Skip to main content

Advertisement

Log in

Recovery and utilisation of waste heat from flue/exhaust gases: a bibliometric analysis (2010–2022)

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The recovery and utilisation of waste heat from flue/exhaust gases (RU/WHFG) could potentially provide sustainable energy while curbing pollutant emissions. Over time, the RU/WHFG research landscape has gained significant traction and yielded innovative technologies, sustainable strategies, and publications. However, critical studies highlighting current advancements, publication trends, research hotspots, major stakeholders, and future research directions on RU/WHFG research remain lacking. Therefore, this paper presents a comprehensive bibliometric analysis and literature review of the RU/WHFG research landscape based on publications indexed in Scopus. Results showed that 123 publications and 2191 citations were recovered between 2010 and 2022. Publication trends revealed that the growing interest in RU/WHFG is mainly due to environmental concerns (e.g. pollution, global warming, and climate change), research collaborations, and funding availability. Stakeholder analysis revealed that numerous researchers, affiliations, and countries have actively contributed to the growth and development of RU/WHFG. Lin Fu and Tsinghua University (China) are the most prolific researchers and affiliations, whereas the National Natural Science Foundation of China (NSFC) and China are the most prolific funder and country, respectively. Funding availability from influential schemes such as NSFC has accounted for China’s dominance. Keyword co-occurrence identified three major research hotspots, namely, thermal energy utilisation and management (cluster 1), integrated energy and resource recovery (cluster 2), and system analysis and optimisation (cluster 3). Literature review revealed that researchers are currently focused on maximising thermodynamic/energy efficiency, fuel minimisation, and emission reduction. Despite progress, research gaps remain in low-temperature/low-grade waste heat recovery, utilisation, storage, life cycle, and environmental impact analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data has been included in the paper.

References

  • Ackah I, Graham E (2021) Meeting the targets of the Paris Agreement: an analysis of renewable energy (RE) governance systems in West Africa (WA). Clean Technol Environ Policy 23:501–507

    Article  Google Scholar 

  • Aghaali H, Ångström HE (2015) A review of turbocompounding as a waste heat recovery system for internal combustion engines. Renew Sustain Energy Rev 49:813–824

    Article  CAS  Google Scholar 

  • Aly WIA, Abdo M, Bedair G, Hassaneen AE (2017) Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases. Appl Therm Eng 114:621–630

    Article  CAS  Google Scholar 

  • Amini A, Mirkhani N, Pakjesm Pourfard P, Ashjaee M, Khodkar MA (2015) Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle. Energy 86:74–84

    Article  CAS  Google Scholar 

  • Arink T, Hassan MI (2017) Metal scrap preheating using flue gas waste heat. In: Li H, Yan J, Sun F, Desideri U , Chou SK (Hrsg.), 8th International Conference on Applied Energy, ICAE 2016. Elsevier Ltd, pp. 4788–4795

  • Babu S, Franklin G, Kumar TVN, Aswin KK (2018) Refrigeration using waste heat recovery from exhaust gas of engine, 2017 IEEE International Conference on Technological Advancements in Power and Energy, TAP Energy 2017. Institute of Electrical and Electronics Engineers Inc., pp. 1–5

  • Bai R, Zhang Y, Shi Y (2021) System simulation and analysis of using waste heat of flue gas and steam to dry municipal solid waste, International Conference on Power Engineering 2021, ICOPE 2021. Japan Society of Mechanical Engineers

  • Barma MC, Saidur R, Rahman SMA, Allouhi A, Akash BA, Sait SM (2017) A review on boilers energy use, energy savings, and emissions reductions. Renew Sustain Energy Rev 79:970–983

    Article  Google Scholar 

  • Bauer N, McGlade C, Hilaire J, Ekins P (2018) Divestment prevails over the green paradox when anticipating strong future climate policies. Nat Clim Chang 8:130–134

    Article  Google Scholar 

  • Bhattacharjee Y (2011) Saudi universities offer cash in exchange for academic prestige. Sci 334:1344–1345

    Article  CAS  Google Scholar 

  • Bigliardi B, Filippelli S (2022) Chapter 4 - factors affecting the growth of academic oriented spin-offs. In: Galanakis CM (ed) Innovation Strategies in the Food Industry, 2nd edn. Academic Press, pp 53–72

    Chapter  Google Scholar 

  • Boloy RAM, da Cunha Reis A, Rios EM, de Araújo Santos Martins J, Soares LO, de Sá Machado VA, de Moraes DR (2021) Waste-to-energy technologies towards circular economy: a systematic literature review and bibliometric analysis. Water Air Soil Pollut 232:306

    Article  CAS  Google Scholar 

  • Boyaghchi FA, Heidarnejad P (2015) Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on organic Rankine cycle for domestic application. Energy Convers Manage 97:224–234

    Article  Google Scholar 

  • Brandt AR, Heath GA, Cooley D (2016) Methane leaks from natural gas systems follow extreme distributions. Environ Sci Technol 50:12512–12520

    Article  CAS  Google Scholar 

  • Brückner S, Liu S, Miró L, Radspieler M, Cabeza LF, Lävemann E (2015) Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl Energy 151:157–167

