gel solution onto it, resulting in more precise and uni-
form coatings that can be as thin as a few nanometers. Over-
all, sol-gel spin coating offers a high level of control over 
coating thickness and uniformity, making it a valuable tool 
for catalyst fabrication.

This method was used to prepare a GG cerium tungstate 
nanocomposite (GG/CTNC), which has an ion exchange 
capacity of 1.30 mequiv g−1, making it effective for remov-
ing methylene blue (a cationic dye) and heavy metal ions 
from aqueous solutions (Gupta et al. 2014). In order to pre-
pare the nanocomposite, a solution of cerium ammonium 
nitrate and a solution of sodium tungstate were gradually at 
pH 2, forming cerium tungstate precipitate, which was later 
mixed with a solution of GG. The precipitate was treated 
with HNO3 solution to transform it into the H+ form.

Mixed nanocomposites of GG

Nanomaterials based on GG offer a unique combination of 
both metals and polymers in the composite, making them 
promising materials for water treatment applications, espe-
cially in the removal of dyes. The synergistic effect of the 
metal and polymer components enhances the adsorption 
capacity and selectivity of the composite, making it highly 
efficient in the removal of various types of dyes from con-
taminated water. These nanocomposites exhibit great poten-
tial as adsorbents in water treatment, owing to their unique 
properties and characteristics.

Fig. 6   Two types of sol-gel 
technique
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Crosslinking method

A nanostructure composed of erbium oxide and polyacrylic 
amide with GG exhibits excellent adsorptive behavior 
towards Nile blue dye. The crosslinking mechanism using 
a cross-linker such as MBA was employed to prepare the 
GG-polyacrylamide/erbium oxide nanocomposite Te 
GGPAAm/Er2O3 nanocomposite (Hussain et al. 2022). GG 
and acrylamide were crosslinked in the presence of Er2O3 
and MBA, used as a cross-linker. A homogeneous mixture 
of acrylamide solution and an aqueous suspension of GG 
was obtained before adding APS as an initiator and Er2O3 
as a filler.

Free radical polymerization

A novel nanocomposite consisting of a copolymer of polyacrylic 
acid with GG attached to silver nanoparticles (AgNPs/GG/
Poly(AA)) was prepared using a two-step method (Singh and 
Dhaliwal 2021). A graft copolymer of polyacrylic acid with GG 
(poly(AA)/GG) was dissolved in an aqueous silver nitrate solu-
tion. The prepared copolymer was impregnated and crosslinked 
with silver metal nanoparticles in situ. A solution of sodium 
borohydride was added followed by MBA for crosslinking. The 
attachment of silver nanoparticles increased the surface area and 
adsorption capacity, resulting in a nanocomposite with excellent 
adsorption capability (833.33 mg g−1) for methylene blue.

Sonication

In the same way, the sonication method was used to synthe-
sized nanocomposites by incorporating silver nanoparticles 
with polyester, immersed in the casting solution of UiO-66 
filler, polyvinylidene fluoride (PVDF), GG, and ethylenedi-
amine. UiO-66 is a Zr-containing MOF created by linking 
zirconium clusters with bridging ligands of terephthalic acid 
and modified dicarboxylate linkers. The final nanocomposite 
(PF/Ag/PVDF-GG/UiO-66) was obtained as a thin film poly-
meric membrane and demonstrated remarkable efficiency in 
removing CTAB and Congo red (Mofradi et al. 2021).

Two different biodegradable hydrogel-containing nano-
composites were obtained by embedding GG with acrylic acid 
and itaconic acid using microwave initiation to form GG-cl-
poly(AA) and GG-cl-poly(IA-ipn-ANI), respectively. Both 
nanocomposites demonstrated excellent adsorptive behavior 
towards methylene blue (Choudhary et al. 2020). A GG-grafted 
acrylic acid GG/AA nanocomposite can also be prepared by 
silane modified nanoclay via a microwave irradiation method.

