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Abstract
Global climate changes cause water scarcity in many regions, and the sustainable use of recycled water appears crucial, 
especially in agriculture. However, potentially hazardous compounds such as pharmaceuticals can enter the food chain and 
pose severe risks. This paper aims to study the presence of selected pharmaceutical active compounds (PhACs) and their 
metabolites in crops grown in aeroponic conditions and evaluate the potential of PhAC plant uptake. A solvent extraction 
with an acidified mixture of acetonitrile and water followed by LC-HRMS was developed and validated for quantifying nine 
pharmaceuticals and their nine metabolites in three plants. We aimed for a robust method with a wide linear range because 
an extensive concentration range in different matrices was expected. The developed method proved rapid and reliable deter-
mination of selected pharmaceuticals in plants in the wide concentration range of 10 to 20,000 ng  g−1 and limit of detection 
range 0.4 to 9.0 ng  g-1. The developed method was used to study the uptake and translocation of pharmaceuticals and their 
metabolites in plant tissues from an aeroponic experiment at three different pH levels. Carbamazepine accumulated more in 
the leaves of spinach than in arugula. On the other hand, sulfamethoxazole and clindamycin evinced higher accumulation in 
roots than in leaves, comparable in both plants. The expected effect of pH on plants’ uptake was not significant.
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Introduction

Rapid urbanization and population growth directly lead to a 
growing demand for quality water and food, but at the same 
time leads to an increase in waste production, mainly waste-
water (Boretti and Rosa, 2019; Sheikh Mohammad Fakhrul 

and Zahurul, 2019; Kookana et  al., 2020). In addition, 
the population is aging, which is related to the increased 
chronic diseases and the higher consumption of different 
medicaments (OECD, 2022). Pharmaceutically active com-
pounds (PhACs) in wastewater have been reported world-
wide (Couto et al., 2019; Majumder et al., 2019). Not only 
human overuse but also drug production, food production, 
and improper disposal of PhACs contribute to this situation 
(Girotto et al., 2015; der Beek et al., 2016).

Due to global climate changes, sustainable use of recy-
cled water affected by domestic and industrial activities, 
especially agriculture, appears crucial in water-scarce 
countries (Wu et al., 2015). Plants are often planted hydro-
ponically under greenhouse conditions. In this case, there is 
also an effort to use reclaimed wastewater (Magwaza et al., 
2020). The wastewater treatment process should lead to 
the re-entry of partially clean water into the environment 
but still rich in nutrients (mineral salts, phosphorous, and 
nitrogen) (Singh et al., 2022). However, other potentially 
hazardous compounds such as PhACs are usually found at 
ng L-1 to μg L-1 concentration levels in effluent wastewa-
ters, but also in other environmental compartments, due to 
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the relatively low removal efficiency of conventional waste-
water treatment (Roberts and Thomas, 2006; Kümmerer, 
2010; Lindberg et al., 2014; Verlicchi and Zambello, 2015). 
Although efficient, advanced oxidation processes used for 
PhAC degradation still lack economic applicability restrict-
ing their use for a high volume of effluents (Ghauch et al., 
2011; Ghauch et al., 2013).

Conventionally treated wastewater is often used for crop irri-
gation, and residues of PhACs are found in plants (Calderón-
Preciado et al., 2011; Wu et al., 2015; Al-Farsi et al., 2017; 
Thebo et al., 2017; Madikizela et al., 2018). So, they can enter 
the food chain and pose severe risks to the health of consumers 
and the environment (González García et al., 2018).

PhACs represent a diverse group of organic chemical sub-
stances, including prescription and over-the-counter pharma-
ceuticals for human and veterinary purposes. Their different 
chemical structures and physical-chemical properties (e.g., 
molecular weight, solubility, hydrophobicity, pKa, log KOW) 
may affect the uptake and translocation of PhACs in plants 
(Zhang et al., 2017). In the last few years, several studies dedi-
cated to studying the uptake, translocation, and metabolism 
of xenobiotics in relatively simple and well-defined aeroponic 
conditions have been published (Malchi et al., 2014; Wu et al., 
2014; Hurtado et al., 2016; Miller et al., 2016). Some phar-
maceuticals (e.g., carbamazepine, diclofenac, sulfamethoxa-
zole) are extensively metabolized in plant crops. Therefore, 
a relatively high concentration of metabolites has been found 
in different plant tissues/organs (Dordio et al., 2011; Pal et al., 
2013; Evgenidou et al., 2015; Mackuľak et al., 2015; Cosenza 
et al., 2018; D’Alessio et al., 2018).

