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Abstract
Sewage sludge is regarded by wastewater treatment plants as problematic, from a financial and managerial point of view. 
Thus, a variety of disposal routes are used, but the most popular is methane fermentation. The proportion of macromolecular 
compounds in sewage sludges varies, and substrates treated in methane fermentation provide different amounts of biogas 
with various quality and quantity. Depending on the equipment and financial capabilities for methane fermentation, different 
methods of sewage sludge pretreatment are available. This review presents the challenges associated with the recalcitrant 
structure of sewage sludge and the presence of process inhibitors. We also examined the diverse methods of sewage sludge 
pretreatment that increase methane yield. Moreover, in the field of biological sewage sludge treatment, three future study 
propositions are proposed: improved pretreatment of sewage sludge using biological methods, assess the changes in microbial 
consortia caused with pretreatment methods, and verification of microbial impact on biomass degradation.

Keywords Anaerobic digestion · Methane fermentation · Hydrolysis · Biogas production · Wastewater · sCOD · Volatile 
fatty acids · Methane yield

Introduction

Continuously expanded exploitation of fossil fuels is leading 
to their depletion; hence, exploration into novel sources and 
methods for the provision of infinite electrical energy and 
heat inflow, while maintaining comparative usage to conven-
tional sources, is of vital importance. Moreover, the exploi-
tation is not only leading to depletion but also impacts the 
environment during the sourcing and use. Non-renewable 
fossil fuels affect climate changes by releasing large amounts 
of carbon dioxide into the air when are burned. That also 
forces us to minimize its usage and search for alternative 
solutions.

In general, human activity creates a vast amount of 
wastes, which gives rise to potential opportunities in the 
circular economy. The wastewaters are produced daily in 
domestic households, industries, and entertainment sectors, 
to name a few, which are treated in a wastewater treatment 

plant. However, a common side product of such treatment 
is the generation of sewage sludge that has the potential to 
be useful in biogas production. In recent years, biogas pro-
duction by anaerobic digestion and its further usage is ever 
expanding and delving deeper in to unique and interesting 
areas of science. Figure 1 shows the number of papers pub-
lished using the following keywords: sewage sludges, pre-
treatment, and anaerobic digestion.

Methane formation is an anaerobic microbial process 
that decreases the amount of dry and organic matter of 
substrates, causing stabilization of the properties of the 
sewage sludge. During this process, biogas is released 
which contains mainly methane and carbon dioxide at 
levels of 50–70% and 30–50% (v/v), respectively; how-
ever, residuals of hydrogen, hydrogen sulfide, and volatile 
organics also reside (Shrestha et al. 2020; Czatzkowska 
et al. 2020). The amount and quality of biogas are deter-
mined by the substrate characteristics and the ability of 
the fermenting microorganisms to conduct the following 
four phases: hydrolysis, acidogenesis, acetogenesis, and 
methanogenesis. According to reports, methane produc-
tion during anaerobic digestion is mostly dependent on 
the composition of the sewage sludge used in the fermen-
tation process and methods used to treat the biomass (Li 
et al. 2019; Park et al. 2021; Liu et al. 2021b; Akbay et al. 
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2021). A high amount of organic matter influences the 
efficacy and rate of the anaerobic digestion, thus sludge 
treatment. Moreover, usually, the sludges produced by the 
wastewater treatment plants contain considerable quanti-
ties of heavy metals, pathogens, and bacteria (Liew et al. 
2022). Generally, recalcitrant and low degradable bio-
mass limits the hydrolysis stage, which impacts anaerobic 
digestion. During this stage, cell walls are destroyed and 
extracellular polymeric substances (EPSs) are released and 
degraded by acidogenic microorganisms, which employ 
EPSs as organic material. This is an important mechanism 
due to compounds in sewage sludge being considered rela-
tively unfavorable substrates for microbial degradation. 
This stems from their structure, which protects the cell 
from osmotic lysis (Appels et al. 2010). EPSs are known 
as the dewaterability disruptor of sludge that bind with 
bacterial cell walls or remain in suspension. They prevent 
desiccation of the bacterial cell and promote water bind-
ing, making sludges difficult to dewater. In the case of 
thermal methods, bonded and intracellular water is more 
easily released compared to other methods, i.e., chemical 
method (Pilli et al. 2014). Additionally, depending on the 
sewage sludge composition and limitations of microor-
ganism consortia, it is difficult to convert all raw materi-
als during hydrolysis and avoid organic matter in post-
fermented sludges. Research has shown that hydrolysis 
is a slow and limiting phase of anaerobic digestion (Li 
et al. 2019; Junior et al. 2021); therefore, it is important 
to study over improvement of pretreatment methods or 
hydrolysis before anaerobic digestion. The utilization of 
biological, chemical, thermal, or mechanical methods for 
the disintegration of sludge flocs and the release of sim-
pler compounds increase biogas production (Lindmark 
et al. 2012; Tsapekos et al. 2015; Shrestha et al. 2017; 
Liang et al. 2021). Nevertheless, anaerobic digestion is a 