Mixing

A novel nanomaterial consisting of carboxyl methyl cellulose 
(CMC) and GG decorated with copper oxide nanoparticles 

(CuO NPs) was successfully prepared and utilized for the 
adsorption of malachite green dye from polluted water. To 
prepare the nanocomposite, dried CMC hydrogel was mixed 
deionized water at 700 rpm. Then GG was added to the hydrogel 
mixture, followed by gradual addition of CuO NPs, with differ-
ent weight percentages (1, 3 and 5 wt%) (Naeini et al. 2021).

Adsorption of metal ions from water

GG has been successfully used for the removal of Pb(II) from 
polluted water. Aqueous solutions of GG were found to remove 
up to 83% of lead when the initial concentration was 15 mg/L 
(Pal et al. 2014).

Also GG nanocomposites, prepared by different meth-
ods, were used for the removal of ions from waste water, 
as shown in the following sections. Table 2 presents some 
examples. The most important ones and their major prep-
aration methods are listed in the following sections.

GG‑based nanocomposites of natural and synthetic 
polymers

Solution intercalation method

Bentonite, an aluminum phyllosilicate clay composed 
mainly of montmorillonite, can be functionalized with GG 
to form an eco-friendly and sustainable adsorbent (GG/
bentonite) for the efficient removal of Pb(II) from waste 
water (Ahmad and Mirza 2018). The nanocomposite was 
prepared using the solution intercalation method, consist-
ing in adding bentonite to double-distilled and then com-
bined it with GG solution.

A nanocatalyst made of GG, xanthan gum, and iota-
carrageenan was an effective adsorbent for removing euro-
pium ions from waste water. The ratio of xanthan gum, GG, 
and iota-carrageenan in the fabricated nanocomposite was 
almost equal (Levy-Ontman et al. 2022).

Photo‑crosslinked method

Likewise, nanostructures obtained by crosslinking xanthan gum 
and GG using UV irradiation were an effective adsorbent for 
Pb(II). In order to prepare the material, dry GG and xanthan 
gum were mixed with sodium lauryl sulfate and boron phos-
phide. A viscous slurry was formed by adding a small amount 
of double-filtered water. The slurry was then irradiated with UV 
under a nitrogen atmosphere for different periods. The addi-
tion of surfactants intimately mixed the gums (hydrophilic) 
and boron phosphide (hydrophobic) and increased the likeli-
hood of crosslinking during the process. The radicals were then 
crosslinked to form the nanocomposite (Pal et al. 2017).
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Irradiation method

An elastic semi-interpenetrating network of xanthan gum, 
GG, and poly acrylic acid (PAA) was designed using a simi-
lar strategy for the efficient removal of Pb(II) and Hg(II) 
from waste water (Pal et al. 2020). In order to prepare the 
adsorbent, a specific amount of sodium lauryl sulfate was 
added to GG and XG, and the mixture was thoroughly mixed 
and warmed to form a thick slurry. The prescribed amount 
of PAA and boron phosphide (BP) was added to the slurry, 
and the entire mass was homogenized and exposed to UV 
radiation.

Simple mixing

Another nanomaterial was synthesized by combination of 
ground nutshell powder with GG and polyvinyl acetate 

(PVA) as a solidifying agent. The material was tested 
for adsorption of nickel (II), lead (II), and copper (II) 
ions (Ahmad and Haseeb 2015). The biocomposite was 
prepared by dissolving ground nutshell powder in a solu-
tion of 3% GG powder. The PVA was then added as a 
solidifying agent.

The adsorption capacity of GG 4-hydroxybenzoic acid 
(GHBA) resin for metal ions such as Zn(II), Cu(II), Pb(II), 
and Cd(II) was determined based on their distribution coef-
ficient value by column chromatography at different pH 
values. The removal (%) of metal ions increased initially 
upon pH increase, then decreased. The optimal pH range for 
maximum adsorption was 4–6 (Singh and Kumawat 2013; 
Saya et al. 2021). To synthesize the GHBA resin, GG was 
allowed to react with p-hydroxybenzoic acid. The resulting 
product was vacuum-filtered and washed with aqueous meth-
anol containing a few drops of HCl to remove any inorganic 

Table 2   Several nanomaterials obtained by different synthesis methods used in the removal of diverse ions from water

Nanomaterial Synthesis Adsorption Adsorption capacity (mg 
g−1)/removal efficiency (%)