The most frequently analytical technique for studying the 
uptake and translocation of PhACs in plants (Eggen et al., 
2011; Wu et al., 2015) is high-performance liquid chroma-
tography hyphenated with mass spectrometry (LC-MS) of 
sample extracts. In the target LC-MS analysis, the most 
commonly used instrumentation is still a triple-quadrupole 
(QqQ) analyzer operated in a selected reaction monitoring 
mode (SRM) (Emhofer et al., 2017). Mass spectrometric 
detection by QqQ in SRM is sensitive but not selective 
enough in a heavy matrix. High-resolution mass spectrom-
etry (HRMS) is an instrumental solution for eliminating 
matrix interferences and, consequently, false-positive results 
(Alvarez-Rivera et al., 2019). The HRMS also allows the 
study of the metabolism and transformation of PhACs in 
plant crops and the translocation of these compounds in dif-
ferent plant tissue (Cui and Schröder, 2016; Emhofer et al., 
2017; Bigott et al., 2021).

The preparation of plant samples for target analysis of 
PhACs and their metabolites is based on several simple 
subsequent steps, including homogenization, freeze-dry-
ing, grinding, and extraction. The extraction procedure is 
essential for the pre-concentration of analytes, sample com-
plexity reduction, and elimination of the matrix effect. For 

extraction of PhACs and their metabolites from plants, liquid 
extraction (LE) with simple polar solvent or solvent mixture, 
solid-phase extraction (SPE), accelerated solvent extraction 
(ASE), liquid-liquid extraction (LLE), microwave-assisted 
extraction (MAE), and QuEChERS (Quick, Easy, Cheap, 
Effective, Rugged, and Safe) were used (Kunene and Mahl-
ambi, 2023; Herklotz et al., 2010; Matamoros et al., 2012; 
Zhang et al., 2013; Bartha et al., 2014; Cui and Schröder, 
2016; Martínez-Piernas et al., 2018). Concerning the white 
chemistry concept (Nowak et al., 2021), modern sorbent or 
solvent-based microextraction techniques can be used (Yang 
et al., 2013). Published extraction procedures for plants usu-
ally used only simple solvent extraction based on acetonitrile 
and methanol, eventually based on the physical-chemical 
properties of the PhACs, and the addition of different acids, 
buffers, or salts (Riemenschneider et al., 2016; Montemurro 
et al., 2017; Martínez-Piernas et al., 2018; Pico et al., 2018). 
In our case, we preferred the acid condition because target 
analytes could be easily protonated.

This paper aimed to study the presence of selected PhACs 
and their metabolites in crops grown in aeroponic condi-
tions and evaluate the potential of PhAC plant uptake. The 
selection of target PhACs based on our previous experience 
includes knowledge of ecotoxicologically relevant PhACs 
originated from WWTP (Golovko et al., 2014a, b; Verlicchi 
and Zambello, 2015; Ivanová et al., 2018). It is expected 
that pH of the environment, which affects ionization of com-
pounds, can enhance or, on the contrary, limit the uptake of 
compounds by plants (Shahriar et al., 2022). The pH impact 
was described using mathematical models (Brunetti et al., 
2022), but an experimental confirmation of the pH effect 
is rare. Therefore, we investigated the effect of pH on the 
uptake of 3 pharmaceuticals, which occur in the environment 
in different forms (e.g., cations, anions, and neutral) into 
plants and their subsequent translocation and transforma-
tion in two plants (spinach and arugula). We studied this 
effect under aeroponic conditions so that other effects, such 
as sorption on the soil particles, did not influence the uptake. 
For this purpose, we develop and validate a simple, robust, 
and straightforward procedure for the LC-HESI-HRMS 
determination of nine pharmaceuticals (with the potential 
to be taken up by the plants) and their primary metabolites 
in different plant organs/tissues.