popular treatment process due to proven efficiency, reduc-
tion of pollutants, stabilization of sludges, and reduction 
of sludges demanding utilization (Pilli et al. 2014; Pat-
invoh et al. 2016). Thus, it is important to develop bio-
mass pretreatment that will allow more effective usage 
of biomass and increase biogas production using an eco-
friendly method and low financial outlay. The first phase 
of fermentation determines the effectiveness of the whole 
process, where the decomposition of macromolecular 
compounds into monomers and smaller molecules used 
by microorganisms in the following stages (Ziemiński and 
Frąc, 2021; Neumann et al. 2016). In 1978, Haug et al. 
conducted the first pretreatment of biomass via thermal 
methodology for sludge dewaterability and biodegradabil-
ity under anaerobic conditions. Since this development, 
numerous publications on this subject have been pub-
lished, which propose a plethora of combined methods and 
the utilization of biomass sources. However, even though 
pretreatment research focusing on hydrolysis improvement 
has been conducted for the last 40 years, comprehensive 
verification and testing has yet to be achieved. Nowadays, 
the majority of studies examine various biomass and com-
parison of methods in order to enhance methane produc-
tion, as well as degradation or transformation of hard to 
decompose compounds. Moreover, pretreatment methods 
must consider ecological and economic aspects, includ-
ing the removal of heavy metals and pharmaceuticals. In 
addition, there are increasing opportunities to recover vari-
ous useful substances such as volatile fatty acids (VFAs), 
nutrients (nitrogen, phosphorus, potassium) and enzymes 
(Ye et al. 2020; Sichler et al. 2021). This review examines 
sewage sludge pretreatment methods for methane fermen-
tation with view on substances that present limitations on 
the process, i.e., cellulose, hemicellulose, proteins, and 
lipids. Furthermore, the advantages and disadvantages of 

Fig. 1  Numbers of research 
papers dealing with sewage 
sludge pretreatment for anaero-
bic digestion published between 
1970 and 2022, according to 
Scopus
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sludge pretreatment are reviewed and their influence on 
the methane production yield.

Methane fermentation of sewage sludge

The instantly increasing human population has caused an 
increase in wastewater and sewage sludge volumes gener-
ated post treatment (Duan et al. 2011). In 2010, the world’s 
population was 6.956.823.603, and in 2020, it increased to 
7.794.798.739. On November 2022, the population reached 
8 billion. According to Population Division of the Depart-
ment of Economic and Social Affairs United Nations, the 
number of people will increase over the next few years, 
which will influence heavily the production of wastes and 
sewage sludge. According to World Population Prospects 
(2022), the growth to 8.5 billion in 2030 and 9.7 billion is 
expected by 2050.

In the last decade, the volumes of sewage sludge pro-
duction generated in wastewater treatment plants (WWTPs) 
were increasing continuously, which is caused by the 
increasing population. Table 1 shows sludge production in 
chosen European countries between 2010 and 2019 (Euro-
stat, the statistical office of the European Union). That is 
why biogas production through anaerobic digestion becomes 
more interesting.

Factors impacting on the sewage sludge 
management

In biogas production, various sources of substrates are used 
depending on availability, geography, optional price and 
demand, type of active industry in the area, and possibili-
ties for usage. These factors impact methane yield in relation 

to microorganisms’ potential such as the ability to grow in 
extreme conditions, incubation temperature, and environ-
mental preferences (Passos et al. 2015). In methane fermen-
tation, easily fermented substrates include livestock manure, 
food-processing wastes, and sewage sludge (Patinvoh et al. 
2016; Córdoba et al. 2018).

Sewage sludges are composed of organic macromol-
ecule compounds, varying in concentration and proportion. 
Wastewater flowing into WWTP is not only from private 
households but also from breweries, dairy factories, and 
paper industries, to name a few (Aski et al. 2020), which 
dictate the high concentration of lipids, proteins, cellulose 
and hemicellulose, and other polysaccharides in wastewater 
and then in sewage sludge. All sewage sludges are produced 
during wastewater treatment; hence, the composition of the 
sewage sludge is directly related to the composition of the 
wastewater that goes directly into the wastewater treatment 
plant. Thus, it can contain a qualitative and quantitative vari-
ety of lipids, pathogens, pharmaceuticals and their deriva-
tives, or heavy metals. Methane fermentation of sewage 
sludge, other than its positive aspect for sludge stabilization 
and biogas production, creates wastes. These wastes depend 
on the degree of fermentation, calorific value, and element 
content such as phosphorus, potassium, calcium, and heavy 
metals, which can be managed, burned, or used as fertilizer. 
Moreover, wastewater treatment plants must contend with 
the presence of challenging compounds, such as insoluble 
proteins (about 30%, w/w TS in municipal primary sludge) 
(e.g., keratin) and polysaccharides (about 26%, w/w TS in 
municipal primary sludge) (e.g., cellulose) (Glińska et al. 
2020). Recalcitrant form and difficulties in degradation of 
these compounds hinder the large amounts of dry matter 
and organic matter present in the post-fermented sewage 
sludge. As with almost every resource, sewage sludges must 

Table 1  Total sludge production in Europe (thousand tones), years 2010–2019 (Eurostat, the statistical office of the European Union, 2022)