References

GG/bentonite Solution intercalation Pb(II) 97.94 mgg−1 Ahmad and Mirza (2018)
GG/XG/IC (XG-xanthan 

gum; IC-iota-carra-
geenan)

Stirring Europium 44% Levy-Ontman et al. (2022)

GG/XG Photo crosslinking Pb(II) 98.4mg g−1 Pal et al. (2017)
Semi IPN (GG/XG/PAA) Irradiation of mixture Pb(II) and Hg(II) 93% and 72% Pal et al. (2020)
Groundnut husk modified 

with GG
Mixing and heating Pb(II) Cu(II) and Ni(II) 9.76 mg g−1, 9.26 mg 

g−1, and 6.74 mg g−1, 
respectively

Ahmad and Haseeb (2015)

GHBA Stirring and filtration Pb(II) Cu(II) Zn(II) and 
Cd(II)

95.38%, 98.05%, 98.48%, 
and 97.56%, respectively

Singh and Kumawat (2013)

GG/PAm/PAA Microwave irradiated Hg 95% Gihar et al. (2021)
GSA Simple mixing Zn(II), Cu(II), Cd(II), 

Pb(II), and Fe(II)
Singh and Sharma (2011)

GG/sodium lignosulfonate Sonication Cu and Co 709 mg g−1 and 601 mg 
g−1, respectively

Singh and Dhaliwal (2021)

GG/KPS/AA/EDTA Free radical polymerization Cd and Cu 99 mg g−1 and 90.3 mg 
g−1, respectively

Mubark et al. (2022)

AGG/salicylhydrazine Mixing and heating Cr(II), Co(II), and Ni(II) 1272.4 mg g−1, 
748.86 mg g−1, and 
521.81 mg g−1, remark-
ably

Ma et al. (2019)

GNTAA​ Stirring and filtration Fe(II), Pb(II), Cu(II), 
Zn(II), and Cd(II)

Singh et al. (2012)

GLF-BNCs Ultrasound irradiated Cd (II) and Cr (VI) 258 mg g−1 Dinari and Tabatabaeian 
(2018)

GG/nZnO Sol-gel Cr (VI) 98.63% Khan et al. (2017)
Silica-GG-g-PAm Dehyroxylation condensa-

tion
Cd(II) 99.4% Singh et al. (2009)

Poly(AA-co-MMASH) Condensation Cu+2 196 mg g−1 Wen et al. (2022)
Phosphorylated GG/chi-

tosan
Co-precipitation Uranium and neodymium Hamza et al. (2021)
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impurities and neutralize excess NaOH. Finally, the resin 
was washed with methanol and dried.

Microwave‑assisted technique

Similarly, a GG nanocomposite with poly acryl amide and 
acrylic acid was synthesized for the adsorption of heavy 
toxic metal ions of mercury, as shown in Fig. 7, using micro-
wave-assisted technique.

GG-g-poly(Am-co-AA) was obtained by dissolving GG 
in double-distilled water. Am and AA were put into the 
GG solution and the homogenous mixture was exposed to 
microwave radiation in a home microwave for 120 s at 80% 
power before being stopped by mixing a saturated solution 
of hydroquinone (Gihar et al. 2021). The use of a micro-
wave-assisted technique allows for a faster and more efficient 
synthesis compared to traditional methods.

GG‑based nanocomposites of the main group 
elements

Sonication

GG-based sodium ligno sulphonate nanocomposite was syn-
thesized by a sonication method and used for adsorption of 
copper and cobalt ions from waste water. AA was added to 
a solution of KOH, and the mixture was used to dissolve 
GG. Sodium ligno sulphonate, ammonium persulfate and 
N,N-methylenebisacrylamide (NMBA) were also added and 

went through ultrasonication to finish the gelation process 
(Singh and Dhaliwal 2021).

Free radical polymerization

A nanomaterial based on GG was synthesized by a free 
radical polymerization mechanism and used for the adsorp-
tion of copper and cadmium ions from water. To create the 
hydrogel, GG was dissolved in distilled water and mixed 
with a combination of acrylamide and acrylic acid (Am-
AA). KPS dissolved in water was added, then MBA) in 
distilled water. The water bath was maintained at 70 °C to 
complete the polymerization and produce the hydrogel, GG-
g-(Am-co-AA) (GGH) (Mubark et al. 2022).