Materials and methods

Chemicals

Methanol (MeOH; LiChrosolv Hypergrade) and acetoni-
trile (ACN; LiChrosolv Hypergrade) were purchased from 
Merck (Germany). Formic acid (FA) of LC/MS grade used 
to acidify the mobile phases and/or extraction solvent was 
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purchased from Sigma-Aldrich (Germany). Ultrapure water 
(hereinafter water) was obtained from an Aqua-MAX-Ultra 
system (Younglin, Korea).

A list of native standards (NS) (18) and isotopically 
labeled (9) standards (internal standards; IS) and their pro-
ducers is given in SM1. Stock solutions of all standards were 
prepared in methanol at a concentration of 1 mg  mL−1 and 
stored in a freezer (−20 °C) for no longer than 6 months.

Plant samples

Plants for the study were obtained from the pot experi-
ment, where species were grown under controlled condi-
tions (Kodešová et al., 2019a). QA/QC samples (plant 
extracts from individual tissues) from the pot experi-
ment were used for validation. Pea (Pisum sativum) was 
divided into leaf, stem, root, and pod. Spinach (Spinachia 
oleracea) and arugula (Eruca sativa) were only separated 
into leaf and root. Each organ from the individual plant 
was freeze-dried, ground to powder, and stored frozen at 
−20 °C until analysis.

The method was performed on the plant samples from 
an aeroponic experiment: spinach (Spinacea oleracea L., 
Clarinet F1) and arugula (Eruca sativa L., Speedy). The 
selection of plants was based on previously published 
studies by Kodesova et al. (2019a) and Kodešová et al. 
(2019b). The plants were grown aeroponically using a 
nutrient solution containing a mixture of three pharma-
ceuticals: carbamazepine, sulfamethoxazole, and clinda-
mycin, with the concentration of each compound 0.1 mg 
 L−1. Three scenarios with different solution pH (5, 6.5, 8) 
were assumed to study a pH effect on an uptake of all com-
pounds by both plants. After 21 days, half of the plants 
were removed from each system, the nutrient solution was 
refilled, and the experiment continued for another 17 days 
(in total, 38 days of exposure to aeroponic conditions). 
Plants removed from the aeroponic systems were separated 
into individual tissues, freeze-dried, and homogenized. 
Details of the aeroponic experiment are given in SM2.

Plant tissues (spinach leaf, spinach root, arugula leaf, 
and arugula root) were extracted as described below. A 
nine-point calibration curve was prepared into the mix-
ture of ACN:water (1:1 v/v) acidified with 0.1% FA, 
ranging from 0.1 to 1000 ng  mL−1. QA/QC samples of 
every tissue were used for matrix standard and spiked 
samples. The matrix standards were prepared as a last 
point of calibration curve using plant extract instead of 
solvent. The spiked samples were extracted in the same 
way as unknown samples, however before extraction 
were spiked not only with IS (5 ng per sample) but also 
with NS at level 50 ng  g−1 corresponding to 2.5-ng  mL−1 
concentration level in the extract.

Extraction procedure

The development of the plant extraction method was based 
on Kodešová et al. (2019b) with some modifications. Dry 
plant tissue (50 mg) was weighed into the 2.0-mL Eppendorf 
tubes. Then five ng of IS (50 μL of IS solution in MeOH) 
was added and let the solvent soak and evaporate for 20 min. 
A stainless-steel ball and 1 mL of extraction mixture were 
inserted afterward. Prepared samples were homogenized for 
5 min at 1800  min−1 (TissueLyser II, Qiagen, Germany) and 
centrifuged next 5 min at 10,000  min−1 (Mini spin centri-
fuge, Eppendorf). The supernatant was filtered through the 
0.45-μm syringe filter from regenerated cellulose (Sartorius, 
Germany).