n.a. data not available

Country 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Bulgaria 49.80 51.40 59.30 60.30 54.90 57.40 65.80 68.60 53.10 n.a.
Czechia 196.30 217.90 263.30 260.10 238.59 210.24 206.71 223.27 228.22 221.09
Ireland 89.99 85.65 72.43 64.55 53.54 58.39 56.02 58.77 55.23 58.63
Germany 1 893.64 1 946.29 1 848.85 1 808.72 1 830.82 1 820.57 1 794.36 1,785.55 1 761.62 1 749.86
Estonia 18.80 18.30 21.70 17.00 19.91 19.11 18.65 20.94 25.54 24.94
Spain 1 355.10 1 331.60 1 233.40 1 122.60 1 131.60 1 152.60 1 174.40 1 192.00 1 210.40 n.a.
Lithuania 21.39 19.76 20.11 22.82 22.08 21.92 25.92 24.94 24.59 24.18
Hungary 170.34 168.33 160.60 170.47 163.12 177.70 217.96 266.84 233.66 227.89
Austria 262.80 n.a. 266.30 n.a. 239.04 n.a. 237.94 n.a. 234.48 233.56
Poland 526.70 519.20 533.30 540.30 556.00 568.00 568.33 584.45 583.07 574.64
Rumania 82.10 114.10 85.40 172.80 192.33 210.45 240.41 283.34 247.76 230.59
Slovakia 54.76 58.72 58.71 57.43 56.88 56.24 53.05 54.52 55.93 54.83
Finland 142.70 140.90 141.20 95.20 115.70 146.00 146.99 161.19 146.62 n.a.
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be pretreated to become efficient and safe biomass during 
and after the process of fermentation. These treatments must 
be cost-efficient and effective for various types of sewage 
sludge. Three groups of methods of sludge pretreatment 
are used, i.e., chemical, physical (including thermal and 
mechanical), and biological methods. Each provides differ-
ent advantages and disadvantages in sewage sludge treat-
ment, presented in Table 2. The applied impact is related 
to the amount of biogas produced and the level of stability 
of the sewage sludge. According to the literature, the most 
effective are thermal methods, which provide improvement 
in methane yield production up to 1000% (Appels et al. 
2008; Nguyen et al. 2021), although the costs of energy 
needed to heat the sludges need to be considered. Mechani-
cal methods provide usually not less than 100% improve-
ment in methane production, and their use in the industry 
is most common (Yue et al. 2021). Usage of the chemical 
methods provides around 50% of the better methane produc-
tion, but they are regarded to be harmful for the environment 
and sewage sludge itself (Zhang et al. 2023). Biological 
methods are not as effective as other methods mentioned 
above; however, they are regarded to be the safest and can 
be improved with other methods at a relatively low cost from 
other methods (Wandera et al. 2019; Liang et al. 2021). As 
mentioned previously, wastewater treatment plants choose 
pretreatment methods depending on their financial and 
technological possibilities, but also according to the sludge 
composition, mainly the presence of hard-to-decompose 
substances. The main purpose of the anaerobic digestion is 
to decrease the amount of organic substances present, i.e., in 
the sewage sludges, so their products could be used further 
in the future. Without the proper treatment, the large amount 
of organic matter residues remains, and eventual deposition 
in the environment may be dangerous for the soil and water. 
Sewage sludges that are not treated properly can cause odors, 
environmental pollution due to the recalcitrant leakage, and 
finally potentially hazardous influence on the human and 
animal health (Nguyen et al. 2021). Proper pretreatment 
provides not only the possibility for decreasing sludges 
volume directed from WWTPs but also their further usage 
due to stabilization of the sewage sludge properties during 
the anaerobic digestion, and the production of the biogas is 
its beneficial feature. The usage of the sewage sludges as a 
source for the methane production and providing its better 
composition contributes in a circular economy strategy.

Lignocellulose complex

Cellulose is a troublesome compound, which is a part of 
a lignocellulose complex that also contains hemicellulose 
and lignin. The combinative effect of these compounds 
negatively influences the effectiveness of lignocellulose 
decomposition. Lignin is regarded as the most recalcitrant 

compound to undergo biochemical decomposition (Wagland 
et al. 2011; Li et al. 2021). Lignocellulose contains ca. 
40–60% cellulose and 20–40% hemicellulose; hence, it is a 
potential carbon source for biogas production (Kang et al. 
2014). According to Zhen et al. (2017), the utilization of lig-
nocellulose as a substrate promotes the production of biogas 
containing approx. 50–70%  CH4 and 25–50%  CO2. Ligno-
cellulose degradation process is mainly associated with 
bacteria and fungi performance, and isolation of enzymes 
produced by microorganisms (Zhang et al. 2018). Although 
lignocellulose is a limiting compound, thus for proper usage, 
it is necessary to convert it into simpler and more soluble 
compounds, which requires lignin removal methodology 
(Shah et al. 2018). Wagland et al. (2011) showed that high 
temperature is the most efficient way for the decomposition 
of such biomass. In the case of other approaches, includ-
ing chemical methods, pretreatment with high energy may 
assist the degradation process. An alternative for high-tem-
perature pretreatment or assisted temperature pretreatment 
is the chemical method, where incorporation of acids and 
bases removes or degrades various compounds. For lignin 
removal or pretreatment from sewage sludges, the alkaline 
pretreatment approach is preferred, which mainly utilizes 
KOH, Ca(OH)2, and NaOH (Dai et al. 2018). Ethanol, ben-
zene, and ethylene glycol have also been investigated for 
lignin removal (Taherzadeh and Karimi, 2008). The pos-
sibility of biomass fermentation increases in the presence 
of bases due to lignin degradation (Patinvoh et al. 2016). 
However, alkaline treatment decreases the degree of polym-
erization of lignocellulosic biomass compounds, promoting 
lignin removal, and increases organic matter solubility in 
sludge and easier cellulose degradation by enzymatic and 
microbial impact (Liu et al. 2021a). Thus, alkaline treat-
ment method is a promising and efficient way to lignocellu-
losic biomass decomposition. In the reference to the chemi-
cal treatment, the utilization of acids in pretreatment and 
assisted pretreatment methodology increases the fragility of 
the biomass in fermentation and promotes intramolecular 
bond cleavage between lignin, hemicellulose, and cellulose 
in the cell wall (Taherzadeh and Jeihanipour 2012). The dis-
turbance over chemical construction enables the more effi-
cient operation of cellulolytic enzymes. It is known that the 
presence of acids contributes to the hydrolysis of celluloses 
and hemicelluloses but does not dissolve lignin, only con-
tributing to its partial destruction (Solarte-Toro et al. 2019). 
Fernandes et al. (2012) reported that biomass adapted to 
4.9 g  NH4+-N*/L and a lack of inhibition of the hydroly-
sis of cellulose after the addition of ammonia concentration 
2.4–7.8 g  NH4+-N*/L. Free ammonia addition is known 
as an effective method to improve anaerobic methane pro-
duction. Using it as a pretreatment method can enhance the 
fermentation process but also adapt biomass to handle any 
ammonia concentration (Wei et al. 2017a).
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Proteins and lipids