    Article  Google Scholar 

  • Burris V (2004) The academic caste system: prestige hierarchies in PhD exchange networks. Am Sociol Rev 69:239–264

    Article  Google Scholar 

  • Campana F, Bianchi M, Branchini L, De Pascale A, Peretto A, Baresi M, Fermi A, Rossetti N, Vescovo R (2013) ORC waste heat recovery in European energy intensive industries: energy and GHG savings. Energy Convers Manage 76:244–252

    Article  Google Scholar 

  • Chen G, Lin W, Mao A (1996) Low pressure energy conservation system recovering waste heat from flue gas. In: Proceedings of the 1995 International Conference on Energy and Environment. ICEE. Begell House Inc, New York, pp 264–267

  • Choi BC, Kim YM (2013) Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship. Energy 58:404–416

    Article  Google Scholar 

  • Chubb J, Reed MS (2018) The politics of research impact: academic perceptions of the implications for research funding, motivation and quality. British Politics 13:295–311

    Article  Google Scholar 

  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2012) SciMAT: a new science mapping analysis software tool. J Am Soc Inform Sci Technol 63:1609–1630

    Article  Google Scholar 

  • Cohen J, Janovich I, Muginstein A (2001) Utilization of waste heat from a flue gases up-stream gas scrubbing system. Desalination 139:1–6

    Article  CAS  Google Scholar 

  • Confraria H, Blanckenberg J, Swart C (2020) Which factors influence international research collaboration in Africa? In: Ramutsindela M, Mickler D (eds) Africa and the sustainable development goals. Springer International Publishing, Cham, pp 243–255

    Chapter  Google Scholar 

  • Dai Y, Wang J, Gao L (2009) Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers Manage 50:576–582

    Article  CAS  Google Scholar 

  • de Vries M (1987) 40% Cheaper flue gas treatment through flexible heat recovery with waste heat boilers. Sulzer Tech Rev 69:31–32

    Google Scholar 

  • Ding Z, Zhuge W, Zhang Y, Yin Y, Zhang S (2015) Performance analysis of an electric turbo compounding system for a hybrid vehicle diesel engine, ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015. American Society of Mechanical Engineers (ASME)

  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res 133:285–296

    Article  Google Scholar 

  • Elsevier Scopus (2022a) Scopus: expertly curated abstract & citation database. Elsevier, USA

    Google Scholar 

  • Elsevier Scopus (2022b) Scopus: how Scopus works. Elsevier, USA

    Google Scholar 

  • Frutiger J, Abildskov J, Sin G (2016) Global sensitivity analysis of computer-aided molecular design problem for the development of novel working fluids for power cycles. In: Kravanja Z, Bogataj M (eds) Computer aided chemical engineering. Elsevier, pp 283–288

    Google Scholar 

  • Fu H-Z, Ho Y-S (2014) Top cited articles in adsorption research using Y-index. Res Eval 23:12–20

    Article  Google Scholar 

  • Fu H-Z, Wang M-H, Ho Y-S (2012) The most frequently cited adsorption research articles in the Science Citation Index (Expanded). J Colloid Interface Sci 379:148–156

    Article  CAS  Google Scholar 

  • Fu J, Liu J, Feng R, Yang Y, Wang L, Wang Y (2013) Energy and exergy analysis on gasoline engine based on mapping characteristics experiment. Appl Energy 102:622–630

    Article  Google Scholar 

  • Fyfe A, Coate K, Curry S, Lawson S, Moxham N, Røstvik CM (2017) Untangling academic publishing: A history of the relationship between commercial interests, academic prestige and the circulation of research. Discussion paper. University of St Andrews. https://eprints.bbk.ac.uk/id/eprint/19148/. Accessed 13 June 2023

  • Gaviria-Marin M, Merigó JM, Baier-Fuentes H (2019) Knowledge management: a global examination based on bibliometric analysis. Technol Forecast Soc Chang 140:194–220

    Article  Google Scholar 

  • Gewald D, Siokos K, Karellas S, Spliethoff H (2012) Waste heat recovery from a landfill gas-fired power plant. Renew Sustain Energy Rev 16:1779–1789

    Article  CAS  Google Scholar 

  • GRI (2022) National climate change adaptation strategy. Grantham Research Institute, Beijing. https://bit.ly/41WfR5u. Accessed 23 June 2023

  • Han X, Liu M, Wang J, Yan J, Liu J, Xiao F (2014) Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery - performances under variable power loads coupled with off-design parameters. Energy 76:406–418

    Article  CAS  Google Scholar 

  • Han X, Yan J, Karellas S, Liu M, Kakaras E, Xiao F (2017) Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system. Appl Therm Eng 110:442–456

    Article  CAS  Google Scholar 

  • Han J, Kang H-J, Kim M, Kwon GH (2020) Mapping the intellectual structure of research on surgery with mixed reality: bibliometric network analysis (2000–2019). J Biomed Inform 109:103516

    Article  Google Scholar 

  • Han X, Yuan T, Zhang D, Dai Y, Liu J, Yan J (2021) Waste heat utilization from boiler exhaust gases for zero liquid discharge of desulphurization wastewater in coal-fired power plants: Thermodynamic and economic analysis. J Clean Prod 308:127328