Four different extraction mixtures, (A) ACN:water (1/1 
v/v) acidified with 0.1% FA, (B) ACN:water (1/1 v/v), (C) 
MeOH:water (1/1 v/v) acidified with 0.1% FA, and (D) 
MeOH:water (1/1 v/v), were used to optimize the extraction 
procedure for all selected pharmaceuticals and their metabo-
lites (SM1). For this purpose, fortified samples of pea leaves 
were extracted in triplicates. All plant samples were spiked 
with NS at the concentration level of 5 ng per sample (100 
ng  g−1 dry weight). The mixture of NS was added to the dry 
sample just after IS and before extraction solvent addition. 
The best-performing extraction mixture was selected for fur-
ther validation after the recovery evaluation.

LC‑HESI‑HRMS analysis

LC-HESI-HRMS analysis was performed using a 
Q-Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass 
Spectrometer (Thermo Fisher Scientific, USA), coupled 
with a Vanquish Pumps (Dionex, Germany) and a PAL RSI 
autosampler (CTC Analytics AG, Switzerland). For chroma-
tographic separation, an analytical column Hypersil Gold aQ 
(50 × 2.1 mm, 5 μm; Thermo Fisher Scientific, USA) was 
chosen with a gradient elution of mobile phase water and 
ACN (both acidified with 0.1% FA). A heated electrospray 
ionization (HESI) was used in positive ionization mode, and 
Q-Exactive HF operated in a high-resolution product scan 
(1 m/z isolation window and 15,000 FWHM resolution for 
product scan). LC-HESI-HRMS conditions are summarized 
in SM3, and MS transitions for individual compounds are 
given in SM1. Data acquisition was performed with Xcali-
bur Software, and data were processed by TraceFinder 3.3 
Software (Thermo Fisher Scientific).

The performance characteristics of the method were evalu-
ated for the tissues from three plants (pea, spinach, arugula) 
and 18 relevant pharmaceuticals and their metabolites. Internal 
standard and matrix-matching standard methods were used to 
quantify target analytes (Grabicova et al., 2018). Response fac-
tor (RF), average response factor (ARF), and concentration of 
target analytes were calculated as described elsewhere (Borik 
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et al., 2020a; Borik et al., 2020b). Recoveries were assessed 
for each matrix as a heptaplicate analysis of fortified control 
experiment samples (irrigated with drinking water only). The 
extraction efficiency of the procedure was evaluated at two low 
concentration levels (10 and 100 ng  g−1) and relatively high 
concentrations corresponding to a concentration of PhACs 
and their metabolites in the aeroponic experiment (1000 ng 
 g−1). Matrix effect (ME) was calculated as follows: (RFMST 
− ARF)/ARF × 100%, where the difference between the average 
RF of calibration standards and RF of matrix-matched stand-
ards (RFMST) exceeded 20% and RFMST was used to quantify 
the target analyte in target tissue instead of ARF. The limit of 
quantification (LOQ) was calculated for each compound in each 
sample. Only calibration points with a relative standard devia-
tion (RSD) of less than 30% deviation from ARF were used 
(Grabicova et al., 2018). The peak area of the lowest calibra-
tion point divided by a factor of 2 was substituted for quanti-
fication instead of the peak area in corresponding calculation. 
This approach resulted in unique LOQ dataset corrected to IS 
recovery and matrix effect across the samples and matrices.

Results and discussion

Extraction method selection

We tested four extraction solvent mixtures: (A) ACN:water 
(1/1 v/v) acidified with 0.1% FA, (B) ACN:water (1/1 v/v), 
(C) MeOH:water (1/1 v/v) acidified with 0.1% FA, and (D) 

MeOH:water (1/1 v/v). As can be seen from Table 1, all 
solvents have shown similar recovery, and no evident dif-
ferences were observed across tested mixtures. All recovery 
values range from 60 to 130%, except 10,11-epoxide CBZ in 
solvent C. Mean recoveries (and RSD in brackets) obtained 
for target analytes were 102% (8%), 99% (4%), 102% (4%), 
and 97% (3%) for solvents A, B, C, and D, respectively. Such 
differences between all four solvent mixtures are negligible, 
contrary to our experience with fish tissues (Grabicova et al., 
2018). Therefore, solvent A was selected for further evalu-
ation due to the similar composition of mobile phases used 
in subsequent LC-HESI-HRMS analysis.