Usually, the main part of the sewage sludge organic matter 
consists of carbohydrates; hence, numerous studies focus 
on the hydrolysis and decomposition of such compounds. 
However, in the case of proteinaceous sewage sludge, 
the amount of protein content exceeds that of carbohy-
drates. Proteinaceous sewage sludge originates from the 
dairy industry, and it is characterized as a valuable source 
for methane production, due to its high VFA content. In 
some industries, protein content in dairy wastewater is 
over 40% of total oxygen demand, but the addition of car-
bohydrate matter can increase protein conversion in the 
sewage sludge. Moreover, pH influences methane produc-
tion through the composition of VFA (Liu et al. 2021a). 
The use of sludges rich in protein sources, such as keratin 
wastes (e.g., feathers), contains over 90% of crude protein 
instead, or mixed with sewage sludge may provide higher 
biogas production. Due to the insolubility of the crude pro-
tein, it is necessary to provide access for microorganisms, 
which allow effective decomposition and conversion into 
soluble oligomers (Patinvoh et al. 2016). According to Ma 
et al. (2019), alkaline fermentation leads to efficient VFA 
enhancement production providing a carbon source for 
biological nutrient removal and increased degradation of 
difficult to biodegrade organic matter. Reports have shown 
that increased VFA concentration contributes to intensi-
fication of biogas production (Worwag and Kwarciak-
Kozłowska 2019).

The prevalence of proteins in sewage sludge can also 
inhibit the process. Inhibition of bacterial activity can occur 
when substrates and products are in significant concentra-
tions. Thus, the properly chosen pretreatment method may be 
beneficial for the process, from the point of troubleshooting 
and economy of the treatment. Under such conditions, more 
VFA is produced, which may lead to inhibition of the pro-
cess (Shah et al. 2018). When VFA concentration is too high 
(>3.6 g*/L (Zhang et al. 2001)), inhibition of methanogen-
esis and hydrolysis/acidogenesis occurs due to organic over-
loading (Fotidis et al. 2012). Methanogens are not able to 
remove hydrogen and volatile organic acids faster than they 
are produced, resulting in this compound accumulation that 
causes changes in pH and disturbance of the hydrolysis and 
acidogenesis stages (Ponsá et al. 2008). High concentrations 
of ammonia can also inhibit methanogenesis, which is com-
monly present in complex wastes, mainly in animal manures, 
black water, or waste oil from gastronomy (Belmonte et al. 
2011). Shi et al. (2017) observed that the presence of free 
ammonia (0.045 g*/L) caused an inhibitory effect of metha-
nogenesis and accumulation of VFAs. Belmonte et al. (2011) 
showed that the concentration of free ammonia above 0.04 g 
 NH3-N*/L caused  IC50 (concentration at which a substance 
exerts half of its maximal inhibitory effect) of 56–84% for 

methanogenic bacteria present in raw swine wastewater and 
84–94% for treated swine wastewater.

Methods of sewage sludge treatment

The pretreatment methods of sewage sludges are used to 
support the process of methane fermentation (Patinvoh et al. 
2016; Wluka et al. 2021; Nguyen et al. 2021; Machnicka and 
Grübel 2023). Methods used for the pretreatment of biomass 
for biogas production on a large scale are chemical, or physi-
cal, including thermal and mechanical. Recently, more atten-
tion gains also biological methods, based on microorgan-
isms possessing particular features and enzymes produced 
by them (Kumar and Gopal 2015; Junior et al. 2021; Nguyen 
et al. 2021). For now, biological methods find their appliance 
only in the lab scale. The effectiveness of these methods can 
be compared only with the impact on the precise substrate 
(Lee et al. 2010). The potential advantages and disadvan-
tages of the proposed methods are compared in Table 2.

All described methods demand high investment or operat-
ing costs, but in the long-term appliance, advantages may 
be overall the negative aspects. There is no universal pre-
treatment method for all biomass types; thus, the methods 
described in Table 2 and the potential of their usage are 
usually different depending on the composition of biomass 
sources. Nevertheless, each of the presented provides an 
increase in methane production and improved sewage sludge 
stabilizations, which decrease WWTP overall costs.