  • Hao D-C, Xiao P-G (2015) Genomics and evolution in traditional medicinal plants: road to a healthier life. Evol Bioinforma 11:EBO. S31326

    Article  Google Scholar 

  • He G, Xie H, Gu Z (2017a) Investigation into comprehensive fuel saving potential of diesel with electric turbo-compounding waste heat recovery power generation and electric thermal management power consumption systems. Hsi an Chiao Tung Ta Hsueh 51:112–120

    Google Scholar 

  • He Z, Zhang Y, Dong S, Ma H, Yu X, Zhang Y, Ma X, Deng N, Sheng Y (2017b) Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions. Appl Therm Eng 113:937–951

    Article  Google Scholar 

  • Hicks DJ, Coil DA, Stahmer CG, Eisen JA (2019) Network analysis to evaluate the impact of research funding on research community consolidation. PLoS One 14:e0218273

    Article  CAS  Google Scholar 

  • Ho Y-S, Fu H-Z (2016) Mapping of metal-organic frameworks publications: a bibliometric analysis. Inorg Chem Commun 73:174–182

    Article  CAS  Google Scholar 

  • Hsieh J-C, Lai C-C, Chen Y-H (2022) Thermoeconomic analysis of a waste heat recovery system with fluctuating flue gas scenario. Energy 258:124866

  • Hu AGZ (2020) Public funding and the ascent of Chinese science: evidence from the National Natural Science Foundation of China. Res Policy 49:103983

    Article  Google Scholar 

  • Hung TC (2001) Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manage 42:539–553

    Article  CAS  Google Scholar 

  • IEA (2021) Coal-fired electricity International Energy Agency (IEA), Paris. https://tinyurl.com/34s56pfk. Accessed 12 June 2023

  • Iliev IK, Kowalczyk T, Beloev HK, Terziev AK, Jesionek KJ, Badur J (2022) An innovative method for waste heat recovery from flue gas treatment system through an additional economizer. Arch Thermodyn 43:37–59

    CAS  Google Scholar 

  • Jana K, De S (2016) Utilizing waste heat of the flue gas for post-combustion CO 2 capture-a comparative study for different process layouts. Energy Sources Recovery Util Environ Eff 38:960–966

    CAS  Google Scholar 

  • Jiang J, Yang H, Liu F, Zhang X, Wei H (2020) Analysis of thermal and water equilibrium and desulfurization efficiency after waste heat recovered from a wet flue gas desulfurization system. Asia Pac J Chem Eng 15:e2413

  • Jin Y, Gao N, Zhu T (2019) Techno-economic analysis on a new conceptual design of waste heat recovery for boiler exhaust flue gas of coal-fired power plants. Energy Convers Manag 200:112097

  • Jogekar DD, Mhamane SG, Mangate SD (2019) Conversion of electricity from waste heat of flue gases. In: 5th IEEE International Conference for Convergence in Technology, I2CT 2019. Institute of Electrical and Electronics Engineers (IEEE) Inc, pp 1–5

  • Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA (2018) Waste heat recovery technologies and applications. Therm Sci Eng Prog 6:268–289

    Article  Google Scholar 

  • Jung D-H, Lee J-K, Kim J-Y, Jang IS, Lee J, Lee H-J (2018) Design method of an ultrahigh speed PM motor/generator for electric-turbo compounding system. IEEE Trans Appl Supercond 28:1–4

    Article  Google Scholar 

  • Karellas S, Leontaritis AD, Panousis G, Bellos E, Kakaras E (2013) Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 58:147–156

    Article  Google Scholar 

  • Kaur P, Kaur GJ, Routray W, Rahimi J, Nair GR, Singh A (2021) Recent advances in utilization of municipal solid waste for production of bioproducts: a bibliometric analysis. Case Stud Chem Environ Eng 4:100164

    Article  CAS  Google Scholar 

  • Keith B, Babchuk N (1998) The quest for institutional recognition: a longitudinal analysis of scholarly productivity and academic prestige among sociology departments. Soc Forces 76:1495–1533

    Article  Google Scholar 

  • Khan I, Lei H, Shah AA, Khan I, Muhammad I (2021) Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ Sci Pollut Res 28:29720–29731

    Article  Google Scholar 

  • Kinage A, Sahoo S, Chaudhuri S (2021) Effects of different electrical arrangements and Thomson effect on the system performance as well as the optimum allocation of thermocouples in a self-driven two-stage TEC & TEG. Ther Sci Eng Prog 25:101035

    Article  Google Scholar 

  • Kuah CT, Koh QY, Rajoo S, Wong KY (2023) Waste heat recovery research – a systematic bibliometric analysis (1991 to 2020). Environ Sci Pollut Res 30:72074–72100

    Article  Google Scholar 

  • Kumar A (2018) Global warming, climate change and greenhouse gas mitigation. In: Kumar A, Ogita S, Yau YY (eds) Biofuels: greenhouse gas mitigation and global warming: next generation biofuels and role of biotechnology. New Delhi, Springer India, pp 1–16

    Google Scholar 

  • Kyriakidis F, Sørensen K, Singh S, Condra T (2017) Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines. Energy Convers Manage 151:286–295