Co‑precipitation

GG was grafted with salicylhydrazine to produce a hydro-
phobic nanocomposite with a large surface area. The adsorp-
tion capacity of the nanocomposite was 521.81 mg/g, 748.86 
mg/g, and 1272.4 mg/g for cobalt (II), chromium (II), and 
nickel (II), respectively. To prepare the nanocomposite, 
AGG was dissolved in ethanol and was mixed with salicyl-
hydrazine and p-toluenesulfonic acid (Ma et al. 2019).

GG-based nanocomposites with sulfonic acid were syn-
thesized to remove different heavy metal ions at pH 7. The 
adsorption capability of the nanocomposites showed the fol-
lowing order: Cu(II) < Fe(II) < Zn(II)< Cd(II) < Pb(II). The 
distribution coefficient values for Zn(II), Pb(II), Cu(II), Cd(II), 
and Fe(II) were 4.215, 6.06, 4.25, 2.20, and 5.40, respectively. 

Fig. 7   Preparation of GG-g-Poly(Am-co-AA) nanocomposite by a microwave-assisted technique (redrawn from (Gihar et al. 2021))
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To fabricate the GG powder-based cation exchanger, it was 
mixed with sodium 1,2-epoxypropyl sulphonate, which was 
produced by the reaction of sodium bisulphite (NaHSO3) and 
epoxychloropropane (Singh and Sharma 2011).

GG‑based nanocomposites of transition, lanthanide, 
and actinide elements

Ultrasound irradiation

The study demonstrated the efficacy of using a green strat-
egy for synthesizing Fe3O4 layered double hydroxide (LDH) 
at GG nanomaterial (Fe3O4@ layered double hydroxide@ 
GG bionanocomposites, i.e., GLF-BNCs) through an in situ 
embedding procedure, which resulted in the development of 
electrostatically bound (Ni-Al) LDH layered Fe3O4 nanopar-
ticles. This nanomaterial was highly effective in removing 
Cd(II) and Cr(VI) ions from water.

GG was combined with distilled and ethanol in a 4:2 
molar ratio and magnetic LDH was then added to the reac-
tion mixture in varying doses (0.01 g, 0.02 g, and 0.04 g), 
resulting in bionanocomposites with 2%, 4%, and 8% incor-
poration, respectively. The reaction solution was refluxed in 
nitrogen and subjected to ultrasound irradiation (Dinari and 
Tabatabaeian 2018).

Sol‑gel

The use of GG-based ZnO nanocomposite (GG/nZnO) was 
an effective method for extracting Cr(VI) ions from polluted 
water. The composite was synthesized by mixing GG pow-
der with mixture of isopropyl alcohol and distilled water (3:1 
ratio) until a viscous gel was formed. Then zinc acetate was 
added and also a NaOH solution in isopropyl alcohol (20 mL) 
to convert the zinc acetate to ZnO nanoparticles, which were 
then fixed onto the polymeric guar mesh (Khan et al. 2017).

Mixed nanocomposites of GG

Condensation

A highly efficient adsorbent, GG-based silica/polyacryla-
mide nanocomposite, was synthesized through the con-
densation of tetraethyly orthosilicate with GG-based poly-
acrylamide. This material demonstrated excellent Cd(II) 
adsorption capacity (2000 mg/g) with good reusability and 
regeneration even after 10 cycles, as confirmed by Lang-
muir’s adsorption isotherm. To prepare the nanocomposite, 
GG-g-PAm was dissolved in distilled water, while tetrae-
thyly orthosilicate was dissolved in ethanol. The two solu-
tions were then combined with a third solution containing 
ammonium hydroxide (Singh et al. 2009).

Another nanocatalyst with excellent adsorptive behavior 
towards Cu2+ ions was prepared by modifying dialdehyde 
GG (DAG) with polymethyl methacrylate through con-
densation with polyhydrazide. DAG was prepared using a 
documented process, and it was mixed with poly (AA-co-
MMASH) and acetic acid (1 mL). A bright yellow solid 
product GSA was obtained (Wen et al. 2022).