Validation of method

Method validation was performed to evaluate the linearity, 
LOQ, precision, and trueness (Kruve et al., 2015).

Linearity was tested using nine-point calibration curve 
(0.1, 0.5, 1, 5, 10, 50, 100, 500, and 1000 ng  mL−1) and 
was expressed as the ratio NS to IS peak area depending 
on concentration (Borik et al., 2020a). Most substances 
showed excellent linearity from 0.5 to 1000 ng  mL−1 
(squares of residues r2 > 0.99). ATE, 10,11-epoxide CBZ, 
and oxcarbazepine showed higher values (r2 > 0.99) but 
only from 0.5 to 500 ng  mL−1. Linear response over 4 
orders of magnitude is necessary because an extensive 
range of concentration in different matrices was expected 
in the experiments. Considering the sample amount (50 
mg) and extract volume (1 mL), the method was linear 

Table 1  Recoveries for all 
pharmaceuticals in pea leaf for 
different extraction solvents

Samples were spiked at concentration level 100 ng  g−1

Pharmaceutical Recovery ± RSD (%)

Solvent A Solvent B Solvent C Solvent D

Atenolol 110 ± 9 112 ± 4 105 ± 1 99 ± 2
Carbamazepine (CBZ) 101 ± 8 94 ± 1 104 ± 0 98 ± 1
10,11-Epoxide CBZ 104 ± 12 76 ± 6 131 ± 5 103 ± 2
10,11-Dihydro CBZ 110 ± 8 98 ± 3 110 ± 2 106 ± 4
10,11-Dihydro dihydroxy CBZ 85 ± 10 127 ± 13 102 ± 14 88 ± 9
Citalopram 102 ± 7 97 ± 2 99 ± 3 94 ± 2
Clarithromycin 109 ± 10 108 ± 1 96 ± 1 96 ± 2
Clindamycin 107 ± 8 86 ± 4 121 ± 6 116 ± 3
Clindamycin sulfoxide 84 ± 9 82 ± 5 84 ± 3 86 ± 3
Fexofenadine 90 ± 5 85 ± 3 103 ± 1 97 ± 0
Irbesartan 91 ± 7 112 ± 4 97 ± 2 98 ± 2
Metoprolol 110 ± 8 94 ± 2 103 ± 2 99 ± 2
Metoprolol acid 99 ± 8 79 ± 5 96 ± 2 91 ± 1
N1-acetylsulfamethoxazole 137 ± 11 115 ± 5 90 ± 11 80 ± 1
N4-acetylsulfamethoxazole 102 ± 4 112 ± 4 96 ± 4 95 ± 5
N-desmethylcitalopram 88 ± 6 100 ± 1 96 ± 3 89 ± 1
Oxcarbazepine 91 ± 10 102 ± 2 93 ± 2 88 ± 2
Sulfamethoxazole 110 ± 8 97 ± 1 110 ± 2 116 ± 3
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in the range of 10 to 20,000 ng  g−1. LOQs of the method 
were determined according to Grabicova et al. (2018) and 
Borik et al. (2020a) and applying criteria described in the 
“LC-HESI-HRMS analysis” section. Table 2 presents a 
range of LOQ value overall validation set of samples from 
eight matrices. Calculated LOQ values are lower than those 
reported in similar studies (Carter et al., 2014; Klement 
et al., 2020; Brunetti et al., 2021). LOQs varied from low 
units of ng  g−1 to 27 ng  g−1. Among studied compounds, 
both SUL metabolites showed the highest LOQs, which 
can be assigned to their relatively low response in HESI. 
A relatively wide LOQ range for individual compounds 
indicates a high matrix effect for some plant tissues.

The recovery for 18 compounds at three concentrations 
levels — 10, 100, and 1000 ng per g of dry weight — for 
eight different plant tissues was evaluated. The recoveries 
for level 1000 ng  g−1 ranged from 85 to 123%, and for level 
100 ng  g−1 ranged from 70 to 115%, respectively. For the 
lowest level (10 ng  g−1), recoveries ranged from 71 to 123%, 
with an exception for 10,11-dihydro dihydroxy CBZ (25%), 
N1-acetyl SUL (44%), and N4-acetyl SUL (52%). Another 
study also observed low recovery for SUL in different plant 
leaves (Goldstein et al., 2014). As shown in Fig. 1, only a 
small number of individual recovery values are out of the 
acceptable range (60–130%) for all tested concentration 
levels in all matrices. Most of the overestimated values are 
related to green parts of plants (leaf of spinach above other 
leaves — see SM4) in contrast to root samples, where only a 

few cases of recoveries below 60% were observed (the root 
of arugula, pea, and spinach, respectively).