    Article  CAS  Google Scholar 

  • Lan S, Yang Z, Chen R, Stobart R (2018) A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl Energy 210:327–338

    Article  Google Scholar 

  • Larsen U, Pierobon L, Haglind F, Gabrielii C (2013) Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy 55:803–812

    Article  CAS  Google Scholar 

  • LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1:26–35

    Google Scholar 

  • Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, De Paepe M (2015) Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sustain Energy Rev 47:448–461

    Article  CAS  Google Scholar 

  • Lee Y-H (2021) Determinants of research productivity in Korean universities: the role of research funding. J Technol Transf 46:1462–1486

    Article  Google Scholar 

  • Lee CE, Yu B, Lee S (2015) An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB). Energy 86:267–275

    Article  Google Scholar 

  • Lettieri P, Yassin L, Simons SJR (2010) 7 - Advanced thermal treatment of composite wastes for energy recovery. In: Goodship V (ed) Management, recycling and reuse of waste composites. Woodhead Publishing, pp 152–191

    Chapter  Google Scholar 

  • Li C, Wang H (2016) Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization. Appl Energy 180:707–721

    Article  Google Scholar 

  • Liao GEJ, Zhang F, Chen J, Leng E (2020) Advanced exergy analysis for organic Rankine cycle-based layout to recover waste heat of flue gas. Appl. Energy 266:114891

  • Lion S, Michos CN, Vlaskos I, Rouaud C, Taccani R (2017) A review of waste heat recovery and organic Rankine cycles (ORC) in on-off highway vehicle heavy duty diesel engine applications. Renew Sustain Energy Rev 79:691–708

    Article  CAS  Google Scholar 

  • Liu BT, Chien KH, Wang CC (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29:1207–1217

    Article  CAS  Google Scholar 

  • Liu YF, Wang PC, Zhang SS (2014) The comparison and analysis of the system utilizing the general boiler flue gas waste heat, Advanced Materials Research. Trans Tech Publications, pp 829–832

  • Liu X, Deng YD, Li Z, Su CQ (2015) Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Convers Manage 90:121–127

    Article  Google Scholar 

  • Liu C, Li H, Ye W, Liu J, Wang H, Xu M, Pan X, Mao Z, Yang S (2021) Simulation research of TEG-ORC combined cycle for cascade recovery of vessel waste heat. Int J Green Energy 18:1173–1184

    Article  CAS  Google Scholar 

  • Liu Y, Han J, You H (2020) Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture. Energy 190:116201

  • Lu D, Chen G, Gong M, Bai Y, Xu Q, Zhao Y, Dong X, Shen J (2019) Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat. Energy Convers Manage 185:87–100

    Article  Google Scholar 

  • Macfarlane B (2020) The CV as a symbol of the changing nature of academic life: performativity, prestige and self-presentation. Stud High Educ 45:796–807

    Article  Google Scholar 

  • Maginnes EA, Green GH (1980) Waste heat to grow crops. Exhaust gas heating of greenhouses has potential for competitive vegetable production. ENG J 63:3–6

    Google Scholar 

  • Maizland L (2021) China’s fight against climate change and environmental degradation. In: CFR (HRSG.), backgrounder. Council on Foreign Relations, New York. https://on.cfr.org/3Oqhpld. Accessed 12 June 2023

  • Massucci FA, Docampo D (2019) Measuring the academic reputation through citation networks via PageRank. J Informet 13:185–201

    Article  Google Scholar 

  • Mathur S, Gosnell G, Sovacool BK, Furszyfer Del Rio DD, Griffiths S, Bazilian M, Kim J (2022) Industrial decarbonization via natural gas: a critical and systematic review of developments, socio-technical systems and policy options. Energy Res Soc Sci 90:102638

    Article  Google Scholar 

  • Men Y, Liu X, Zhang T (2021) A review of boiler waste heat recovery technologies in the medium-low temperature range. Energy 237:121560

  • Meng JH, Wang XD, Chen WH (2016) Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery. Energy Convers Manage 120:71–80

    Article  Google Scholar 

  • Mentel G, Lewandowska A, Berniak-Woźny J, Tarczyński W (2023) Green and renewable energy innovations: a comprehensive bibliometric analysis. Energies 16:1428

    Article  Google Scholar 

  • Merigó JM, Mas-Tur A, Roig-Tierno N, Ribeiro-Soriano D (2015) A bibliometric overview of the Journal of Business Research between 1973 and 2014. J Bus Res 68:2645–2653

    Article  Google Scholar 

  • Moore CW, Zielinska B, Petron G, Jackson RB (2014) Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environ Sci Technol 48:8349–8359

    Article  CAS  Google Scholar 

  • Mora L, Deakin M (2019) Untangling smart cities: From utopian dreams to innovation systems for a technology enabled urban sustainability. Elsevier Publishers, p 414

  • Muhammad MHM, Mamat AMI, Salim WSIW (2018) Exergy analysis of organic Rankine cycle and electric turbo compounding for waste heat recovery. Int J Eng Technol 7:152–156

    Article  CAS  Google Scholar 

  • Nadi-Ravandi S, Batooli Z (2022) Gamification in education: A scientometric, content and co-occurrence analysis of systematic review and meta-analysis articles. Educ Inf Technol 27:10207–10238