Chemical methods

Pretreatment using chemical methods commonly employs 
acids and bases, which decrease recalcitration, and improves 
decomposition or degradation of biomass. Depending on the 
composition and origin of the biomass, various solutions 
of different concentrations are used to increase decom-
posed solid compounds and methane yield. Unoptimized 
and unbalanced pretreatment methods can lead to the pro-
duction of inhibitors, such as furfurals during high ther-
mal acidic pretreatment of the lignocellulosic substrate in 
order to degrade cellulose and hemicellulose (Chen et al. 
2007), or VFA during alkali pretreatment of proteinaceous 
sludge. From a financial point of view, chemical methods 
are highly desirable. They are easily modified and result in 
high methane yield. In most reported cases, chemical pre-
treatment avoids subjection to thermal conditions. The most 
commonly used chemicals are HCl,  H2SO4,  H3PO4,  HNO3, 
and  HNO2 for acid pretreatment and NaOH, KOH, Ca(OH)2, 
Mg(OH)2, CaO, and ammonia for alkali pretreatment. Lü 
et al. (2007) examined alkali pretreatment and determined 
that using ammonia in protein hydrolysis caused its biodeg-
radation. In the case of lipids, different concentrations of 
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ammonia displayed varying degrees of influence on easy 
and hard biodegradable lipids. Wei et al. (2017a) verified 
the influence of free ammonia on methane production, where 
the addition of 250 mg  NH3-N/L of the free ammonia was 
effective in enhancing methane fermentation. The greatest 
improvement of biochemical methane potential and hydroly-
sis rate was determined for 420–680 mg  NH3-N/L.

Shah et al. (2018) studied alkali reagents of various con-
centrations in conjunction with different heating processes, 
including water bath, autoclaving and short time microwav-
ing. The results showed that the highest delignification, com-
pared to the other methods, was obtained using 2% NaOH 
and short time microwave heating process, providing biogas 
yield of 560 mL/g VS.

Wei et al. (2017b) showed that during acid pretreatment, 
addition of N/L free nitrous acid increased methane produc-
tion by 16±1% and 16–17% reduction of dewatered sludge 
for final disposal. According to Zahedi et al. (2016), addition 
of free nitrous acid (2.49 mg N-HNO2/L) and incubation for 
5 h increased the solubility of organic matter and methane 
production up to 25%.

Liu et al. (2021b) reported that pH regulation and chemi-
cal pretreatment were achieved using NaCl and NaOH. They 
determined that at pH = 11.0 the concentration of soluble 
proteins and VFA was higher than that at the pH = 3.0. 
Hence, pH modification impacted not only on VFA produc-
tion but also the percentage of individual VFA. All acids and 
bases described above are used for sewage sludge treatment 
in research and industry. Dai et al. (2018) researched chemi-
cal and biological pretreatment of rice straw. Pretreatment 
using cellulase with NaOH, HCl, and CO(NH2) increased 
biogas production under anaerobic conditions. HCl dis-
solved hemicellulose by approx. 12.5–7.1%. After cellulase 
pretreatment, cellulose degradation was 38.3–10.9%. Pre-
treatment using 6% NaOH resulted in TS and VS removal of 
53.8% and 36.8%, respectively. Song et al. (2014) compared 
seven chemicals alkali and acid pretreatment methods of 
various concentrations:  H2SO4, HCl,  H2O2, and  CH3COOH 
at concentrations of 1%, 2%, 3%, and 4% (w/w) for acid 
pretreatment and NaOH, Ca(OH)2, and  NH3*H2O at con-
centrations of 4%, 6%, 8%, and 10% (w/w) for alkaline pre-
treatment. The results showed that  H2O2 and Ca(OH)2 were 
the most efficient, giving 216.7 and 206.6 mL of  CH4/g VS.

Physical methods

The complex structure of sewage sludge compounds pre-
vents effective processing, forcing mechanical, ultrasound, 
microwave, or explosion treatment before anaerobic diges-
tion. The main goal for pretreatment of sewage sludge is to 
increase the accessibility of the surface area and pore size, 
and cell walls break down, allowing microorganisms access 
to nutrients, thus improving biomass decomposition (Zhen 

et al. 2017). Physical pretreatment methods are preferable to 
treat difficult biomass, such as hard food wastes; agricultural 
residues from straw, crops, and wood; and forest residues 
(Rodriguez et al. 2017). Mechanical methods of disintegra-
tion reduce particle size due to external stress and pressure, 
converting compact masses of biomass into more soluble 
material (Shrestha et al. 2020). The size of particles impacts 
biogas production, where larger particles result in lower 
chemical oxygen demand (Nguyen et al. 2021). Ultrasound 
is considered an effective mechanical method. During ultra-
sonication, microbubbles that form collapse after reaching 
the critical size and cavitation occur. This process increased 
with increasing temperature and pressure, initiating hydro-
mechanical shear forces and the presence of reactive radi-
cals (H∙ and ∙OH). The decomposition of sludge flocs and 
release of intercellular material by physical methods have 
the hydro-mechanical shear forces and oxidizing influence 
of radicals, but the greatest impact has hydro-thermal shear 
forces (Pilli et al. 2011).

Another commonly used method of pretreatment involves 
microwaves, where the generated heat causes disintegration 
of compounds via hydrogen bond cleavage due to changes 
in dipole orientation at the polarized side chains in the cell 
membranes of macromolecules (Park et al. 2004, Serrano 
et al. 2016). Microwave is considered a promising pretreat-
ment method and is normally used in crop straw pretreat-
ment (Liu et al. 2021a). It is a rapid heating source, promot-
ing thermal and nonthermal effects, resulting in enhanced 
biogas production, and it is regarded a supporting method 
for chemical treatment (Xu, 2015; Zaidi et al. 2019). Elalami 
et al. (2020) determined that using a single microwave or 
ultrasound pretreatment was less effective than the com-
bined methods with alkali pretreatment. Moreover, mild 
microwave or ultrasonic pretreatment did not affect lignin 
degradation; however, the utilization of NaOH showed a 
substantial effect. Furthermore, alkali pretreatment reduces 
lipid content by saponification.