Heptaplicates of fortified samples were used not only 
for recovery evaluation but also for estimating method 
precision expressed by RSD (calculated for each com-
pound, tissue, and concentration level) (Taverniers et al., 
2004; Kruve et al., 2015). RSD for heptaplicates at the 
lowest level of 10 ng  g−1 ranged from 0 to 24% (median 
value is 5%). As mentioned above, the method showed the 
worst performance for 10,11-dihydro dihydroxy CBZ, N1-
acetyl SUL, and N4-acetyl SUL. This finding relates to the 
above-described relatively low HESI response resulting in 
high LOQs. Also, 10,11-epoxide CBZ shows higher RSD 
for this concentration level. The RSDs at the concentration 
level 100 ng  g−1 ranged from 1 to 14% (except for N1-
acetyl SUL in arugula and spinach leaf) with a median of 
3%, and for the highest validated level (1 μg  g−1) ranged 
from 1 to 8% with the median value of 2%.

The stability of the analytical signal (robustness of the 
detection) was investigated as a parameter that strongly 
influences quantification. The stability of the RF over time, 
which can relate to the stability of high-resolution product 
scan (HRPS) detection (Grabicova et al., 2018), was evalu-
ated during the sequence of 170 analysis runs (around 43 h 
of measurement time). As shown in Fig. 2, relative response 
factors for the first and last calibration fit almost perfectly. 
This graph shows the method’s robustness for routinely ana-
lyzing many miscellaneous plant tissue samples.

Table 2  Limit of quantification 
(LOQ) and limit of 
detection (LOD) expressed as 
the minimal and maximal values 
found for the target compound 
in all plant organs (pea — leaf, 
stem, pod, root; arugula — leaf, 
root; spinach — leaf, root)

LOQ LOD

Min (ng  g−1) Max (ng  g−1) Min (ng  g−1) Max (ng  g−1)

Atenolol 2.4 7.9 0.80 2.6
Carbamazepine (CBZ) 2.2 15 0.73 5.0
10,11-Epoxide CBZ 1.2 13 0.40 4.3
10,11-Dihydro CBZ 4.6 14 1.5 4.7
10,11-Dihydro dihydroxy CBZ 2.8 17 0.93 5.7
Citalopram 4.2 7.1 1.4 2.4
Clarithromycin 4.6 27 1.5 9.0
Clindamycin 2.3 6.9 0.77 2.3
Clindamycin sulfoxide 1.8 11 0.60 3.7
Fexofenadine 2.3 14 0.77 4.7
Irbesartan 4.1 7.5 1.4 2.5
Metoprolol 3.3 9.9 1.1 3.3
Metoprolol acid 1.9 9.6 0.63 3.2
N1-acetylsulfamethoxazole 8.1 27 2.7 9.0
N4-acetylsulfamethoxazole 7.6 21 2.5 7.0
N-desmethylcitalopram 3.4 7.3 1.1 2.4
Oxcarbazepine 5.7 14 1.9 4.7
Sulfamethoxazole 6.7 14 2.2 4.7
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Matrix effects

MEs were evaluated by comparing ARF from calibration 
with RF of matrix-matched standards (RFMST) and are 
reported in SM5. Negative numbers mean signal suppression 
in contrast to enhancement represented by positive MEs.