    Article  Google Scholar 

  • Nash-Stewart CE, Kruesi LM, Del Mar CB (2012) Does Bradford’s Law of Scattering predict the size of the literature in Cochrane reviews? Journal of the Medical Library Association: JMLA 100:135

    Article  Google Scholar 

  • NREL (2011) Life cycle greenhouse gas inventory of natural gas extraction, delivery and electricity production. National Energy Technology Laboratory, USA

    Google Scholar 

  • Nyakuma BB, Wong S, Mong GR, Utume LN, Oladokun O, Wong KY, Ivase TJ-P, Abdullah TAT (2021) Bibliometric analysis of the research landscape on rice husks gasification (1995–2019). Environ Sci Pollut Res 28:49467–49490

    Article  Google Scholar 

  • Odom C, Shwisberg L (2022) The hidden health costs of gas-fired power plants, electricity. RMI Energy International, Colorado

  • Ong KS, Jiang L, Lai KC (2018) 4.20 Thermoelectric energy conversion. In: Dincer I (ed) Comprehensive Energy Systems. Elsevier, Oxford, pp 794–815

    Chapter  Google Scholar 

  • Orr B, Akbarzadeh A, Mochizuki M, Singh R (2016) A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl Therm Eng 101:490–495

    Article  Google Scholar 

  • Pakko MR (2002) What happens when the technology growth trend changes? Transition dynamics, capital growth, and the “new economy.” Rev Econ Dyn 5:376–407

    Article  Google Scholar 

  • Pan Z, Niu J, Lu C, Zhang Z, Junjun Z (2010) Study on thermal efficiency of gas-fired vacuum hot water boiler with installing flue gas condensing waste-heat exchanger. In: 4th International Conference on Bioinformatics and Biomedical Engineering. iCBBE 2010, Chengdu, pp 1–4

  • Pan Z, Niu J, Lu C, Zhang Z, Junjun Z (2010b) Study on thermal efficiency of gas-fired vacuum hot water boiler with installing flue gas condensing waste-heat exchanger, 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010b, Chengdu

  • Pandiyarajan V, Chinna Pandian M, Malan E, Velraj R, Seeniraj RV (2011) Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energy 88:77–87

    Article  CAS  Google Scholar 

  • Papapetrou M, Kosmadakis G (2022) Resource, environmental, and economic aspects of SGHE, Salinity Gradient Heat Engines. Elsevier, pp. 319–353

  • Pasini G, Frigo S, Antonelli M (2016) Electric turbo compounding applied to a CI engine: a numerical evaluation of different layouts, ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016. American Society of Mechanical Engineers

  • Peña AR (2022) research trends of waste heat recovery technologies: a bibliometric analysis from 2010 to 2020. Int J Energy Econ Policy 12:132–137

    Article  Google Scholar 

  • Petersen AM, Fortunato S, Pan RK, Kaski K, Penner O, Rungi A, Riccaboni M, Stanley HE, Pammolli F (2014) Reputation and impact in academic careers. Proc Natl Acad Sci 111:15316–15321

    Article  CAS  Google Scholar 

  • Pierobon L, Nguyen TV, Larsen U, Haglind F, Elmegaard B (2013) Multi-objective optimization of organic Rankine cycles for waste heat recovery: application in an offshore platform. Energy 58:538–549

    Article  CAS  Google Scholar 

  • Popli S, Rodgers P, Eveloy V (2012) Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization. Appl Energy 93:624–636

    Article  CAS  Google Scholar 

  • Qiu G, Liu H, Riffat SB (2013) Experimental investigation of a liquid desiccant cooling system driven by flue gas waste heat of a biomass boiler. Int J Low Carbon Technol 8:165–172

    Article  CAS  Google Scholar 

  • Quan W, Chen B, Shu F (2017) Publish or impoverish: An investigation of the monetary reward system of science in China (1999–2016). Aslib J Inf Manag 69:486–502

    Article  Google Scholar 

  • Quoilin S, Aumann R, Grill A, Schuster A, Lemort V, Spliethoff H (2011a) Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Appl Energy 88:2183–2190

    Article  CAS  Google Scholar 

  • Quoilin S, Declaye S, Tchanche BF, Lemort V (2011b) Thermo-economic optimization of waste heat recovery organic Rankine cycles. Appl Therm Eng 31:2885–2893

    Article  CAS  Google Scholar 

  • Ramos-Rodríguez AR, Ruíz-Navarro J (2004) Changes in the intellectual structure of strategic management research: a bibliometric study of the Strategic Management Journal, 1980–2000. Strateg Manag J 25:981–1004

    Article  Google Scholar 

  • Rigby J (2013) Looking for the impact of peer review: does count of funding acknowledgements really predict research impact? Scientometrics 94:57–73

    Article  Google Scholar 

  • Ritchie H, Roser M, Rosado P (2020) CO2 and greenhouse gas emissions. In: Data OWi (Hrsg.), Greenhouse gas emissions. OWD Press, USA

  • Rochelle GT (2016) 3 - conventional amine scrubbing for CO2 capture. In: Feron PHM (ed) Absorption-based post-combustion capture of carbon dioxide. Woodhead Publishing, Sawston, pp 35–67