For mechanical pretreatment, various beaters or mills can 
be employed. Rodriguez et al. (2018) used the Hollander 
beater for anaerobic digestion of algae Pelvetia canalicu-
lata. This resulted in maximum methane production of 283 
mL/g VS and increased methane yield up to 43% in ref-
erence to non-pretreated algae. The Hollander beater was 
used also by Tedesco et al. (2014), where after pretreatment 
at 50°C for 10 min, biogas production increases by 52% 
and methane yield by 53% compared to the control sam-
ple. Rice straw biogas production using biological pretreat-
ment supported by milling was performed by Mustafa et al. 
(2017). First biomass was treated with fungal strains and 
then prior into a mill. This combination increased methane 
production by 165%. It is known that particle size matters. 
Izumi et al. (2010) verified its effect on anaerobic diges-
tion of food wastes. Bead milling was used and enhanced 
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methane production by 28%, compared to the non-pretreated 
sample. Depending on the used biomass, physical method 
may give different results, so also comparison inside the 
group of methods is studied. Suresh et al. (2013) showed 
higher methane production using green algae Ettlia sp. as a 
substrate with the pretreatment under autoclave conditions 
compared to using sonicated residue and 250 W microwave. 
Montingelli et al. (2015) verified the influence of micro-
waves, ball milling, and beating on micro-algae biomass and 
determined that beating increased methane yield up to 37%, 
but ball milling and microwave method gave lower methane 
yield compared to biomass without pretreatment.

Among all pretreatment methods, thermal hydrolytic 
pretreatment reduces the VS and enhances biogas produc-
tion (Chen et al. 2018). Thermal hydrolysis is a commonly 
used pretreatment method in industry for effective sludge 
treatment (Liang et al. 2021). Such pretreatment method-
ologies improve dewaterability, solubilization, and lique-
faction of organic matter (Pilli et al. 2014). Additionally, 
thermal hydrolysis decreases particle size and viscosity, 
which increases access of the microbes and enzymes to the 
substrate (Chen et al. 2019). Reports have shown that ther-
mal hydrolysis used on a full scale at WWTP increases the 
net electrical production of biogas by 20% (Tyagi and Lo 
2013; Liang et al. 2021). The temperature range of thermal 
pretreatment is between 60 and 270°C, which categorizes 
pretreatment into low- (below 100°C) and high-temperature 
thermal pretreatment (above 100°C). High-temperature 
thermal pretreatment destroys sewage sludge particles and 
releases intracellular water, which is also achieved by parti-
cle collisions that causes gel structure destruction (Chu et al. 
1999). Furthermore, an increase in temperature increases 
the chemical oxygen demand (Perez-Elvira et al. 2010). An 
increase in carbohydrate concentration was observed up to 
130 °C and then decreases above 165°C. The results were 
obtained using spectrophotometric techniques by quantify-
ing carbonyl groups (Pilli et al. 2014). The best results in 
sludge biodegradability, dewaterability, and biogas produc-
tion (an increase of 40–80%) were obtained using pretreat-
ment in 160 for 30 min and 180°C for 60 min. Low- and 
high-temperature pretreatment differs in the treatment time 
which is needed to obtain the same biogas generation. In the 
case of low-temperature pretreatment, the time period use 
can be hours or even days, with an increase of 20–50% in 
biogas production in comparison to samples never treated. 
The anaerobic pretreatment may be conducted in meso-
philic and thermophilic conditions, or of their combination 
as two-stage anaerobic digestion. Under these conditions, 
hyperthermophilic chamber is used, followed by a meso-
philic digester, causing an increase of solid-state hydrolysis, 
acidogenesis in thermophilic conditions, and then metha-
nogenesis in a mesophilic environment (Handous et  al. 
2019). Ruffino et al. (2020) compared temperature-phased 

anaerobic digestion (TPAD) regarding conventional anaero-
bic digestion and showed higher efficiency in volatile solid 
(VS) reduction and methane generation. Amodeo et  al. 
(2021) studied two different organic fractions of munici-
pal solid wastes in co-digestion with digested sludge and 
determined an increase of methane production for both sub-
strates at 55°C of solid retention time. Xiao et al. (2018) 
compared TPAD and food wastes with single-stage diges-
tion in mesophilic and thermophilic anaerobic digestion and 
determined that lower methane yields were obtained when 
temperature-phased pretreatment was used. All thermal pre-
treatment methods influence methane production, enhance 
VFA generation, solubilization, and soluble chemical oxy-
gen demand (sCOD) (Pilli et al. 2014; Junior et al. 2021). 
Low-temperature pretreatment increases sCOD, proteins, 
and sludge solubilization, but at a very low level, compared 
to high-temperature treatment (Chen et al. 2018). Ther-
mal pretreatment consists of heat energy provided by heat 
exchangers or steam explosion, generating high pressure and 
heat. Such pretreatment methods enhance solubilization. 
The highest methane yield was observed after pretreatment 
for 15 min at 10 bar and 10 min at 15 bar. Similarly, stud-
ies conducted by Lizasoain et al. (2016) confirmed a posi-
tive influence of steam explosion regarding reed biomass, 
in which increased methane yield up to 89% was obtained 
after 15 min pretreatment at 200°C. A comparative study of 
steam explosion at 170°C and regular thermal sludge treat-
ment in the autoclave (70, 100, and 125°C) was conducted 
by Liu et al. (2019). It was found that steam explosion had 
the potential to pretreat granular aerobic biomass with low 
methane yield caused by high mineral content. According 
to reports, the method that considers mineral content may 
be useful for resource recovery.