From the tissue point of view, there was only slight vari-
ation among the green parts of a plant and its roots. Seven 
target compounds from 18 were calculated using a matrix 
matching standard for pea stem, unlike pea root (five com-
pounds from 18). The same trend was also found for arugula 
leaf (6/18) and root (3/18) or spinach leaf (5/18) and root 
(2/16). Ion enhancement higher than 30% was observed for 
10,11-dihydro dihydroxy CBZ (arugula and spinach leaf), 
metoprolol acid, and N-desmethyl CIT (both in pea tis-
sues). Ion suppression lower than −30% was observed for 
10,11-dihydro dihydroxy CBZ and N1-acetyl SUL in pea 
tissues, and clarithromycin, clindamycin sulfoxide, metopro-
lol acid, and oxcarbazepine in arugula and spinach tissues 

(Goldstein et al., 2014). Generally, the highest matrix effect 
was observed for compounds showing the worst perfor-
mance (SM5).

Effect of pH on pharmaceutical uptake 
under aeroponic condition

A developed plant extraction and analysis method was 
applied to plant samples from the aeroponic experiment. 
During this experiment, spinach and arugula were grown 
aeroponically using the only solution of pharmaceuticals of 
interest, nutrients, and pH additives. Therefore, soil proper-
ties did not influence PhAC uptake in plants, which is the 
main advantage of aeroponics (Madikizela et al., 2018).

Results of plant tissues analysis are reported in supplemen-
tary materials SM6 (including recoveries in SM7) and visu-
alized in Fig. 3. Concentrations of CBZ and its metabolites 
in the roots and leaves of both plants indicate that CBZ is a 
highly mobile compound in plant bodies due to the neutral 
form of its molecule, low molecular weight, low lipophilic-
ity, and low number of H-bonds. CBZ accumulates mainly 
in plant leaves, i.e., at the end of a transpiration stream (Ben 
Mordechay et al., 2018; Brunetti et al., 2019; Kodesova et al., 

Fig. 1  Average recoveries for eight plant tissues and 18 tested com-
pounds at three different concentration levels (10, 100, 1000 ng per g 
of dry tissue). Red lines border interval from 60 to 130%

◂

Fig. 2  Stability of relative response factor at four different concentration levels in the sequence of 170 measured samples (pea leaf, stem, pod, 
and root). The dashed line shows the ideal fit, and the dotted lines represent a 30% confidence interval
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2019a; Kodešová et al., 2019b; Brunetti et al., 2021). CBZ 
is a relatively stable compound in the water environment, 
but it can be metabolized in plants (mainly in leaves), which 
is attributed to plant cytochrome P450 enzymes (Goldstein 
et al., 2014; Malchi et al., 2014; Ben Mordechay et al., 2018; 
Kodesova et  al., 2019a; Kodešová et  al., 2019b). Ratios 
between concentrations of CBZ and its metabolites (especially 
10,11-epoxide CBZ) in leaves proved our previous findings 
(Kodešová et al., 2019b) that the degree of the CBZ transfor-
mation in plants depends on the plant family. Our study again 
proved that the efficiency of arugula (family Brassicaceae) in 
metabolizing is low (i.e., the CBZ fraction is much more sig-
nificant than the fraction of 10,11-epoxide CBZ) in compari-
son to the moderate efficiencies of spinach (i.e., comparable 
concentrations of CBZ and 10,11-epoxide CBZ).

Concentrations of SUL and its metabolite in plant tissues 
show that this compound is mainly accumulated in roots. It 
can be explained by mostly negatively charged molecules, 
i.e., repulsion between their molecules and negatively 
charged cell walls (Kodešová et al., 2019b). Another reason 
can be the transformation of SUL in plant tissues (Brunetti 
et al., 2022). Our data do not indicate considerable differ-
ences between the uptake, transition, and transformation 
observed for both plants.

Finally, concentrations of CLI and its metabolite show a 
more considerable accumulation of both compounds in roots 
than in leaves. This finding can be explained by the primarily 
positive charge of the CLI molecules and reduced uptake and 
translocation of this compound due to its sorption onto the 
negatively charged cell walls (Brunetti et al., 2022). Results 
also show that CLI and its metabolite concentrations were 
higher in the arugula tissues than in the spinach tissues. It 
may suggest that arugula plants are more efficient in the 
uptake and translocation of this compound than spinach 
plants. However, because it can be assumed that CLI can 
be metabolized in plant bodies (Brunetti et al., 2022), it can 
also be hypothesized that spinach’s efficiency in transform-
ing CLI and its metabolite is similar to CBZ compounds, 
much greater than that of arugula.