Co‑precipitation

A nanomaterial that shows great potential for wastewater 
remediation is phosphorylated GG (PGG) and chitosan 
composite, which exhibits strong adsorption capabilities for 
uranium and neodymium ions. The synthesis of this nano-
composite involved adding chitosan, an aqueous solution of 
acetic acid, followed by the addition of PGG powder once 
the chitosan had completely dissolved. Afterwards, epichlo-
rohydrin diluted in dioxane was added, and pH adjustment to 
9 was made with NaOH solution. A light brown precipitate, 
denoted as PGG@C, was obtained (Hamza et al. 2021).

Physiochemical techniques 
for characterization

Several techniques can be used for characterization of 
nanocomposites used for as adsorbents. Some examples are 
referred in the following sections.

Thermal analysis

The thermogravimetric analysis (TGA) is a useful technique 
to study the chemical and physical modifications of adsor-
bents over time and temperature. TGA curves can provide 
information about the thermal stability of the nanocomposite 
materials, including the weight loss and the temperature at 
which it occurs (Hu et al. 2016). The analysis of the TGA 
curves allows to determine the strength of the sample mate-
rial and understand how physically attached water evaporates 
with increasing temperature. TGA curves can also be used 
to compare the thermal stabilities of different adsorbents, 
as well as their precursors. Additionally, weight loss data as 
a function of temperature can provide insight into possible 
reactions, such as the pyrolysis of oxygen-containing func-
tional groups under heating conditions. Therefore, TGA is 
an important tool for understanding the thermal properties 
and stability of adsorbents, which is crucial for their efficient 
use in different applications. The thermal properties of as 
synthesized graphene oxide/guar gum/CuO were analyzed 
through TGA curves, as shown in Fig. 8.



102040	 Environmental Science and Pollution Research (2023) 30:102027–102046

1 3

Morphological analysis

Advanced imaging techniques such as scanning elec-
tron microscopy (SEM), field emission scanning electron 
microscopy (FESEM), transmission electron microscopy 
(TEM), and high resolution transmission electron micros-
copy (HRTEM) provide valuable insights into the surface 

and internal morphology of adsorbents at different scales 
and wavelengths (Zhang et al. 2021). Particle size distribu-
tion histograms can be generated by analyzing various grid 
regions, allowing the confirmation of successful synthesis or 
incorporation of desired nanoparticles (Zhu et al. 2020). Addi-
tionally, atomic force microscopy (AFM) allows to examine 
the external topography of nanocomposites in 2D and 3D. By 
comparing AFM images of the nanomaterial sample before 
and after adsorption, useful information about the interlinked 
adsorbent and adsorbate can be obtained. SEM images of Pc-
cl-GG/SPION at different magnifications are shown in Fig. 9. 
These advanced imaging techniques are essential in providing 
a comprehensive understanding of the structure and behavior 
of nanocomposites for effective wastewater remediation.

Surface charge analysis

The surface charge density of an adsorbent can be studied 
using the zeta potential technique. By analyzing the devia-
tion of zeta potential values as a function of pH, valuable 
information can be obtained about the change in surface 
charge density with respect to pH, which can help under-
standing the adsorption mechanism. It is important to note 
that the variation of functional groups in the adsorbent and 
in the dye is determined by their respective polarities (Saya 
et al. 2021).

Fig. 8   TGA curves of graphene oxide/guar gum/CuO (reprinted from 
(Akbarzadeh et al. 2023) with permission from Elsevier)

Fig. 9   SEM images of Pc-cl-
GG/SPION at different magnifi-
cation (reprinted from (Sharma 
et al. 2017) with permission 
from Elsevier)
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Elemental analysis

This is a powerful tool that allows both qualitative and 
quantitative analysis of specific elements in a material. This 
technique can provide valuable information about the chemi-
cal composition of the material being studied. For example, 
Singh et al. used an elemental analyzer to investigate the 
composition of GHBA resin and GG-based nanocompos-
ites. By measuring the amount of carbon, hydrogen, and 
oxygen, they were able to confirm the theoretical values 
of 53.32%, 5.22%, and 40.05%, respectively. (Singh and 
Kumawat 2013).