    Google Scholar 

  • Roy JP, Mishra MK, Misra A (2010) Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 35:5049–5062

    Article  CAS  Google Scholar 

  • Saidur R, Rezaei M, Muzammil WK, Hassan MH, Paria S, Hasanuzzaman M (2012) Technologies to recover exhaust heat from internal combustion engines. Renew Sustain Energy Rev 16:5649–5659

    Article  CAS  Google Scholar 

  • Saravanna JY, Kantamnen R, Fasil N, Sivamani S, Hariram V, Micha Premkumar T, Mohan T (2017) Modelling and analysis of water heating using recovered waste heat from hot flue gases of Chulha. ARPN J Eng Appl Sci 12:6164–6171

    CAS  Google Scholar 

  • Sarkar S, Mittal BN, Tewari SCL (1973) Utilization of waste heat in flue gases. J Inst Eng (India) Min Metall Div 54:31–35

    CAS  Google Scholar 

  • Schotten M, Meester WJ, Steiginga S, Ross CA (2017) A brief history of Scopus: The world’s largest abstract and citation database of scientific literature, research analytics. Auerbach Publications, New York, pp 31–58

    Google Scholar 

  • She Y, Xu D, Tan Z, Zhao J (2022) Research hotspot and trend analysis of anonymous communication based on Citespace, 2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, pp. 58–62

  • Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y (2020) (Micro) plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod 254:120138

    Article  CAS  Google Scholar 

  • Shi L, Shu G, Tian H, Deng S (2018) A review of modified organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew Sustain Energy Rev 92:95–110

    Article  CAS  Google Scholar 

  • Shlyk V, Kirkach D (1984) Utilizing the waste heat in exhaust gases. Sov Energy Technol 6

  • Song J, Song Y, Gu CW (2015a) Thermodynamic analysis and performance optimization of an organic Rankine cycle (ORC) waste heat recovery system for marine diesel engines. Energy 82:976–985

    Article  CAS  Google Scholar 

  • Song Z, Chen J, Yang L (2015b) Heat transfer enhancement in tubular heater of Stirling engine for waste heat recovery from flue gas using steel wool. Appl Therm Eng 87:499–504

    Article  Google Scholar 

  • Song C, Pan W, Srimat ST, Zheng J, Li Y, Wang Y-H, Xu B-Q, Zhu Q-M (2004) Tri-reforming of methane over Ni catalysts for CO2 conversion to syngas with desired H2/CO ratios using flue gas of power plants without CO2 separation. In: Park S-E, Chang J-S , Lee K-W (Eds), Studies in surface Science and catalysis. Elsevier, pp. 315-322

  • Srinivasan KK, Mago PJ, Krishnan SR (2010) Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle. Energy 35:2387–2399

    Article  CAS  Google Scholar 

  • Stäubli A, Nussbaumer SU, Allen SK, Huggel C, Arguello M, Costa F, Hergarten C, Martínez R, Soto J, Vargas R (2018) Analysis of weather-and climate-related disasters in mountain regions using different disaster databases. In: Sustainable Development Goals Series. Climate change, extreme events and disaster risk reduction, Springer, Cham, pp 17–41. https://doi.org/10.1007/978-3-319-56469-2_2

  • Stavrakis AI, Patel AD, Burke ZD, Loftin AH, Dworsky EM, Silva M, Bernthal NM (2015) The role of chairman and research director in influencing scholarly productivity and research funding in academic orthopaedic surgery. J Orthop Res 33:1407–1411

    Article  Google Scholar 

  • Stevanovic VD, Petrovic MM, Wala T, Milivojevic S, Ilic M, Muszynski S (2019) Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation. Energy 187:115980

  • Sun F, Li J, Fu L, Li Y, Wang R, Zhang S (2020) New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens. Energy 193:116707

  • Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P (2012) Waste-to-energy technologies: impact on environment. Energy 44:146–155

    Article  Google Scholar 

  • Talebizadehsardari P, Ehyaei MA, Ahmadi A, Jamali DH, Shirmohammadi R, Eyvazian A, Ghasemi A, Rosen MA (2020) Energy, exergy, economic, exergoeconomic, and exergoenvironmental (5E) analyses of a triple cycle with carbon capture. J CO2 Util 41:101258

  • Temizer I, Ilkiliç C (2016) The performance and analysis of the thermoelectric generator system used in diesel engines. Renew Sustain Energy Rev 63:141–151

    Article  CAS  Google Scholar 

  • Teng D, An L, Shen G, Zhang S, Zhang H (2021) Experimental study on a ceramic membrane condenser with air medium for water and waste heat recovery from flue gas. Membrane 11:701

    Article  CAS  Google Scholar 

  • Thakar R, Bhosle S, Lahane S (2018) Design of heat exchanger for waste heat recovery from exhaust gas of diesel engine. Procedia Manuf 20:372–376

    Article  Google Scholar 

  • Thiyagu S, Naveen TK, Siddharthan B, Manirathnam AS (2020a) Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas. Mater Today Proc 33:756–762