Biological methods

Over the past few years, biological method using microor-
ganisms and enzymes under aerobic and anaerobic condi-
tions is a promising biomass pretreatment method. During 
the process, extensive degradation of lignin conducted by 
white-rot fungi and their enzymes responsible for the decay 
was observed (Adney et al. 2009). Fungi are considered to 
be the most effective microorganisms in biodegradation of 
lignocellulosic biomass, but other microorganisms have 
also their part. The influence of microorganisms is highly 
effective and improves both the pretreatment and fermen-
tation process. Under optimal conditions, microorganisms 
stop the activity of inhibitors if they are biodegradable, or 
accumulated it while the concentration of non-biodegradable 
inhibitors is low. A high concentration of inhibitors leads 
to microbe death (Chen et al. 2007). Microorganisms can 
originate from various environments such as soil, manure, 
compost, food wastes, and sewage sludges (Kumar and 
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Gopal 2015; Pessuto et al. 2016; Rodriguez et al. 2017; 
Baba et al. 2017; Zhang et al. 2018). Since microorganisms 
are already present in the environment, their addition can-
not lead to microbial pollution, but the improper number, 
causing disturbance in the community, may decrease process 
efficiency. Similarly, as with chemical and physical pretreat-
ment, biological methods may provide positive or negative 
biogas production effects. Microbial consortia during biogas 
production undergo various processes, which depend on the 
accessibility of nutrients and proper process conditions. Any 
disturbance in the microbial balance or presence of inhibi-
tors may stop the biogas production process, or change its 
composition. As mentioned, microorganisms can take part 
in substrate treatment under aerobic or anaerobic condi-
tions. Aerobic pretreatment consists of oxygenation, through 
the injection of oxygen into the pre-fermentation reactor, 
which improves the hydrolysis of macromolecular organic 
compounds by increasing the autochthonous microorgan-
isms. Oxygenation, also called micro-aeration pretreatment, 
not only impacts microbial activity and diversity, causing 
hydrolysis increase, but also methane production (Nguyen 
and Khanal 2018). Micro-aeration stabilizes the liberation 
of exoenzymes, which biodegrade compounds that remain 
recalcitrant under anaerobic conditions (Ahn et al. 2014). 
Supporting impact on organic compound treatment in the 
aerobic pretreatment has a high temperature, which stimu-
lates microbial consortia to produce enzymes (i.e., proteases) 
responsible for improving biomass solubility and organic 
compound degradation (Neumann et al. 2016). Nguyen et al. 
(2019) suggested that such pretreatment method could be 
used as an effective control strategy when the organic load-
ing rate was high, thus, confirming rapid VFA conversion, 
followed by methane production, conducted by facultative 
anaerobic microorganisms and hydrogenotrophic methano-
gens. Using limited micro-aeration in to corn straw anaero-
bic digestion produces the following maximum results: 
216.8 mL/g VS of methane yield and 54.3% removal of 
VS (Fu et al. 2016). Fu et al. (2016) showed changes in 
the microbial community structure and improvement of 
specific methanogenic activity after micro-aeration. Under 
micro-aerobic conditions, increased numbers of phylum 
Firmicutes, class Clostridia, and order Clostridiales were 
observed (Mustapha et al. 2018). As mentioned, micro-
aeration at high temperature generates positive results and 
high potential, but research (Table 3; Ding et al. 2017; Liang 
et al. 2021) confirms high methane yield when using only 
high temperature and microorganisms. Biological pretreat-
ment can proceed by the aforementioned methods described, 
using inoculation of the biomass with microorganisms, their 
activity products (isolated enzymes), or commercially avail-
able enzymes. According to reports, the basic assumption 
is that microorganisms present in the substrate use available 
compounds as food, allowing the use of the biodegradable 

products by other microorganisms, which undergo the fol-
lowing stages. The addition of extra microorganisms can 
disturb the balance in the microbial community of sewage 
sludge but also improve the process. The influence of micro-
organism inoculation is noticeable when using autochtho-
nous microorganisms according to Pessuto et al. (2016) for 
anaerobic digestion of swine manure, where an increase in 
biogas and methane production was determined.

Supporting the pretreatment with enzymes has gained 
lot of interest. The addition of hydrolytic enzymes provides 
enhanced hydrolysis and increases biogas production, sludge 
solubilization, and degradation of the extracellular poly-
meric substances (EPSs) (Yin et al. 2016). Enzymes may 
be an alternative for thermochemical methods of hydrolysis, 
diminishing overall costs, as the enzymes may be produced 
by a wide range of bacteria and fungi (Miao et al. 2013; 
Mahdy et al. 2014).

There are 4 ways of enzyme addition methods according 
to Brémond et al. (2018), which rely on (1) addition to a 
dedicated pretreatment vessel, (2) direct addition to the 
hydrolysis and acidification vessel over a two-stage process, 
(3) direct addition to the digester in a single-stage process, 
and (4) addition to the recirculated anaerobic digestion 
leachate. Depending on the substrate, the composition and 
parameters of enzymes used should be optimized, such 
as isoelectric point, specificity, activity, and temperature 
(Divya et al. 2015). The research conducted by Zhao et al. 
(2018) compared chemical and biological pretreatment 
using enzymes, fungi, and alkali (NaOH) and combined 
NaOH with both fungi and enzymes. The combination of 
the two enzymes gave methane yield of approx. 276.16 
and 273.75 mL/g TS, respectively. The presence of NaOH 
gave the same result as the first obtained during enzyme 
pretreatment, confirming that chemical pretreatment could 
be replaced by a safer method. NaOH combined with one 
enzyme pretreatment method increased methane production 
to over 20.24% compared to the control, but fungal treatment 
decreased biogas production and inhibited the process. 
Enzymes were used also by Moon and Song (2011), where 
hydrolysis reaction was conducted for 10 h. A mixture of 
enzymes (carbohydrase, protease, and lipase in ratio 1:2:1) 
was examined, generating 0.35 L  CH4/gCOD. Biological 
methods have already been studied, but compared to chemical 
or physical pretreatment, they seem to be equally popular.