Regarding the impact of pH on the compounds’ uptake 
by plants, it was presumed that pH, which affects forms 
of ionizable compounds, should influence their uptake by 
plants. As discussed above, while plants should quickly 
take up neutral compounds, uptake of the ionized com-
pound should be restricted due to either their sorption 
onto cell walls (cations) or repulsion from the cell walls 
(anions). Based on these presumptions, the behavior of the 
CBZ molecule, which was over the entire pH range in the 
neutral form, and its uptake should not be influenced by the 

pH of a solution. The pKa value (strongest acidic) for SUL 
is 6.16. Thus, at a solution pH of 5, this compound was 
partly in neutral form, which could increase its uptake by 
plant roots. This effect may explain a higher concentration 
of SUL in the roots of arugula at a pH of 5 than at other 
pH conditions. However, a similar effect is not visible in 
the case of spinach. The pKa value (the strongest basic) 
for CLI equals 7.55. Thus, at pH 8 compound was partly 
in neutral form, which could increase its uptake by plant 
roots. Such effect can be identified for arugula roots har-
vested on the 21st day but not for arugula roots harvested 
on the 38th day. In addition, this effect is not evident at all 
for spinach. Another factor that could affect the accumu-
lation of compounds in plants could be the plant growth 
that was impacted by solution pH. For instance, in the case 
of spinach, the largest sum of compounds’ concentrations 
(especially concentrations of CBZ and its metabolite) in 
plant tissues was observed at pH of 6.5, followed by those 
at pH of 8 and 5 (Fig. 3). This trend corresponds to trends 
in the areas of plant roots and leaves (Fig. SM2.4) and 
partly also to trends in their masses (Fig. SM2.3). Those 
conditions for plant growth (aggravated by too low or too 
high pH or even by a complex of compounds in solution) 
reduced the growth of plants as well as their transpiration. 
They thus reduced compounds’ accumulation in plant tis-
sues. Finally, it can also be assumed that the uptake of all 
compounds could be affected by their mutual interactions 
and interactions with other components in the solution-
plant system. However, there is not enough information 
available for this assessment. In addition, our previous 
studies (Kodešová et al., 2019b; Klement et al., 2020) did 
not find an influence of a mixture of different compounds 
on their uptake from soils.

Conclusion

In our study, a robust, fast, and reliable extraction procedure 
followed by LC-HESI-HRMS was developed, optimized, and 
applied to study pharmaceutical uptake to plants. The simple 
solvent extraction with an acidified mixture of acetonitrile 
and water (0.1% FA) was selected as the optimal extraction 
solvent for four different plant tissues. Subsequent LC-HESI-
HRMS analysis was optimized and validated for 4 orders of 
magnitude range of pharmaceutically active compounds in 
eight plant matrices. Finally, the suitability of the validated 
method was confirmed for 18 compounds with various phys-
ical-chemical properties and potential to plant uptake under 
different pH conditions in a wide concentration range.

Some substances are taken up by plants and further 
metabolized. Our method for PhAC detection and quanti-
fication was used in an aeroponic experiment, where soil 
properties could not influence PhAC uptake in plants. In 

Fig. 3  Pharmaceuticals and their metabolite concentration in spinach 
and arugula during aeroponic experiments under different pH condi-
tions (5, 6.5, 8)

◂
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this simplified model of plant cultivation, carbamazepine 
proved higher accumulation and metabolization in leaves 
than in roots, unlike sulfamethoxazole and clindamycin, 
which accumulate more in roots. Arugula, as a representa-
tive of the family Brassicaceae, has confirmed a low ability 
to metabolize CBZ, compared to this ability of other plants 
like spinach. The expected positive effect of the modified 
charge of both ionic compounds, due to pH adjustment, on 
their uptake by plants was likely masked/reduced by the 
negative pH influence on plant growth and transpiration 
intensity, i.e., on the intensity of the solution uptake by roots.

In conclusion, the analytical method developed in our 
study can improve the possibility of gaining relevant results 
from experiments dealing with PhACs’ uptake in plants.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 29035-1.
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