    Article  CAS  Google Scholar 

  • Thiyagu S, Naveen TK, Siddharthan B, Manirathnam AS (2020b) Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas. In: Harikrishnan S (Hrsg.), Materials Today: Proceedings. Elsevier Ltd, pp. 756–762

  • Thombre M, Prakash S, Knudsen BR, Jäschke J (2020) Optimizing the capacity of thermal energy storage in industrial clusters. In: Pierucci S, Manenti F, Bozzano GL, Manca D (eds) Computer aided chemical engineering. Elsevier, pp 1459–1464

    Google Scholar 

  • UNCC (2022) The Katowice climate package: making the Paris Agreement work for all. In: Change UNC (Hrsg.), Climate Change. UNCC, United Nation HQ, New York, USA

  • UNFCCC (2015) The Paris Agreement. In: Change UNFCoC (Hrsg.). United Nations Organisation

  • United Nations (2022) The Paris Agreement. In: Action UNC (Hrsg.), United Nations and Climate Action. United Nations Press, UN HQ, USA

  • Van Eck N, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Article  Google Scholar 

  • Vogel R, Güttel WH (2013) The dynamic capability view in strategic management: a bibliometric review. Int J Manag Rev 15:426–446

    Google Scholar 

  • Wagino AE, Amin B, Afnison W (2020) Electric turbo compounding (ETC) as exhaust energy recovery system on vehicle. Int J Geomate 19:228–234

    Google Scholar 

  • Wallerand AS, Kermani M, Kantor ID, Maréchal F (2017) General superstructure synthesis and Bi-level solution strategy for industrial heat pumping. In: Espuña A, Graells M, Puigjaner L (eds) Computer aided chemical engineering. Elsevier, Netherlands, pp 1159–1164

    Google Scholar 

  • Wang Q, Su M (2020) Integrating blockchain technology into the energy sector—from theory of blockchain to research and application of energy blockchain. Comput Sci Rev 37:100275

    Article  Google Scholar 

  • Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH (2011) Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 36:3406–3418

    Article  CAS  Google Scholar 

  • Wang C, He B, Sun S, Wu Y, Yan N, Yan L, Pei X (2012a) Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant. Energy 48:196–202

    Article  CAS  Google Scholar 

  • Wang D, Bao A, Kunc W, Liss W (2012b) Coal power plant flue gas waste heat and water recovery. Appl Energy 91:341–348

    Article  Google Scholar 

  • Wang J, Yan Z, Wang M, Li M, Dai Y (2013) Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers Manage 71:146–158

    Article  Google Scholar 

  • Wang Z, Zhang X, Han J, Li Z (2017) Waste heat and water recovery from natural gas boilers: parametric analysis and optimization of a flue-gas-driven open absorption system. Energy Convers Manage 154:526–537

    Article  Google Scholar 

  • Wang X, Zhuo J, Liu J, Li S (2020) Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas. Appl. Energy 261:114401

  • Wei D, Lu X, Lu Z, Gu J (2007) Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers Manage 48:1113–1119

    Article  CAS  Google Scholar 

  • Wei D, Lu X, Lu Z, Gu J (2008) Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery. Appl Therm Eng 28:1216–1224

    Article  Google Scholar 

  • Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ Sci Pollut Res 27:7757–7784

    Article  Google Scholar 

  • Wong SL, Nyakuma BB, Nordin AH, Lee CT, Ngadi N, Wong KY, Oladokun O (2021) Uncovering the dynamics in global carbon dioxide utilization research: a bibliometric analysis (1995–2019). Environ Sci Pollut Res 28:13842–13860

    Article  CAS  Google Scholar 

  • Wong SL, Mong GR, Nyakuma BB, Ngadi N, Wong KY, Hernández MM, Armenise S, Chong CT (2022) Upcycling of plastic waste to carbon nanomaterials: a bibliometric analysis (2000–2019). Clean Technol Environ Policy 24:739–759

    Article  Google Scholar 

  • WRI (2020) World's top 10 emitters. In: Friedrich J, Ge M, Pickens A (HRSG.), Interactive chart on changes in the world's top 10 emitters. World Resources Institute, Washington. https://rb.gy/xj400. Accessed 15 June 2023

  • WRI (2022) How China can cut its road transportation emissions by 95%. World Resources Institute

  • Xu G, Xu C, Yang Y, Fang Y, Li Y, Song X (2014) A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants. Appl Therm Eng 67:240–249

    Article  Google Scholar 

  • Xu X, Ju GD (2019) Application and thermal economic analysis of plate low pressure economizer in flue gas waste heat recovery, IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing

  • Yağli H, Koç Y, Koç A, Görgülü A, Tandiroğlu A (2016) Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy 111:923–932

    Article  Google Scholar 

  • Yalçıntaş D, Oğuz S, Yaşa Özeltürkay E, Gülmez M (2023) Bibliometric analysis of studies on sustainable waste management. Sustainability 15:1414

    Article  Google Scholar 

  • Yan M, Ma C, Shen Q, Song Z, Chang J (2019) A novel lignite pre-drying system integrated with flue gas waste heat recovery at lignite-fired power plants. Appl Therm Eng 150:200–209

    Article  Google Scholar 

  • Yang MH, Yeh RH (2015) Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl Energy 149:1–12