Biological methods using enzymes are a promising 
approach, but their price is high, and the time of producing 
enzymes by microorganisms is long. Hence, the production 
and subsequent recovery of enzymes are reasonable from the 
economical point of view (Marín et al. 2018). Cellulases were 
extracted from the substrate, which was further tested for meth-
ane production. The authors obtained 552±66, 543±47, and 
663±40 mL biogas/g VS for apple pomace, orange peel, and 
rice fiber after 25 days, respectively, confirming the positive 
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influence of enzymes. The authors tested recovered enzymes, 
which determined their potential reusability. Table 3 shows 
examples of pretreatment methods, the concentration of VFAs, 
sCOD, and methane yield, depending on the used biomass and 
total and volatile solids.

Pretreatment methods are useful not only for increasing 
biomass fragility but also for heavy metals or pharmaceutical 
removal from the sludges to the liquid phase; such methods 
include steam explosion pretreatment. This approach employs 
high pressure and heat causing break down of sludge structures 
and contained compounds. The steam explosion eliminates 
the need for chemical usage; hence, it can be considered as an 
eco-friendly pretreatment method (Aski et al. 2020). Aski et al. 
(2020) confirmed that this method allowed for pharmaceutical 
and heavy metal removal, such as ibuprofen (in 65 and 69%), 
acetaminophen (in 66 and 70%), amoxicillin (in 66 and 70%), 
lead (in 78 and 70%), and cadmium (in 79%) removal from 
primary sludge and waste-activated sludge by facilitating the 
leaching them out into the liquid phase. Physical pretreatment 
methods can be applied to sewage sludge pretreatment, as well 
as reduction of dangerous impact of pharmaceuticals, antibi-
otics, and heavy metals. Zhang et al. (2019) described that 
an influencing factor that reduces antibiotic resistance genes 
(ARGs) was present in chicken manure, when supported with 
activated carbon. The authors noted that ARG removal rate 
was obtained 87–95% in a digester with microwave pretreat-
ment supported with activated carbon and 34–58% in the 
digester with substrate only microwaved. In other studies, Bao 
et al. (2020) showed an increase of VFA and sCOD concen-
tration after ultrasound-alkali pretreatment of waste-activated 
sludge and methane yield of approx. 97±1.85% in reference 
to the control reactor. The research was conducted using a 
combined process of microbial electrolysis cell and anaerobic 
digestion. The obtained results suggest that such pretreatment 
not only supports the degradation of organic compounds and 
increases biogas production but also supports VFA recovery 
that becomes precursors for the production of higher-value 
biofuel and biochemical generation.

Currently, the methane produced in anaerobic digestion 
is used by wastewater treatment plants for its purposes, to 
provide heat and energy for WWTPs’ infrastructure, or it is 
simply burned. Future perspective of using biogas as green 
energy source for larger group of consumers should be con-
sidered. Improved production of biogas may fulfil the energy 
demand with environmentally friendly replacement for fossil 
fuels.

Conclusion

Sludges for fermentation may contain inhibitors, indigest-
ible, and hard to degrade compounds, but their presence 
should not determine the low effectiveness of the process. 

An efficient process may be possible with proper support-
ing methods, providing effective treatment of substrates, 
with high energy benefits. One of the critical aspects is high 
methane potential of the substrate, which is determined only 
after all possible pretreatment methods are tested, because 
certain methods may not impact, increase, or decrease 
biogas and methane production. All described methods 
improve hydrolysis and methane yield, but the best effects 
are obtained using mechanical methods. Such methods are 
expensive and require high energy contribution, which, in 
the circular economy, can be returned in biogas production. 
Chemical methods may be less effective when used sepa-
rately, can cause the production of inhibitors, and destroy 
equipment and large investment and exploitation costs. 
Biological methods produce comparative methane yields to 
other pretreatment methods but may not be yet considered 
as an alternative method for chemical or physical pretreat-
ment on a large scale. Moreover, they are costly and cannot 
be easily transformed from a lab scale into the industry. All 
methods provide higher efficiency when they are used in 
combination with the other techniques, from a different cat-
egory. As methane fermentation is a biological process, any 
change may cause microbial consortia balance disturbance; 
thus, it should be obligatory to verify the condition of the 
biomass activity before and after pretreatment, revealing the 
pretreatment effect. Both, the influence of pretreatment on 
microorganisms consortium present in the sewage sludges, 
and the influence of the microorganisms on the biodegra-
dability of sludge and composition changes. Additionally, 
the analysis for determining hydrolysis effectiveness should 
be systematized, which will allow for proper comparison of 
possible methods. The greatest challenge for sustainable and 
efficient anaerobic digestion is possessing energy and eco-
nomic balance, when considering ecological aspects. Moreo-
ver, very often efficient pretreatment methods are expensive 
when tested and used already in lab scale; therefore, they 
may not be attractive for industries. Potential influence on 
the pretreated substrate environment should be considered 
and the possibility of recovery compounds, substrates, or as 
circular economy attitude. For future studies, more attention 
should be given to the improvement of biological pretreat-
ment methods without using chemical supported methods, 
as well as conducting additional recovery of used materials 
for a more eco-friendly approach.

Figures and tables of this word can be found in online 
version of the paper
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