Vibrating sample magnetometry (VSM)

To measure the magnetic properties of a material, a VSM 
(vibrating sample magnetometer) instrument is commonly 
used, particularly when the material is expected to exhibit 
magnetic behavior due to the incorporation of magnetic 
components during preparation (Yildiz et al. 2020). By 
determining the magnetic moment of the material, a VSM 
can provide valuable insights into the material’s magnetic 
properties and potential applications. Figure 10 depicts a 
VSM instrument and its essential components. The instru-
ment includes an electromagnet for producing a magnetic 
field, pick-up coils that detect changes in the magnetic field 
after interacting with the sample, a sample holder that holds 
the sample in the magnetic field, a power supply to generate 
the magnetic field, a lock-in amplifier that amplifies signals 
received by the pick-up coils, and a feedback system that 
receives data from the lock-in amplifier and stores it for fur-
ther analysis. Understanding how the VSM instrument works 
is crucial for accurately measuring a material’s magnetic 
properties and unlocking its potential applications.

Spectroscopic analysis

Various spectroscopic techniques are utilized to compre-
hensively characterize the synthesized nanocomposites and 
investigate the structural properties, performance, and inter-
relationships, particularly in adsorption/desorption and pho-
todegradation phenomena.

Fourier transform infrared (FTIR) spectroscopy is a pow-
erful technique to confirm the presence of specific functional 
groups attached to the adsorbent and the existence of hydro-
gen bonding in the system (Wei et al. 2022). FTIR spectra 
are also useful to determine if adsorption or degradation are 
occurring. In addition, the disappearance of peaks in the 
FTIR spectra after reaction confirms the degradation of the 
dye to simpler compounds.

Powdered X-ray diffractive (PXRD) analysis is benefi-
cial to verify the composition and structure of crystalline 
materials. The appearance or disappearance of different 
peaks at different 2θ values provides crucial data regarding 
the crystal planes and confirms the interaction of specific 
molecules. During encapsulation of Fe3O4 particles on guar 
gum, structural and phase structural changes investigated by 
FTIR and PXRD are shown as Fig. 11 (Kumar et al. 2022a).

The X-ray photoelectron spectroscopy (XPS) is used to 
understand the chemical composition of a material and ana-
lyze the synthesized adsorbents in greater detail (Aziz and 
Ismail 2017). Nuclear magnetic resonance (NMR) spectros-
copy is also widely used to analyze the synthesized adsor-
bents. NMR and XPS can be used to better understand the 
adsorption process and the quality of the adsorption forces 
at work. UV-Vis spectroscopy is another effective method to 
analyze the electronic configuration of samples, particularly 
those containing aromatic compounds or a broad range of 
UV-Vis active compounds (Bauer et al. 2021).

Fig. 10   Vibrating sample 
magnetometer and its main 
components
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Conclusions

Nanocomposites are an exciting and promising field of 
research for the development of efficient and effective 
adsorbents for wastewater treatment. This review explains 
the significance of gum-based nanomaterials in wastewater 
treatment, including preparative steps, characterization tech-
niques, kinetics models, and the degradation and adsorption 
mechanisms involved.

Various techniques such as SEM, TEM, FTIR, XRD, and 
NMR spectroscopy can be used to characterize the synthe-
sized nanocomposites and gain insights into their structure, 
morphology, and chemical composition. Thermogravimet-
ric analysis (TGA) and zeta potential techniques can pro-
vide important data on the thermal strength and surface 
charge density of adsorbents, respectively, which can aid 
in the development of reasonable adsorption mechanisms. 
The use of advanced characterization techniques such as 
VSM and XPS can also help in understanding the magnetic 
and chemical properties of synthesized adsorbents. Using 
these various techniques, researchers can gain insights into 
the structural-property-performance inter-relationships of 
nanocomposites, particularly in adsorption/desorption and 
photodegradation phenomena. Ultimately, the use of these 
characterization techniques is essential in the development 
of effective adsorbents for wastewater treatment and will 
continue to be an important area of research in the future.
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