    Article  Google Scholar 

  • Yi C, Qiang L, Chuan T, Xiao-Mei L (2019) Comparison analysis of the long-term low greenhouse gas emission development strategies of main countries. Adv Clim Chang Res 15:633

    Google Scholar 

  • Yu G, Shu G, Tian H, Wei H, Liu L (2013a) Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE). Energy 51:281–290

    Article  CAS  Google Scholar 

  • Yu J, Tahmasebi A, Han Y, Yin F, Li X (2013b) A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol 106:9–20

    Article  CAS  Google Scholar 

  • Yu H, Wang L, Du T (2011) Waste heat recovery and reuse of flue gas in copper pyrometallurgy, 2011 International Conference on Green Building, Materials and Civil Engineering, GBMCE 2011, Shangri-La, pp. 2239–2242

  • Zhang Y, Cleary M, Wang X, Kempf N, Schoensee L, Yang J, Joshi G, Meda L (2015) High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers Manage 105:946–950

    Article  Google Scholar 

  • Zhang H, Kong W, Dong F, Xu H, Chen B, Ni M (2017) Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Convers Manage 148:1382–1390

    Article  Google Scholar 

  • Zhang X, Zhang Y, Wang Y, Fath BD (2021c) Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis. Ecol Model 443:109456

    Article  CAS  Google Scholar 

  • Zhang H, Dong Y, Lai Y, Zhang X (2021a) Waste heat recovery from coal-fired boiler flue gas: Performance optimization of a new open absorption heat pump. Appl Therm Eng 183:116111

  • Zhang H, Zhang J, Liu Z, Li Z, Chen H (2021b) Simulation study of using macroporous ceramic membrane to recover waste heat and water from flue gas. Sep Purif Technol 275

  • Zhang C, Zou D, Huang X, Lu W (2022a) Coal-fired boiler flue gas desulfurization system based on slurry waste heat recovery in severe cold areas. Membrane 12:47

  • Zhang L, Zhai H, He J, Yang F, Wang S (2022b) Application of exergy analysis in flue gas condensation waste heat recovery system evaluation. Energies 15:7525

  • Zhao Y, Zhu XL, Meng JA, Li ZX (2016b) Waste heat recovery and denitrification of flue gases from gas-fired boilers. Sci China Technol Sci 59:1874–1881

    Article  CAS  Google Scholar 

  • Zhao X, Fu L, Sun T, Wang JY, Wang XY (2017) The recovery of waste heat of flue gas from gas boilers. Sci Tech Built Environ 23:490–499

    Article  Google Scholar 

  • Zhao Y, Wang S, Ge M, Li Y, Liang Z, Yang Y (2018) Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery. Appl Energy 228:2080–2089

    Article  Google Scholar 

  • Zhao X, Fu L, Yuan W, Li F, Li Q (2016a) The potential and approach of flue gas waste heat utilization of natural gas for space heating. In: Li X, Jiang S, Duanmu L (Hrsg.), 8th International Cold Climate HVAC 2015 Conference, CCHVAC 2015. Elsevier Ltd, pp. 494–503

  • Zhao X (2022) Evolution of construction risk management research: historiography and keyword co-occurrence analysis. Eng Constr Archit Manag

  • Zhou F, Joshi SN, Rhote-Vaney R, Dede EM (2017) A review and future application of Rankine cycle to passenger vehicles for waste heat recovery. Renew Sustain Energy Rev 75:1008–1021

    Article  Google Scholar 

  • Zhou X, Liu H, Fu L, Zhang S (2013) Experimental study of natural gas combustion flue gas waste heat recovery system based on direct contact heat transfer and absorption heat pump, ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013

  • Zhou G, Zheng H, Zhu X, Liu Y (2020) Study on the integration of flue gas waste heat desulfurization and dust removal in civilian coal-fired heating furnace. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 012018

  • Zhuge W, Huang L, Wei W, Zhang Y, He Y (2011) Optimization of an electric turbo compounding system for gasoline engine exhaust energy recovery, SAE 2011 World Congress and Exhibition, Detroit, MI

  • Zimmerle DJ, Williams LL, Vaughn TL, Quinn C, Subramanian R, Duggan GP, Willson B, Opsomer JD, Marchese AJ, Martinez DM (2015) Methane emissions from the natural gas transmission and storage system in the United States. Environ Sci Technol 49:9374–9383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, methodology: Bemgba Bevan Nyakuma, Syie Luing Wong. Formal analysis and investigation: Bemgba Bevan Nyakuma, Syie Luing Wong. Writing—original draft preparation: Bemgba Bevan Nyakuma. Writing—review and editing: Syie Luing Wong, Nur Izwanne Mahyon. Resources: Apostolos Pesiridis, Ricardo Martinez-Botas. Supervision: Srithar Rajoo. Software: Meng Soon Chiong.

Corresponding author

Correspondence to Bemgba Bevan Nyakuma.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 189 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakuma, B.B., Mahyon, N.I., Chiong, M.S. et al. Recovery and utilisation of waste heat from flue/exhaust gases: a bibliometric analysis (2010–2022). Environ Sci Pollut Res 30, 90522–90546 (2023). https://doi.org/10.1007/s11356-023-28791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28791-4

Keywords

Navigation